345 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...
Затеяли ремонт? Вам сюда ⬇️

Как работать с осциллографом для начинающих

Как пользоваться осциллографом

В статье «Электронный осциллограф — устройство, принцип работы» вкратце было рассказано об этом универсальном приборе. Приведенных сведений достаточно для того, чтобы сделать процесс измерений осознанным, но в случае ремонта столь сложного прибора понадобятся более глубокие знания, ведь схемотехника электронных осциллографов весьма разнообразна и достаточно сложна.

Чаще всего в распоряжении начинающего радиолюбителя оказывается однолучевой осциллограф, но освоив приемы пользования таким прибором, не составит труда перейти на двухлучевой или цифровой осциллограф.

На рисунке 1 показан достаточно простой и надежный осциллограф С1-101, имеющий настолько малое количество ручек, что запутаться в них абсолютно невозможно. Обратите внимание, что это не какой-нибудь осциллограф для школьных уроков физики, именно таким пользовались на производстве всего лишь лет двадцать назад.

Питание осциллографа не только 220В. Возможно питание от источника постоянного тока 12В, например автомобильного аккумулятора, что позволяет пользоваться прибором в полевых условиях.

Рисунок 1. Осциллограф С1-101

Вспомогательные регулировки

На верхней панели осциллографа расположены ручки регулирования яркости и фокусировки луча. Их назначение понятно без объяснений. На передней панели находятся все остальные органы управления.

Два регулятора, обозначенные стрелками, позволяют регулировать положение луча по вертикали и горизонтали. Это позволяет более точно совмещать изображение сигнала на экране с координатной сеткой для улучшения отсчета делений.

Нулевой уровень напряжения находится на центральной линии вертикальной шкалы, что позволяет наблюдать двухполярный сигнал без постоянной составляющей.

Для исследования однополярного сигнала, например цифровых схем, луч лучше переместить на нижнее деление шкалы: получится одна вертикальная шкала из шести делений.

На передней панели находятся также тумблер включения питания и индикатор включения.

Усиление сигнала

Переключателем «V/дел» устанавливается чувствительность канала вертикального отклонения. Усиление канала Y калиброванное, изменяется с шагом 1, 2, 5, плавной регулировки чувствительности нет.

Вращением этого переключателя следует добиться, чтобы размах исследуемого импульса был не менее 1 деления вертикальной шкалы. Только тогда можно добиться устойчивой синхронизации сигнала. Вообще следует стремиться, получить размах сигнала по возможности больше, до тех пор, пока он не вышел за пределы координатной сетки. В таком случае точность измерений возрастает.

В общем случае рекомендация по выбору усиления может быть такой: выкрутить переключатель против часовой стрелки до положения 5V/дел, после чего вращать ручку по часовой стрелке до тех пор, пока размах сигнала на экране не станет таким, как было рекомендовано в предыдущем абзаце. Это как в случае с мультиметром: если величина измеряемого напряжения неизвестна начинать измерения с самого высоковольтного диапазона.

Самое последнее по часовой стрелке положение переключателя чувствительности по вертикали обозначено черным треугольником с надписью «5ДЕЛ». В этом положении на экране возникают прямоугольные импульсы размахом 5 делений, частота импульсов 1 КГц. Назначение этих импульсов – проверка и калибровка осциллографа. В связи с этими импульсами вспоминается несколько комичный случай, который можно рассказать в качестве анекдота.

Пришел как-то к нам в мастерскую один товарищ и попросил воспользоваться осциллографом для налаживания какой-то самопальной конструкции. После нескольких дней творческих мучений слышим от него такой возглас: «Эх ты, и питание выключил, а импульсы-то какие хорошие!». Оказалось, что по незнанию он просто включил калибровочные импульсы, которые никакими ручками на передней панели не управляются.

Открытый и закрытый вход

Непосредственно под переключателем чувствительности находится трехпозиционный переключатель режимов работы, которые часто называют «открытый вход» и «закрытый». В крайнем левом положении этого переключателя возможно измерение постоянного и переменного напряжений с постоянной составляющей.

В правом положении вход усилителя вертикального отклонения включается через конденсатор, который не пропускает постоянную составляющую, зато можно увидеть переменную, даже если постоянная составляющая находится далеко от 0В.

В качестве примера использования закрытого входа можно привести такую распространенную практическую задачу, как измерение пульсаций источника питания: выходное напряжение источника 24В, а пульсации не должны превышать 0,25В.

Если предположить, что напряжение 24В при чувствительности канала вертикального отклонения 5В/дел. займет почти пять делений шкалы (ноль придется устанавливать на самую нижнюю линию вертикальной шкалы), то луч взлетит под самый верх, и пульсации в десятые доли вольта будут практически незаметны.

Чтобы точно измерить эти пульсации достаточно перевести осциллограф в режим закрытого входа, поместить луч в центр вертикальной шкалы и выбрать чувствительность 0,05 или 0,1В/дел. В таком режиме замер пульсаций будет достаточно точным. Следует заметить, что постоянная составляющая может быть достаточно большой: закрытый вход рассчитан на работу с постоянным напряжением до 300В.

В среднем положении переключателя измерительный щуп просто ОТКЛЮЧАЕТСЯ от входа усилителя Y, что дает возможность выставить положение луча, не отключая щуп от источника сигнала.

В некоторых ситуациях это свойство достаточно полезно. Самое интересное, что это положение отмечено на панели осциллографа значком общего провода, земли. Создается впечатление, что измерительный щуп соединяется с общим проводом. И что будет тогда?

В некоторых моделях осциллографов переключатель режима входа не имеет третьего положения, это просто кнопка или тумблер, переключающий режимы открытый/закрытый вход. Важно, что в любом случае такой переключатель есть.

Чтобы предварительно оценить работоспособность осциллографа достаточно коснуться пальцем сигнального (иногда говорят горячего) конца измерительного щупа: на экране должна появиться сетевая наводка в виде размытого луча. Если частота развертки близка к частоте сети, появится размытая, рваная и лохматая синусоида. При касании пальцем «земляного» конца наводок на экране, естественно, не будет.

Вот тут можно вспомнить один из способов проверки конденсаторов на обрыв: если взять в руку исправный конденсатор и коснуться им горячего конца, то на экране появится та же лохматая синусоида. Если конденсатор в обрыве, то никаких изменений на экране не произойдет.

Управление разверткой

Переключателем «Время/дел.» устанавливается длительность развертки. При наблюдении периодического сигнала вращением этого переключателя следует добиться, чтобы на экране показывался один или два периода сигнала.

Ручка синхронизации развертки осциллографа С1-101 обозначена всего одним словом «Уровень». У осциллографа С1-73 дополнительно к этой ручке имеется ручка «стабильность» (некоторая особенность схемы развертки), у некоторых осциллографов эта же ручка называется просто «СИНХР». О пользовании этой ручкой следует рассказать несколько подробней.

Как добиться устойчивого изображения сигнала

При подключении к исследуемой цепи на экране чаще всего может появиться картинка, показанная на рисунке 3.

Для того, чтобы получить устойчивое изображение следует покрутить ручку «Синхронизация», которая на лицевой панели осциллографа С1-101 обозначена как «Уровень». На разных осциллографах почему-то встречаются разные обозначения органов управления, но по сути дела это одна и та же ручка.

Рисунок 4. Синхронизация изображения

Чтобы из размытого изображения, показанного на рисунке 19 получить устойчивый сигнал достаточно покрутить ручку «СИНХР.» или в нашем случае «уровень». При вращении против часовой стрелки до знака «минус» на экране появится изображение сигнала, в данном случае синусоиды, показанное на рисунке 20а. Синхронизация начинается по падающему фронту сигнала.

При вращении той же ручки до знака «плюс» та же самая синусоида будет иметь вид, как на рисунке 4б: развертка запускается по восходящему фронту. Первый период синусоиды начинается чуть выше нулевой линии, это сказывается время запуска развертки.

Если осциллограф имеет линию задержки, то подобного пропадания не будет. Для синусоиды это, может быть, не особо заметно, а вот при исследовании прямоугольного импульса можно лишиться на изображении всего фронта импульса, что в ряде случаев достаточно важно. Особенно при работе с внешней разверткой.

Работа с внешней разверткой

Рядом с регулятором «УРОВЕНЬ» находится тумблер, обозначенный как «ВНЕШ/ВНУТР». В положении «ВНУТР» развертка запускается от исследуемого сигнала. Достаточно на вход Y подать исследуемый сигнал и покрутить ручку «УРОВЕНЬ» как на экране появится устойчивое изображение, как было показано на рисунке 4.

Если упомянутый тумблер установить в положение «ВНЕШ», то получить устойчивое изображение не удастся никаким вращением ручки «УРОВЕНЬ». Для этого надо подать сигнал, по которому будет синхронизироваться изображение на вход внешней синхронизации. Этот вход расположен на белой пластмассовой панели, расположенной справа от входа Y.

Там же расположены гнезда выхода пилообразного напряжения развертки (используется для управления различными ГКЧ), выход калибровочного напряжения (может использоваться в качестве генератора импульсов) и гнездо общего провода.

В качестве примера, где может потребоваться работа с внешней разверткой может послужить схема задержки импульса, показанная на рисунке 5.

Рисунок 5. Схема задержки импульса на таймере 555

При подаче на вход устройства положительного импульса выходной импульс появляется с задержкой, определяемой параметрами RC цепочки, время задержки определяется по формуле, показанной на рисунке. Но по формуле значение определяется весьма приблизительно.

При наличии двухлучевого осциллографа определить время очень просто: достаточно оба сигнала подать на разные входы и измерить время задержки импульса. А если двухлучевого осциллографа в наличии нет? Вот тут-то и придет на помощь режим внешней развертки.

Первое, что надо сделать это подать входной сигнал схемы (рис. 5) на вход внешней синхронизации и сюда же подключить вход Y. Затем вращением ручки «УРОВЕНЬ» добиться устойчивого изображения входного импульса, как показано на рисунке 5б. При этом должны соблюдаться два условия: тумблер «ВНЕШ/ВНУТР» установлен в положение «ВНЕШ», а исследуемый сигнал д.б. периодическим, а не однократным, как показано на рис.5.

После этого надо запомнить положение на экране входного сигнала и подать на вход Y выходной сигнал. Остается только подсчитать требуемую задержку по делениям шкалы. Естественно, что это не единственная схема, где может потребоваться определение времени задержки между двумя импульсами, таких схем великое множество.

В следующей статье будет рассказано про виды исследуемых сигналов и их параметры, а также про то, как проводить различные измерения с помощью осциллографа.

Практические упражнения по работе с осциллографом (RC-цепи)

В прошлой статье «Что такое осциллограф и как им пользоваться» мы познакомились с основами работы этого замечательного прибора. Чтобы освоить работу с осциллографом, нужны практические упражнения. В статье рассмотрены простые эксперименты с источником питания на основе тарнсформатора, с мостовым выпрямителем, а также с RC-цепями. Материал будет полезен тем кто желает познакомиться с измерительным прибором-осциллографом.

Источник питания и мостовой выпрямитель

Начнемс самого простого, — с источника питания на силовом трансформаторе и мостовом выпрямителе. Прежде всего необходим трансформатор, пусть это будет китайский «ALG» с вторичной обмоткой на 12V (рис.1). К вторичной обмотке трансформатора подключим вход осциллографа (пусть это С1-65) и мультиметр.

Предварительно ручку осциллографа «Время/дел.» установим на «10», и ручку «V/дел.» так же на «10», а переключатель входа установим в положение «импульсный режим». Теперь подадим на первичную обмотку переменное напряжение 220V (от электросети, соблюдая все необходимые правила электробезопасности).

Рис. 1. Схема для эксперимента и изображение на экране осциллографа.

Теперь сравним показания осциллографа и мультиметра. Мультиметр покажет переменное напряжение 12V (или около того), а размах синусоиды на экране осциллографа от пика до пика будет целых 34V. Зная, что амплитудное значение синусоидального напряжения равно половине размаха, а действующее , — в корень_из_2 раз раз меньше амплитудного, вычислим действующее значение:

Подключим к вторичной обмотке трансформатора мостовой выпрямитель из четырех диодов (рис. 2). К выходу выпрямителя подключим осциллограф.

На его экране будет весьма интересная картинка, — нижние полуволны синусоиды как бы перевернулись и расположились по положительной оси У. Практически, и частота колебаний увеличилась в два раза, то есть уже не 50, а 100 Гц, а размах уменьшился в два раза.

То, что видно на экране (рис. 2) принято называть пульсирующим напряжением. Но пульсирующее напряжение не годится для питания электронной схемы, — это еще не постоянное напряжение.

А чтобы его сделать постоянным нужно пульсации сгладить с помощью накопительного конденсатора.

На рисунке 3 показана схема с накопительным конденсатором С1 и резистором R1, который служит нагрузкой. Посмотрим, что нам теперь покажут приборы. Мультиметр покажет что-то около 16,5V, а на экране осциллографа будет видна искривленная линия, приподнятая вверх по шкале У на некоторую величину (рисунок 3, левая осциллограмма).

Рис. 2. Подключим и исследуем мостовой выпрямитель из четырех диодов.

По верхним пикам кривизны этой линии — на 17V. Так выглядит напряжение со сглаженными пульсациями. Чтобы посмотреть величину пульсаций нужно переключить вход осциллографа на переменный ток «

» и повернуть ручку «V/дел.» в сторону уменьшения, пока пульсации не будут видны отчетливо. В данном случае, установили 0,5V/дел. (рис.3, осциллограмма справа). Видно, что размах пульсаций равен 1V.

Таким образом, на выходе нашего выпрямителя есть постоянное напряжение с пульсациями 1V. Величина этих пульсаций зависит от емкости сглаживающего конденсатора и от нагрузки. Если нагрузка увеличится (уменьшится сопротивление R1) пульсации возрастут.

Рис. 3. Сглаживающий конденсатор в выпрямителе.

Это можно проверить, заменив R1 переменным. А с увеличением емкости пульсации уменьшаются. Вот, если в этом же примере (при том же сопротивлении R1) вы параллельно С1 подключите еще один конденсатор емкостью 220мкФ, пульсации уменьшатся до 0,ЗV, а при емкости конденсатора 1000 мкФ уровень пульсаций будет менее 0,1V.

Но это при сопротивлении нагрузки 1 кОм, то есть при токе нагрузки 16 миллиампер. С увеличением тока нагрузки пульсации будут увеличиваться. Именно по этому в выпрямителях, рассчитанных на большие нагрузки, используют сглаживающие конденсаторы очень большой емкости.

Выше, с помощью осциллографа была рассмотрена работа мостового выпрямителя. Но источник питания, часто кроме трансформатора и выпрямителя содержит стабилизатор напряжения.

Схема простейшего параметрического стабилизатора состоит из стабилитрона и токоограничительного резистора. Главное свойство стабилитрона в том, что он вроде бы работает как диод, то есть, пропускает ток в прямом направлении, но он пропускает и обратный ток, но только если обратное напряжение превысило некоторую величину, — напряжение стабилизации.

Подключим схему параметрического стабилизатора к вторичной обмотке трансформатора, и с помощью осциллографа, посмотрим во что превратилась синусоида переменного напряжения (рис.4). Ручку «Время/дел.» осциллографа установим на «10», и ручку «V/дел.» так же на «10», а переключатель входа — в импульсный режим.

Рис. 4. Исследуем параметрический стабилизатор.

Стабилитрон, работая как диодный одно-полупериодный выпрямитель, убрал отрицательные полуволны. А как стабилитрон, он обрезал верхушку положительных полуволн на уровне своего напряжения стабилизации (для Д814В — это 10V).

А теперь, подключим такой же стабилизатор на выходе выпрямительного моста (рис. 5). Импульсы пульсирующего напряжения стабилитрон так же, обрезал на уровне своего напряжения стабилизации. Причем, стабилитрону безразлично какой амплитуды эти импульсы или полуволны, 17V или, например, 27V, он их ограничит СТАБИЛЬНО на уровне 10V.

Рис. 5. Исследуем параметрический стабилизатор на выходе моста.

На рисунке 6 показана схема источника питания с параметрическим стабилизатором на выходе. Мультиметр и осциллограф покажут постоянное напряжение 10V, а пульсации будут значительно меньше чем без стабилизатора.

Рис. 6. Схема источника питания с параметрическим стабилизатором на выходе.

Исследуем RC-цепи с помощью осциллографа

Еще одним практическим упражнением работы с осциллографом может быть исследование RC-цепи с помощью осциллографа. Для этого нам потребуется генератор прямоугольных импульсов. Во многих осциллографах, в частности, и С1-65, есть калибратор. Это генератор постоянного напряжения или прямоугольных импульсов частотой 1 кГц.

Читать еще:  Как растворить монтажную пену

Калибратор предназначен для калибровки, но его можно с успехом использовать как лабораторный генератор прямоугольных импульсов при налаживании и ремонте аппаратуры.

Но, есть осциллографы и без калибраторов, если ваш именно такой, то нужно будет взять лабораторный функциональный генератор или самому сделать простой генератор прямоугольных импульсов частотой около 1 кГц, по схеме, показанной на рисунке 1. Это простейший мультивибратор на цифровой микросхеме. Но для наших опытов он подходит.

Далее, мы будем рассматривать работу с калибратором осциллографа в качестве источника импульсов. Если же импульсы берутся от отдельного генератора (например, как на рис.1), нужно будет просто подавать их на исследуемую RC-цепь от него. При этом не забыть общий минус питания генератора соединить с клеммой «корпус» осциллографа.

Рис. 1. Схема простого генератора импульсов.

И так, если мы соединим куском провода гнезда «У» и «Выход калибратора», включим калибратор на генерацию импульсов размахом 5V. При этом ручкой «V/дел» выставим «1», а ручкой «время/дел» выставим «0,2mS», вход переключим на переменное напряжение «

», на экране осциллографа будет видно примерно то, что показано на рисунке 2. То есть, прямоугольные импульсы.

Рис. 2. Импульсы на экране осциллограф.

Для экспериментов с RC-цепью потребуется конденсатор емкостью 0,01 мкФ (часто обозначается как «10п» или «103») и переменный резистор сопротивлением 100 кОм.

Экспериментировать будем с двумя типами цепей, — дифференцирующей и интегрирующей.

Сначала подключаем дифференцирующую цепь, состоящую из резистора R1 и конденсатора С1 (рис. 3). Теперь импульсы

Рис. З. Подключаем дифференцирующую цепь.

от калибратора на вход «У» осциллографа поступают через цепь R1C1. Резистор R1 установить в положение максимального сопротивления. При этом, импульсы на экране осциллографа станут как на рис.4. Их амплитуда немного увеличится, но появится наклон в сторону к спаду.

Рис. 4. Импульсы на экране осциллографа.

Если начать поворачивать рукоятку переменного резистора R1, его сопротивление будет уменьшаться, и при этом, амплитуда импульсов будет увеличиваться, но и наклон в сторону к спаду тоже возрастает. На рисунке 5 уже совсем не похоже на прямоугольные импульсы. Однако амплитуда пиков сильно выросла. При дальнейшем повороте R1, амплитуда пиков будет продолжать расти, а наклоны приобретут параболический вид.

Рис. 5. Это уже не похоже на прямоугольные импульсы.

Но, при дальнейшем повороте R1, амплитуда начинает снижаться, и в самом крайнем положении, когда сопротивление R1 равно нулю, импульсы пропадают (это и не удивительно, ведь R1, в состоянии нулевого сопротивления, фактически замкнул вход осциллографа).

Вывод такой, что в результате дифференцирования прямоугольного импульса, он превращается в остроконечный импульс увеличенной амплитуды. Причем, чем больше R1, тем более импульс похож на прямоугольный.

Связанно это с тем, что от сопротивления R1 зависит время зарядки — разрядки конденсатора. И чем меньше R1, тем меньше это время. К тому же, при переходе от положительной полуволны к отрицательной (и наоборот), накопленное на конденсаторе напряжение добавляется к амплитуде импульса.

Поэтому, амплитуда напряжения на резисторе R1 в пиках увеличивается тем больше, чем быстрее заряжается конденсатор. Но при этом пики тем уже, чем меньше R1. Теперь поменяем детали местами, чтобы получилась схема, показанная на рисунке 6. RC-цепочка стала интегрирующей.

Рис. 6. Новая схема для эксперимента.

Если переменный резистор R1 находится в положении минимального сопротивления, на экране осциллографа будет как на рис. 7. Почти такие же прямоугольные импульсы, только фронты и спады слегка сглажены.

Начинаем поворачивать ручку переменного резистора R1, — фронты и спады еще сильнее сглаживаются и приобретают вид, как на рисунке 8. При этом амплитуда существенно снижается.

Выкручиваем ручку переменного резистора R1 до конца (в положение максимального сопротивления), — амплитуда импульсов сильно снижается, и они уже напоминают скорее треугольники (рис.9).

Рис. 7. Изображение на экране осциллографа для эксперимента.

В интегрирующей цепи осциллограф показывает напряжение на конденсаторе. На него поступают импульсы через резистор R1 и заряжают и разряжают его. Как и в первом случае, скорость заряда -разряда тем больше, чем меньше сопротивление резистора. Но, здесь ситуация обратная, поэтому, чем меньше R1 тем скорее С1 заряжается или разряжается до максимального или минимального значения.

А значит, тем круче фронты и спады импульсов на С1. Вот эти закругления, видимые на осциллограмме на рис. 7 и есть то самое время, в течение которого происходит зарядка и разрядка конденсатора.

И чем быстрее конденсатор заряжается, тем меньше эти участки. Быстрота же зарядки конденсатора зависит от сопротивления резистора R1, через который на него поступают импульсы.

С увеличением сопротивления резистора R1 конденсатор все медленнее и плавней заряжается — разряжается, — закругления, показывающие время зарядки — разрядки увеличиваются. Поэтому фронты и спады сглаживаются, становятся наклонными.

При дальнейшем увеличении сопротивления R1 время, необходимое на зарядку конденсатора до максимального напряжения увеличивается на столько, что уже становится больше длительности полу-периода импульса. Конденсатор просто не успевает зарядиться до максимальной величины, как начинается его разрядка.

Рис. 8. Фронты и спады еще более сглажены.

Рис. 9. Импульсы — треугольники на экране осциллографра.

Поэтому амплитуда импульса уменьшается на столько, на сколько конденсатор не успевает зарядиться. В конечном итоге форма импульсов все более и более становится похожа на треугольную.

Цифровой осциллограф для начинающих. Ч1

Если же тебе их читать лень, то скажу, что главная задача этого прибора в том, чтобы отобразить на экране изменение электрического сигнала с течением времени. Для этого на экране осциллографа размечена координатная система. Обычная декартова система, на которой имеются ось X и ось Y. По оси X отмечается время, а по оси Y — напряжение.

Всякие управляющие ручки и кнопочки, которые расположены вокруг экрана прибора предназначены для того, чтобы можно было настраивать отображение сигнала: масштаб по Х, масштаб по Y, триггеры и курсоры. Таким образом можно как бы отдалить или приблизить сигнал, чтобы рассмотреть его по лучше.

Хочу также заметить, что современный осциллограф отличается от своих предшественников тем, что представляет собой компьютер, который собирает, преобразует, анализирует и манипулирует измеренными значениями сигнала, поданного на вход. Это современный вычислительный комплекс.

Осциллограф очень полезен при:

  • Измерении частоты и амплитуды сигнала, что может сильно помочь при отладке создаваемой тобой схемы.
  • Определении уровня шума в цепи
  • Визуальном контроле формы сигнала
  • Определение сдвига фаз между двумя сигналами
  • . и другие способы применения. Например, анализ работы датчиков автомобиля.

Осциллографы применяются при создании, наладке, ремонте различных электронных приборов:от сотовых телефонов, до эл. цепей автомобильных двигателей. От гражданских до военных. Они нужны везде.

В дополнение к описанным выше возможностям, многие современные приборы имеют дополнительные функции, с помощью которых можно быстро узнать частоту сигнала, его амплитуду и многие другие характеристики. Некоторые приборы уже предоставляют возможность провести с сигналами в реальном времени различные математические преобразования или, например, быстрое преобразование фурье. В целом, осциллограф позволяет наблюдать на экране временные и физические характеристики сигнала. Вот как выглядит такое меню функций у Siglent SDS 1202X-E (38 параметров!):

На мой взгляд, это очень удобно и полезно. Поэтому следует все таки обращать свое внимание на современный инструментарий. Благодаря хорошим измерительным приборам можно сильно сократить время поиска неисправности. Особенно это касается осциллографа, который является единственными «глазами», которые позволяют заглянуть внутрь происходящего в электронной цепи и оценить временные и физические характеристики сигналов в этой цепи.

→ Временные характеристики:

Частота и период, скважность и коэфф. заполнения (Duty cycle), время спада и нарастания сигнала.

→ Физические характеристики:

Амплитуда, максимум и минимум сигнала, средне квадратичное, среднее значение напряжения и т.д.

Принцип работы цифрового осциллографа

Цифровые осциллографы, в отличие от аналоговых, не повторяют получаемый сигнал сразу на экран, а предварительно его преобразовывают в «цифровую» форму. Для этого входной сигнал замеряется определённое число раз в секунду, затем прибор после некоторых преобразований этих данных реконструирует сигнал и отображает его на экране. Оцифровка выполняется помощью блока аналогово-цифрового преобразования.

Ключевые характеристики цифрового осциллографа

Еще 5-6 лет назад большинство радиолюбителей (а некоторые и по сей день) пользовались приборами, которые остались ещё от СССР. В свое время это были замечательные приборы со своими плюсами и минусами. Но СССР уже нет более четверти века, а технологии продолжали развиваться, совершенствоваться и дешеветь. Теперь у нас есть возможность пользоваться современными цифровыми приборами с превосходными характеристиками.

Для того, чтобы научиться пользоваться современным цифровым осциллографом требуется освоить небольшой, но специфичный набор понятий и принципов, на основе которых строится его работа. Это по силам каждому. Приступим.

→ Полоса пропускания

Осциллографы (Oscilloscope, O-Scope) не могут измерять абсолютно любые сигналы. Все приборы имеют ограничения, которые определяют сигналы какой минимальной и максимальной частоты или амплитуды с помощью этого прибора могут быть измерены. А полоса пропускания — это как раз та характеристика прибора, которая говорит тебе какой диапазон частот может быть измерен этим прибором. Говоря про полосу пропускания осциллографов обычно имеют ввиду верхнюю границу, так как нижняя граница — это сигнал постоянного тока и его умеют рисовать абсолютно все приборы.

К слову, на самом деле при реальных измерениях диапазон ещё уже, чем заявляет полоса пропускания. В современных цифровых приборах сигнал проходит оцифровку и обработку, прежде чем попадёт на экран прибора. Существует определенная теоретическая база из-за которой производители советуют выбирать прибор таким образом, чтобы его полоса пропускания была в 3 раза больше, чем измеряемый синусоидальный сигнал в 4 или в 5 раз больше, если сигнал цифровой (т.е. всякие разные формы и виды прямоугольных сигналов).

Нижняя и верхняя границы полосы пропускания — это частоты среза сигнала. Сигнал начиная с частоты среза начинает ослабляеться в два (или на 3Дб = log102) и больше раз с ростом частоты.

→ Количество каналов

Многие современные осциллографы могут анализировать сразу несколько сигналов, отображая их на экране одновременно. Обычно прибор содержит от двух до четырех каналов. Тут важно знать как устроен конкретный осциллограф. Дело в том, что часто каналы разделяют между собой какие-нибудь общие ресурсы, что в итоге сказывается на общей производительности прибора при использовании сразу нескольких каналов.

→ Частота дискретизации (Sampling rate)

Эта характеристика касается только цифровых осциллографов. Она определяет сколько раз в ед. времени осциллограф считывает измеряемый сигнал. Для приборов, имеющих более одного канала, частота дискретизации может уменьшиться, если одновременно используется несколько каналов. Это зависит от конструкции конкретного прибора, но в большинстве случаев это работает так. В цифровых осциллографах частота дискретизации неразрывно связана с полосой пропускания. Например, у моего Siglent SDS 1202X-E этот параметр равен 1х10 9 . Чем выше этот параметр, тем лучше, так как осциллограф получает больше информации о сигнале.

Вообще, этот пункт довольно важен. Для того, чтобы понять почему это так следует хотя бы слегка разобраться в процессе аналогово-цифрового преобразования. А значит пришло время достать из пыльного угла теории теорему Котельникова (теорема отсчетов), которую, на мой взгляд, довольно несправедливо иногда называют теоремой Шенона-Котельникова. Котельников доказал её в 1933г, когда Шенону было всего 17, а Найквист так и не доказал этой теоремы. Ладно, сосредоточимся на главном.

Важное значение этой теоремы заключается в том, что если проводить замеры сигнала (например, синусоиды) с частотой хотя бы 2 раза выше частоты этой синусоиды, тогда по этим измерениям можно будет восстановить исходный сигнал с минимальной потерей информации. Т.е. если замерять сигнал через интервал Δt, то мы сможем его гарантированно восстановить.

Таким образом частота дискретизации цифрового осциллографа является одним из факторов, определяющих максимальную частоту сигналов, которые мы сможем без потерь увидеть на экране.

А что если интервал больше необходимого? Тогда получится что-то подобное:

Т.е. после восстановления окажется, что восстановлденный сигнал меньшую частоту, чем измеряемый сигнал. Мы также можем потерять некоторые детали сигнала. Например, краткие всплески. Таким образом получается, что для измерения сигнала 100Мгц требуется прибор с частотой дискретизации хотя бы 200Мгц. Но хватит ли такой частоты выборки на самом деле?

Пока что я рассматривал ситуацию идеального сигнала, который не содержит в себе частотных компонент, превышающих по частоте основную. частоту сигнала. Как например какой-нибудь прямоугольный сигнал, который содержит всебе множество компонент (гармоник) с частотами значительно выше основной частоты сигнала (но меньшей амплитуды). В таком случае т. Котельникова говорит нам, что на практике частота дискретизации должна быть в 4-5 раз выше, чем верхняя граница полосы пропускания осциллографа. А значит для прибора с полосой до 200 Мгц частота дискретизации должна быть больше 800Мгц.

У меня Siglent SDS1202X-E с полосой пропускания 200Мгц и частотой выборки 1000Мгц (1Ггц или 1GSa/s) в режиме 1го канала. Так что, если надо посмотреть сигнал близкий к 200Мгц, то прибор в принципе справится. При условии, что будет использован только один канал. Если же задействовать для измерений сразу два канала, тогда полоса пропускания «сократится» до 100Мгц. Т.е. примерно до этой частоты сохранится соотношение между частотой выборки и частотой сигнала, которое позволит достаточно точно воспроизвести оцифрованный сигнал.

→ Эквивалентная частота дискретизации

Иногда не хватает реальной частоты дискретизации. Например, когда измеряется сигнал с частотой близкой к пределу полосы пропускания, а реальная частота дискретизации уже не соответствует условиям т. Котельникова. Тогда вступает в бой эквивалентная дискретизация. По факту, это чисто технический трюк, когда итоговая картинка конструируется на основе нескольких последовательных измерений. Но при этом каждое последующее измерение сигнала слегка смещено от предыдущего, чтобы получить больше точек для восстановления исходного сигнала.

Таким образом, если ты измеряешь сигнал 200МГц на осциллографе с полосой до 200МГц и частотой дискретизации 1 миллиард выборок в сек (1GSa/s), то тогда на один период сигнала ты получишь всего 5 измерений. В принципе, из т. Котельникова следует, что этого должно хватить, но для лучшей детализации лучше включить эквивалентную дискретизацию и тогда ты получишь вместо 1GSa/s уже 2 GSa/s (хоть и чисто алгоритмическим путем)

Более подробно о эквивалетной дискретизации и джиттере синхронизации вот в этой неплохой статье

→ Глубина памяти

Цифровые осциллограф по праву называются запоминающими (DSO = Digital Storage Oscilloscope), так как запоминают измеренный сигнал. Точнее они сохраняют во временной памяти измеренные значения сигнала в отдельные моменты времени. На что влияет данный параметр? Чем больше глубина памяти, тем выше частота дискретизации по мере снижения скорости развертки – время/дел. Дело в том, что ниже скорость развертки, тем больше измеренных значений осциллографу приходится сохранять у себя в памяти для последующей обработки и отображении на экране. Так что в целом, чем больше глубина памяти, тем лучше.

Однако, и здесь есть особый случай. При измерении на медленных значениях развертки может страдать скорость обновления осциллограм на экране, а также прибор может «подтормаживать», медленно реагируя на управление. Поэтому следует внимательно смотреть руководства и отзывы на желаемую модель прибора перед тем, как его купить.
Довольна подробная статья по этой теме от Agilent Technologies

Читать еще:  Как называется антенный кабель

→ Cкорость обновления сигналов на экране

Чем выше у прибора скорость обновления сигналов на экране, тем меньше у него величина мертвого времени, т.е. времени, которое требуется на обработку захваченных данных перед тем, как они будут выведены на экран. Понятно, что чем оно меньше, тем быстрее будут обновляться осциллограммы на экране цифрового осциллографа. Тем выше вероятность, что осциллограф захватит и вовремя покажет на экране какую-нибудь аномалию в сигнале. Конечно, в нашей радиолюбительской жизни это может и не играет особой роли, но тем не менее параметр довольно важный.

→ Максимальное входное напряжение

Любая деталь или цепь имеет предельно-допустимое напряжение. Осциллограф не исключение. Если подать на его вход (не приняв доп. мер) напряжение, которое превышает максимально допустимое, то есть высокий шанс того, что прибор юудет поврежден.

Для моего прибора максимальное напряжение в режиме щупа 1:1 равняется 40 вольт, а в режиме 1:10 около 400. Но, я бы не стал лезть щупом в цепь с напряженим 400В без доп. защиты и себя и прибора. Электричество шуток не любит и премию Дарвина может выписать в милисекунду =)

В этой вводной статье я хотел показать, что ничего страшного в цифровых осциллографах нет, но для того чтобы эффективно их использовать в своей домашней лаборатории следует понимать как они устроены, идеи, на основе которых они созданы, а также понимать какие характеристики прибора являются существенными. На что следует смотреть при покупке осциллографа. В следующей части я продолжу рассказ о цифровых осциллографах.

Электроника для всех

Блог о электронике

▌Старая статья о аналоговом осциллографе
Рано или поздно любой начинающий электронщик, если не бросит свои эксперименты, то дорастет до схем, где нужно отслеживать не просто токи и напряжения, а работу схемы в динамике. Особенно это часто нужно в различных генераторах и импульсных устройствах. Вот тут без осциллографа делать нечего!

Страшный прибор, да? Куча ручек, каких то кнопочек, да еще экран и нифига не понятно что тут да зачем. Ничего, сейчас исправим. Сейчас я тебе расскажу как пользоваться осциллографом.

На самом деле тут все просто — осциллограф, грубо говоря, это всего лишь… вольтметр! Только хитрый, способный показывать изменение формы замеряемого напряжения.

Как всегда, поясню на отвлеченном примере.
Представь, что ты стоишь перед железной дорогой, а мимо тебя с бешеной скоростью мчится бесконечный поезд состоящий из совершенно одинаковых вагонов. Если просто на них стоять и смотреть, то ничего кроме размытой фигни ты не увидишь.
А теперь ставим перед тобой стенку с окошком. И начинаем открывать окошко только тогда, когда очередной вагон будет в том же положении, что и предыдущий. Так как у нас вагоны все одинаковые, то тебе совершенно необязательно видеть один и тот же вагон. В результате картинки разных, но идентичных вагонов будут выскакивать перед твоими глазами в одном и том же положении, а значит картинка как бы остановится. Главное это синхронизировать открытие окошка со скоростью поезда, чтобы при открытии положение вагона не менялось. Если скорость не совпадет, то вагоны будут «двигаться» либо вперед, либо назад со скоростью, зависящую от степени рассинхронизации.

На этом же принципе построен стробоскоп — девайс, позволяющий разглядывать быстро движущиеся или вращающиеся хреновины. Там тоже шторка быстро-быстро открывается и закрывается.

Так вот, осциллограф это тот же стробоскоп, только электронный. А показывает он не вагоны, а периодические изменения напряжения. У той же синусоиды, например, каждый следующий период похож на предыдущий, так почему бы не «остановить» его, показывая в один момент времени один период.

Конструкция
Делается это посредством лучевой трубки, отклоняющей системы и генератора развертки.
В лучевой трубке пучок электронов попадая на экран заставляет светится люминофор, а пластины отклоняющей системы позволяют гонять этот пучок по всей поверхности экрана. Чем сильней напряжение, приложенное к электродам, тем больше отклоняется пучок. Подавая на пластины Х пилообразное напряжение мы создаем развертку. То есть луч у нас движется слева-направо, а потом резко возвращается обратно и продолжает снова. А на пластины Y мы подаем изучаемое напряжение.

Принцип работы
Дальше все просто, если начало появления периода пилы (луч в крайне левом положении) и начало периода сигнала совпадают, то за один проход развертки нарисуется один или несколько периодов измеряемого сигнала и картинка как бы остановится. Меняя скорость развертки можно добиться того, что на экране вообще останется только один период — то есть за один период пилы пройдет один период измеряемого сигнала.

Развертка осциллографа во времени

Синхронизация
Синхронизировать пилу с сигналом можно либо вручную, подстраивая ручкой скорость так, чтобы синусоида остановилась, а можно по уровню. То есть мы указываем при каком уровне напряжения на входе нужно запустить генератор развертки. Как только напряжение на входе превысит уровень, так сразу же запустится генератор развертки и выдаст нам импульс.
В итоге, генератор развертки выдает пилу только тогда, когда надо. В этом случае синхронизация получается полностью автоматической. При выборе уровня следует учитывать такой фактор, как помехи. Так что если взять слишком низкий уровень, то мелкие иголки помех могут запустить генератор когда не нужно, а если взять уровень слишком большой, то сигнал может под ним пройти и ничего не случится. Но тут проще покрутить ручку самому и сразу же все станет понятно.
Также сигнал синхронизации можно подать и с внешнего источника.

В топку теорию, переходим к практике.
Показывать буду на примере своего осциллографа, спертого когда то давно с оборонного предприятия КБ «Ротор» :). Обычный осцил, не шибко навороченный, но надежный и простой как кувалда.

Мой верный осциллограф

Итак:
Яркость, фокус и освещение шкалы думаю не требуют пояснений. Это настройки интерфейса.

Усилитель У и стрелочки вверх вниз. Эта ручка позволяет гонять изображение сигнала вверх или вниз. Добавляя ему дополнительное смещение. Зачем? Да иногда не хватает размера экрана, чтобы вместить весь сигнал. Приходится его загонять вниз, принимая за ноль не середину, а нижнюю границу.

Ниже идет тумблер переключающий ввод с прямого, на емкостный. Этот тумблер в том или ином виде есть на всех без исключения осциллографах.

Важная вещь! Позволяет подключать сигнал к усилителю либо напрямую, либо через конденсатор. Если подключить напрямую, то пройдет и постоянная составляющая и переменная. А через кондер проходит только переменная.

Например, надо нам посмотреть на уровень помех блока питания компа. Напряжение там 12 вольт, а величина помех может быть не более 0.3 вольт. На фоне 12 вольт эти жалкие 0.3 вольт будут совсем незаметны. Можно, конечно увеличивать коэффициент усиления по Y, но тогда график вылезет за экран, а смещения по Y не хватит, чтобы увидеть вершину. Тогда нам нужно лишь врубить конденсатор и тогда те 12 вольт постоянки осядут на нем, а в осциллограф пройдет только переменный сигнал, те самые 0.3 вольта помехи. Которые можно усилить и разглядеть в полный рост.

Далее идет коаксиальный разъем подключения щупа. Каждый щуп содержит в себе сигнал и землю. Землю обычно сажают на минус или на общий провод схемы, а сигнальным тычут по схеме. Осциллограф показывает напряжение на щупе относительно общего провода. Чтобы понять где сигнальный, а где земля достаточно взять за них рукой по очереди. Если возьмешься за общий, то на экране по прежнему будет пульс трупа. А если взяться за сигнальный, то увидишь кучу срача на экране — наводки на твое тело, служащее в данный момент антенной. На некторых щупах, особенно на современных осциллографах, внутри встроен делитель напряжения 1:10 или 1:100, который позволяет воткнуть осциллограф хоть в розетку, без риска его спалить. Включается и выключается он тумблером на щупе.

Еще почти на каждом осциллографе есть калибровочный выход. На котором ты всегда можешь найти прямоугольный сигнал частотой 1Кгц и напряжением около полувольта. В зависимости от модели осцила. Используется для проверки работы самого осциллографа, ну иногда и в тестовых целях пригождается 🙂

Две здоровенные крутилки Усиление и Длительность

Усиление служит для масштабирования сигнала по оси Y. Там же показано сколько вольт на деление в итоге покажет.
Скажем, если у тебя стоит 2 вольта на деление, а сигнал на экране достигает высоты две клеточки размерной сетки, значит амплитуда сигнала равна 4 вольта.

Длительность определяет частоту развертки. Чем короче интервал, чем больше частота, тем более высокочастотный сигнал ты сможешь разглядеть. Тут клеточки проградуированы уже в милли и микросекундах. Так что по ширине сигнала ты можешь посчитать сколько он клеток, а умножив его на масштаб по оси Х получишь длительность сигнала в секундах. Также можно посчитать длительность одного периода, а зная длительность легко найти частоту сигнала f=1/t

Верхняя пипка на крутилках позволяет менять масштаб плавно. Обычно у меня она стоит на щелчке, чтобы я всегда четко знал какой у меня масштаб.

Также там есть вход Х на который можно подать свой сигнал, вместо пилы развертки. Таким образом осциллограф может послужить телевизором или монитором, если собрать схему которая будет формировать изображение.

Крутилка с надписью Развертка и стрелочками влево и вправо позволяет гонять график по экрану влево и вправо. Удобно иногда бывает, чтобы подогнать нужный участок под деления сетки.

Ручка уровня — задает уровень от которого будет стартовать генератор пилы.
Переключатель со внутренней на внешнюю, позволяет подать на вход синхроимпульсы с внешнего источника.
Переключатель с надписью +/- переключает полярность уровня. Есть не на всех осциллографах.
Ручка стабильность — позволяет вручную попытаться подобрать скорость синхронизации.

Быстрый старт.
Итак, включил ты осцил. Первое что нужно сделать это замкнуть сигнальный щуп на свой же земляной крокодил. При этом на экране должен появится «Пульс трупа». Если не появился, то покрути ручки стабилизации и смещений и уровня — возможно он просто спрятался за экран или не запустился из-за недостаточного уровня.

Как только появилась полоса, то выстави крутилками смещения её на ноль. Если у тебя аналоговый осцил, особенно если древний, то дай ему прогреться. У моего после включения ноль плавает еще минут пятнадцать.

Дальше выстави предел измерений по напряжению. Бери с запасом, если что уменьшишь. Теперь если земляной провод осциллографа приложишь к минусу батарейки, а сигнальный к плюсу, то увидишь как график скакнет на полтора вольта. Кстати, старые осциллографы зачастую начинают подвирать, поэтому по эталонному источнику напряжения полезно посмотреть насколько точно он отображает напряжение.

Выбор осциллографа.
Если ты только начал, то тебе подойдет любой. Крайне желательно если он будет двухканальным. То есть у него будет два щупа и две крутилки Усиления, для первого и второго канала, что позволяет одновременно получить два графика.
Вторым по важности критерием осциллографа является частота. Максимальная частота сигнала которую он может уловить. Мне пока хватало 1МГц на большее не замахивался. Те осциллографы, что продаются в магазинах уже имеют частоту от 10МГц и выше. Самый дешевый осциллограф который я видел стоил 5 тысяч рублей — ОСУ-10. Двухканальный стоит уже 10 тысяч, ну а я нацелился взял себе цифровой RIGOL DS1042CD за килобакс. Разные запросы — разные игрушки. Но, повторюсь, для начала хватит и 1МГц, и хватит надолго. Так что найди себе хоть какой нибудь осциллограф. А там поймешь что тебе надо.

Как пользоваться осциллографом

Для изучения формы, амплитудных колебаний, временных характеристик и особенностей формирования электрических сигналов применяется осциллограф. Прибор используется в научных лабораториях и фундаментальных исследованиях, практическая сфера применения – тестирование электрических схем, ремонтные работы по телемеханике, поверка измерительной аппаратуры.

Что такое осциллограф

Осциллограф позволяет визуально изучать характеристики сложных сигналов, рассчитывать временные и амплитудные параметры. Аналоговые модели отображают данные в реальном времени, современные цифровые позволяют архивировать информацию и проводить ее анализ. Для сравнения сигналов применяют устройства с несколькими информационными входами. В зависимости от решаемых задач, встречаются модификации в виде приставок к компьютеру или комбинированные с другой измерительной аппаратурой.

Особенности прибора

Аналоговые приборы требуют большого количества специфических настроек и высокой квалификации операторов – от качества калибровки зависит погрешность результатов, велико влияние человеческого фактора. Современные цифровые аппараты лишены этих проблем и позволяют в разы быстрее получать и интерпретировать данные, но их стоимость очень высока.

Устройство и принцип работы

Основной элемент аналогового осциллографа – специализированная ЭЛТ (электронно-лучевая трубка), которая делает возможным визуальное представление изучаемого сигнала. Он поступает на входной делитель (определяет диапазон измеряемых значений), усиливается и синхронизируется с генератором развертки, затем попадает на оконечный усилитель и входы ЭЛТ, отображение проходит в реальном времени. Конкретная реализация зависит от производителя, но принцип действия остается неизменным.

Цифровые приборы устроены по-другому: пользователь видит уже преобразованные в цифру данные, полученные от АЦП (аналого-цифрового преобразователя) и записанные в буферную память, поэтому имеет возможность просмотреть динамику изменения сигнала не только после запуска, но и до пускового импульса. Есть возможность сохранить информацию для последующей обработки на компьютере.

Важно! В цифровом устройстве сигнал не отображается в реальном времени и идет с задержкой.

Сфера применения

Это научные исследования, тестирование образцов на производстве, проверка качества телевизионных сигналов, выявление дополнительных шумов и искажений. Возможно использование в составе узкоспециализированных программно-аппаратных комплексов, где может применяться для диагностики неисправностей АСУ и исполнительных устройств.

Как функционирует

Исследуемый сигнал через делители (входят в комплект) подается на информационный вход прибора (обычно Y вход), выбирается вид синхронизации (при внешней – используется X вход), с помощью переключателей устанавливаются частота синхронизации и диапазон изменения амплитуды. Полученная картинка интерпретируется в соответствии с установленной шкалой делений, для цифровых устройств пересчет производится автоматически, на экране будут видны форма сигнала и ряд вычисленных параметров.

Развертка

Движение луча ЭЛТ по горизонтальной оси при отсутствии исследуемого сигнала на информационных входах называется разверткой, при подаче он будет развернут на временном интервале.

Принцип работы регулятора развертки

Развертка создается с помощью генератора, работа которого зависит от выбранного режима внутренней или внешней синхронизации. Внутренняя – частота задается вручную или синхронизируется с питающей сетью, внешняя – запуск генератора от входного импульса, различают запуск по фронту, спаду или от стороннего источника. Регулятор развертки служит для увеличения/уменьшения периода отображения сигнала.

Блок управления параметрами синхронизации

Позволяет установить значение напряжения исследуемого сигнала и момент (фронт/спад), когда следует запускать генератор. Правильная регулировка позволит добиться стабильного изображения, что важно для снятия данных.

Читать еще:  Какую выбрать микроволновку для дома контрольная закупка

Совет. От устойчивости картинки зависит погрешность измерения – она должна быть качественной.

Как подключить импортный осциллограф

Нужно внимательно ознакомиться с руководством пользователя, подготовить рабочее место для прибора, качественно его заземлить.

Важно! Заземление гарантирует, что при работе на корпусе не будет опасного статического заряда, коснувшись которого рукой можно получить удар.

Далее нужно определить точки для снятия сигнала, нулевую магистраль, посредством щупа произвести их коммутацию с аттенюатором (при неизвестных уровнях сигнала выставить максимальную амплитуду). Включить прибор, дать ему прогреться, выставить необходимые режимы и произвести замеры. Снять показания, замеры повторить несколько раз.

Как подключить отечественный осциллограф

Для отечественной аппаратуры в качестве дополнительной меры по уменьшению погрешностей измерения нужно провести калибровку, но для начинающих такая работа с осциллографом будет сложной. В прибор встроен специальный генератор – калибратор, выдающий эталонные значения, с заранее известной погрешностью, подстройка осуществляется с помощью коррекции усиления и развертки.

Дальнейшие действия

Полученные данные следует привести к среднему значению, учесть возможную погрешность устройства и оператора, сохранить информацию. Цифровой прибор все вычисления производит сам, но за удобство нужно платить.

Двухканальный осциллограф

Такой прибор позволяет не только получать данные об исследуемых сигналах, но и производить их сравнение между собой. Двухканальный прибор, соответственно, имеет два информационных входа (может быть до 16) и позволяет отображать их состояние одновременно.

Возможности двухканального прибора

Двухлучевой осциллограф применяется при необходимости измерения фазового сдвига относительно друг друга для отображаемых сигналов. Идет графическое представление на экране одного цвета, поэтому для наглядности имеет смысл разнести амплитуды.

Органы управления

На передней панели любого осциллографа находятся:

  • регулировка яркости экрана;
  • управление фокусом изображения;
  • смещение по горизонтали;
  • смещение по вертикали;
  • регулятор шкалы развертки;
  • регулятор входного делителя;
  • вход исследуемого сигнала;
  • вход для внешней синхронизации;
  • клемма заземления:
  • кнопка управления входом (открытый/закрытый);
  • управление синхронизацией.

Все вышеперечисленное присутствует у любого однолучевого прибора, для многоканальных устройств количество органов управления растет пропорционально количеству каналов, в зависимости от модели могут быть добавлены новые функции. Цифровые модели имеют аналогичное управление, которое дополнено возможностью проводить математические расчеты и анализ осциллограмм.

Режим входа

При анализе сигналов с большой постоянной составляющей удобно не учитывать ее при выводе значений на экран: итоговая амплитуда может просто выйти за границу шкалы. Для ее отсечки используется режим с закрытым входом. Если нужно учесть низкие частоты и постоянную, работу ведут в режиме открытого входа.

Вход канала осциллографа

Для внесения минимальных искажений информационный вход прибора обладает большим сопротивлением, обычно 1 МОм, чтобы не шунтировать элементы исследуемой схемы. Для высокочастотных сигналов имеют значение емкостные характеристики, обычно находятся в пределах 20-40 пикофарад.

Как проводятся измерения

Работа с осциллографом предусматривает проведение предварительной подготовки: выбор режима синхронизации, входа, шкалы измерений, затем можно приступать к измерениям.

Как измерить напряжение

После снятия с информационного входа данных с помощью регулировки синхронизации развертки получается устойчивое изображение, которое совмещается со шкалой на экране. Проводят несколько замеров, вычисляют среднее значение. Действующее значение выводят согласно шкалы измерений.

Как измерить частоту

Настроив картинку хорошего качества, на которой виден период изменения сигнала, совместив его начало с началом горизонтальной линейки и зная единицы шкалы измерений, можно вычислить частоту, которая обратно пропорциональна периоду.

Как определяется сдвиг фаз

Стабилизировав изображение с двумя сигналами (вот для чего необходим двухлучевой осциллограф), для удобства необходимо разнести значения амплитуд и совместить начала периодов, на экране будет виден сдвиг фаз. Для вычисления значения можно использовать формулу:

где:

  • а – расстояние в делениях между точками прохождения нулевой отметки осциллограмм,
  • b – период в делениях шкалы.

При наличии только одноканального прибора возможно определение сдвига фаз по фигурам Лиссажу, но это сложнее.

Ошибки при выборе и работе с осциллографом

Понимание, как пользоваться осциллографом, приходит только с практическим опытом работы, теоретических знаний недостаточно – нужно руками произвести все настройки, коммутацию и измерения. Цифровой прибор сильно облегчает процесс, но стоимость аппаратуры очень высока.

Важно! Не стоит приобретать старый советский прибор, т.к. погрешности измерений не дадут достоверных данных, откалибровать его уже не получится.

Обязательно необходимо соблюдать технику безопасности: напряжение на ЭЛТ, как на кинескопе телевизора, – убить не убьет, но покалечить может. Паспорт и руководство описывают, как работать с осциллографом, но здравый смысл никто не отменял: экспериментировать нужно осторожно.

Видео

Как работать с осциллографом для начинающих

Самоделки из двигателя от стиральной машины:

1. Как подключить двигатель от старой стиральной машины через конденсатор или без него
2. Самодельный наждак из двигателя стиральной машинки
3. Самодельный генератор из двигателя от стиральной машины
4. Подключение и регулировка оборотов коллекторного двигателя от стиральной машины-автомат
5. Гончарный круг из стиральной машины
6. Токарный станок из стиральной машины автомат
7. Дровокол с двигателем от стиральной машины
8. Самодельная бетономешалка

Использование осциллографа (+ видео-урок)

Рано или поздно любой начинающий электронщик, если не бросит свои эксперименты, то дорастет до схем, где нужно отслеживать не просто токи и напряжения, а работу схемы в динамике. Особенно это часто нужно в различных генераторах и импульсных устройствах. Вот тут без осциллографа делать нечего!

Страшный прибор, да? Куча ручек, каких то кнопочек, да еще экран и нифига не понятно что тут да зачем. Ничего, сейчас исправим. Сейчас я тебе расскажу как пользоваться осциллографом.

На самом деле тут все просто — осциллограф, грубо говоря, это всего лишь… вольтметр! Только хитрый, способный показывать изменение формы замеряемого напряжения.

Как всегда, поясню на отвлеченном примере.

Представь, что ты стоишь перед железной дорогой, а мимо тебя с бешеной скоростью мчится бесконечный поезд состоящий из совершенно одинаковых вагонов. Если просто на них стоять и смотреть, то ничего кроме размытой фигни ты не увидишь.
А теперь ставим перед тобой стенку с окошком. И начинаем открывать окошко только тогда, когда очередной вагон будет в том же положении, что и предыдущий. Так как у нас вагоны все одинаковые, то тебе совершенно необязательно видеть один и тот же вагон. В результате картинки разных, но идентичных вагонов будут выскакивать перед твоими глазами в одном и том же положении, а значит картинка как бы остановится. Главное это синхронизировать открытие окошка со скоростью поезда, чтобы при открытии положение вагона не менялось. Если скорость не совпадет, то вагоны будут «двигаться» либо вперед, либо назад со скоростью, зависящую от степени рассинхронизации.

На этом же принципе построен стробоскоп — девайс, позволяющий разглядывать быстро движущиеся или вращающиеся хреновины. Там тоже шторка быстро-быстро открывается и закрывается.

Так вот, осциллограф это тот же стробоскоп, только электронный. А показывает он не вагоны, а периодические изменения напряжения. У той же синусоиды, например, каждый следующий период похож на предыдущий, так почему бы не «остановить» его, показывая в один момент времени один период.

Конструкция
Делается это посредством лучевой трубки, отклоняющей системы и генератора развертки.
В лучевой трубке пучок электронов попадая на экран заставляет светится люминофор, а пластины отклоняющей системы позволяют гонять этот пучок по всей поверхности экрана. Чем сильней напряжение, приложенное к электродам, тем больше отклоняется пучок. Подавая на пластины Х пилообразное напряжение мы создаем развертку. То есть луч у нас движется слева-направо, а потом резко возвращается обратно и продолжает снова. А на пластины Y мы подаем изучаемое напряжение.

Принцип работы
Дальше все просто, если начало появления периода пилы (луч в крайне левом положении) и начало периода сигнала совпадают, то за один проход развертки нарисуется один или несколько периодов измеряемого сигнала и картинка как бы остановится. Меняя скорость развертки можно добиться того, что на экране вообще останется только один период — то есть за один период пилы пройдет один период измеряемого сигнала.

Развертка осциллографа во времени

Синхронизация
Синхронизировать пилу с сигналом можно либо вручную, подстраивая ручкой скорость так, чтобы синусоида остановилась, а можно по уровню. То есть мы указываем при каком уровне напряжения на входе нужно запустить генератор развертки. Как только напряжение на входе превысит уровень, так сразу же запустится генератор развертки и выдаст нам импульс.
В итоге, генератор развертки выдает пилу только тогда, когда надо. В этом случае синхронизация получается полностью автоматической. При выборе уровня следует учитывать такой фактор, как помехи. Так что если взять слишком низкий уровень, то мелкие иголки помех могут запустить генератор когда не нужно, а если взять уровень слишком большой, то сигнал может под ним пройти и ничего не случится. Но тут проще покрутить ручку самому и сразу же все станет понятно.

Также сигнал синхронизации можно подать и с внешнего источника.

Синхронизация по уровню

В топку теорию, переходим к практике.
Показывать буду на примере своего осциллографа, спертого когда то давно с оборонного предприятия КБ «Ротор» :). Обычный осцил, не шибко навороченный, но надежный и простой как кувалда.

Мой верный осциллограф

Итак:
Яркость, фокус и освещение шкалы думаю не требуют пояснений. Это настройки интерфейса.

Усилитель У и стрелочки вверх вниз. Эта ручка позволяет гонять изображение сигнала вверх или вниз. Добавляя ему дополнительное смещение. Зачем? Да иногда не хватает размера экрана, чтобы вместить весь сигнал. Приходится его загонять вниз, принимая за ноль не середину, а нижнюю границу.

Ниже идет тумблер переключающий ввод с прямого, на емкостный. Этот тумблер в том или ином виде есть на всех без исключения осциллографах.

Важная вещь! Позволяет подключать сигнал к усилителю либо напрямую, либо через конденсатор. Если подключить напрямую, то пройдет и постоянная составляющая и переменная. А через кондер проходит только переменная.

Например, надо нам посмотреть на уровень помех блока питания компа. Напряжение там 12 вольт, а величина помех может быть не более 0.3 вольт. На фоне 12 вольт эти жалкие 0.3 вольт будут совсем незаметны. Можно, конечно увеличивать коэффициент усиления по Y, но тогда график вылезет за экран, а смещения по Y не хватит, чтобы увидеть вершину. Тогда нам нужно лишь врубить конденсатор и тогда те 12 вольт постоянки осядут на нем, а в осциллограф пройдет только переменный сигнал, те самые 0.3 вольта помехи. Которые можно усилить и разглядеть в полный рост.

Далее идет коаксиальный разъем подключения щупа. Каждый щуп содержит в себе сигнал и землю. Землю обычно сажают на минус или на общий провод схемы, а сигнальным тычут по схеме. Осциллограф показывает напряжение на щупе относительно общего провода. Чтобы понять где сигнальный, а где земля достаточно взять за них рукой по очереди. Если возьмешься за общий, то на экране по прежнему будет пульс трупа. А если взяться за сигнальный, то увидишь кучу срача на экране — наводки на твое тело, служащее в данный момент антенной. На некторых щупах, особенно на современных осциллографах, внутри встроен делитель напряжения 1:10 или 1:100, который позволяет воткнуть осциллограф хоть в розетку, без риска его спалить. Включается и выключается он тумблером на щупе.

Еще почти на каждом осциллографе есть калибровочный выход. На котором ты всегда можешь найти прямоугольный сигнал частотой 1Кгц и напряжением около полувольта. В зависимости от модели осцила. Используется для проверки работы самого осциллографа, ну иногда и в тестовых целях пригождается 🙂

Две здоровенные крутилки Усиление и Длительность

Усиление служит для масштабирования сигнала по оси Y. Там же показано сколько вольт на деление в итоге покажет.
Скажем, если у тебя стоит 2 вольта на деление, а сигнал на экране достигает высоты две клеточки размерной сетки, значит амплитуда сигнала равна 4 вольта.

Длительность определяет частоту развертки. Чем короче интервал, чем больше частота, тем более высокочастотный сигнал ты сможешь разглядеть. Тут клеточки проградуированы уже в милли и микросекундах. Так что по ширине сигнала ты можешь посчитать сколько он клеток, а умножив его на масштаб по оси Х получишь длительность сигнала в секундах. Также можно посчитать длительность одного периода, а зная длительность легко найти частоту сигнала f=1/t

Верхняя пипка на крутилках позволяет менять масштаб плавно. Обычно у меня она стоит на щелчке, чтобы я всегда четко знал какой у меня масштаб.

Также там есть вход Х на который можно подать свой сигнал, вместо пилы развертки. Таким образом осциллограф может послужить телевизором или монитором, если собрать схему которая будет формировать изображение.

Крутилка с надписью Развертка и стрелочками влево и вправо позволяет гонять график по экрану влево и вправо. Удобно иногда бывает, чтобы подогнать нужный участок под деления сетки.

Блок синхронизации.
Ручка уровня — задает уровень от которого будет стартовать генератор пилы.
Переключатель со внутренней на внешнюю, позволяет подать на вход синхроимпульсы с внешнего источника.
Переключатель с надписью +/- переключает полярность уровня. Есть не на всех осциллографах.
Ручка стабильность — позволяет вручную попытаться подобрать скорость синхронизации.

Быстрый старт.
Итак, включил ты осцил. Первое что нужно сделать это замкнуть сигнальный щуп на свой же земляной крокодил. При этом на экране должен появится «Пульс трупа». Если не появился, то покрути ручки стабилизации и смещений и уровня — возможно он просто спрятался за экран или не запустился из-за недостаточного уровня.

Как только появилась полоса, то выстави крутилками смещения её на ноль. Если у тебя аналоговый осцил, особенно если древний, то дай ему прогреться. У моего после включения ноль плавает еще минут пятнадцать.

Дальше выстави предел измерений по напряжению. Бери с запасом, если что уменьшишь. Теперь если земляной провод осциллографа приложишь к минусу батарейки, а сигнальный к плюсу, то увидишь как график скакнет на полтора вольта. Кстати, старые осциллографы зачастую начинают подвирать, поэтому по эталонному источнику напряжения полезно посмотреть насколько точно он отображает напряжение.

Выбор осциллографа.
Если ты только начал, то тебе подойдет любой. Крайне желательно если он будет двухканальным. То есть у него будет два щупа и две крутилки Усиления, для первого и второго канала, что позволяет одновременно получить два графика.
Вторым по важности критерием осциллографа является частота. Максимальная частота сигнала которую он может уловить. Мне пока хватало 1МГц на большее не замахивался. Те осциллографы, что продаются в магазинах уже имеют частоту от 10МГц и выше. Самый дешевый осциллограф который я видел стоил 5 тысяч рублей — ОСУ-10. Двухканальный стоит уже 10 тысяч, ну а я нацелился взял себе цифровой RIGOL DS1042CD за килобакс. Разные запросы — разные игрушки. Но, повторюсь, для начала хватит и 1МГц, и хватит надолго. Так что найди себе хоть какой нибудь осциллограф. А там поймешь что тебе надо.

Видеоуроки в 2-х частях:

А вот обещанные во втором ролике фотки экранов двух осциллов:

Ссылка на основную публикацию
Adblock
detector