Изготовление тороидального трансформатора своими руками
Трансформатор тороидальный своими руками – расчет витков, технология намотки
Преобразование тока или напряжения применяется практически в каждом электроприборе. Для чего нужен трансформатор? Более практичного и универсального прибора для преобразования напряжения еще не придумали.
Как устроен трансформатор?
Основа прибора – замкнутый магнитопровод. На него наматываются обмотки – от двух и более. При появлении на первичной обмотке переменного напряжения, в основе возбуждается магнитный поток. Он наводит на остальных обмотках переменное напряжение с аналогичной частотой.
Разница в количестве витков между обмотками определяет коэффициент изменения величины напряжения. Проще говоря, если вторичная обмотка имеет вдвое меньше витков, на ней возникнет напряжение, в два раза меньшее, чем в первичной. Мощность остается прежней, что позволяет работать с большими токами при меньшем напряжении.
Конструктивное исполнение различается по форме магнитопровода.
Броневой
Образует два витка магнитного поля, рассчитан на большие нагрузки. Магнитопровод разъемный, удобен в сборке – на центральный стержень надевается готовая обмотка. Недостаток – тяжелый, габаритный. Крайние и поперечные стержни магнитопровода эффективно не используются.
Стержневой
Конструкция аналогична броневому, магнитное поле одновитковое, соответственно мощность меньше. Также имеет разборную конструкцию. Эффективность использования поверхности магнитопровода не выше 40%.
Тороидальный трансформатор
Имеет самый высокий КПД. Это достигается за счет 100% использования площади магнитопровода. Поэтому, при одинаковой мощности, такие трансформаторы имеют меньшие размеры. Еще одно преимущество – за счет распределения обмоток по всей площади основы, охлаждение витков более эффективное. Это позволяет еще больше нагрузить преобразователь без превышения критической температуры. Недостаток один – такие трансформаторы сложно собирать, поскольку основа неразъемная.
Материалы для магнитопровода:
Железные основы набираются из пластин, наматываются ленточным способом, или отливаются монолитно. Наиболее эффективный материал – феррит. Чаще всего применяется именно в торах, увеличивая их КПД.
Какие бывают трансформаторы по конструкции, мы рассмотрели. При покупке готового прибора, вас мало волнует, насколько сложно его сделать.
Тороидальная конструкция удобна в монтаже (занимает мало места, крепится одним винтом). Однако стоит такой прибор выше, чем стержневые или броневые преобразователи напряжения. Часто его цена перекрывает экономию от самостоятельного изготовления всей электроустановки.
Тороидальный трансформатор, как сделать своими руками?
Первое, что приходит в голову – взять готовый тор от сломанной бытовой техники, и попробовать изменить параметры вторичной обмотки под ваши расчеты. Как перемотать трансформатор своими руками, знают все радиолюбители.
Но тороидальный сердечник не разбирается, если пропускать через «бублик» пару тысяч (или даже сотен) витков, на перемотку уйдут месяцы. Да и вероятность повредить оболочку проволоки при таком способе довольно высока.
Чтобы не задаваться вопросами типа: «Что можно сделать из трансформатора от микроволновки?» (из него делают споттеры для точечной сварки), логичнее будет подбирать трансформатор под конкретную задачу, а не наоборот.
Если ваш электроприбор компактный, ищите тороидальный преобразователь. Кстати, в микроволновых печах применяются бронированные трансформаторы, достаточно крупного размера.
Имея представление о характеристиках собираемого блока питания, вы должны знать, как рассчитать мощность трансформатора. Получив эту важную характеристику, начинаете поиски донора. Если приобретенный трансформатор имеет заводскую этикетку, или еще лучше, паспорт изделия – вы пользуетесь этой информацией. А если у вас в руках безымянное изделие?
Первый вопрос, который возникнет: «Как определить выводы трансформатора?» Необходимо произвести замеры сопротивления между контактами с помощью мультиметра. Надо найти первичную обмотку. Как правило, контакты первички не соединены с вторичными обмотками.
То есть, если прозвонка показала гарантировано обособленную обмотку, это первичка. По результатам замеров рисуем схему, и приступаем к определению коэффициентов понижения напряжения.
На контакты первичной обмотки подводим напряжение 220 вольт. Для безопасности можно ограничить ток какой-нибудь нагрузкой. Например, последовательно включить лампу накаливания мощностью 40-60 Вт. Лампа шунтируется обычным тумблером. Подключение производится через предохранитель, или бытовой удлинитель с защитным автоматом (на случай короткого замыкания).
Необходимо дать поработать тору несколько минут «в холостую» с включенной лампой. Затем отключите питание, и оцените температуру устройства. Если избыточного нагрева нет – шунтируйте лампу выключателем и снова дайте время на проверку нагрева.
После этого можно приступать к составлению диаграммы напряжения на вторичных обмотках. Произведите замеры на контактах во всех возможных комбинациях. Результаты отобразите на схеме. Получив полную картину, подайте на обмотки нагрузку, соответствующую напряжению. Лучший способ – та же лампа накаливания.
Оценить возможности прибора можно по степени нагрева под нагрузкой. Нормальная температура – не более 45°С. То есть, сразу после отключения от сети, трансформатор можно трогать рукой без температурного дискомфорта.
Рассмотрим как производится расчет мощности трансформатора
Для начала определяем сечение основы. Магнитопровод должен не только выдержать магнитное поле определенной интенсивности, он еще рассеивает выделяемое тепло. Существует упрощенный метод исчисления площади сечения в см². Она равна квадратному корню от требуемого значения мощности в ваттах.
Это максимальное значение, реальный трансформатор должен иметь запас +50%. Иначе сердечник попадет в область магнитного насыщения, что приведет к резкому локальному нагреву. Для сердечников тороидальной формы достаточно запаса 30% от расчетной площади.
Далее необходимо знать, как определить параметры провода для обмоток, чтобы обеспечить расчетную мощность трансформатора. Первая величина – количество витков на вольт (речь идет о первичной обмотке).
Для этого воспользуемся несложной формулой: константу 60 делим на площадь сечения в см². Например, сечение магнитопровода 6 см². Значит, на каждый вольт входного напряжения, требуется 10 витков провода. То есть при питании 220 вольт, первичная обмотка будет состоять из 2200 витков.
Расчет вторичных обмоток производится в пропорции коэффициента трансформации. Если необходимо 20 вольт на выходе, при константе 10 витков на вольт, потребуется 200 витков вторичной обмотки. Это абсолютное значение, без учета потерь при нагрузке. Истинное количество витков получаем, умножив значение на 1,2.
Прежде чем намотать трансформатор, надо знать сечение провода. Минимальный диаметр проволоки рассчитывается по формуле: D=0.7*√I
D – диаметр проводника в мм
0,7 – установочный коэффициент
√I – квадратный корень из значения силы тока в амперах
Экономить на проводе не стоит. Меньший диаметр плохо рассеивает тепло, и обмотка может перегореть. Чем тоньше провод, тем выше сопротивление. Возможны потери мощности и снижение расчетных характеристик.
Перемотка трансформатора своими руками
Расчет произвели, параметры «донора» определили, требуется перемотка вторичной обмотки. На стержневом или бронированном трансформаторах все просто – обмотка мотается на коробочку из электротехнического картона, затем надевается на разборный магнитопровод.
А как намотать тороидальный трансформатор?
Намотка тороидального трансформатора своими руками — видео.
Есть два способа, отработанных десятилетиями.
С помощью челнока. На вилочный челнок предварительно наматываем требуемое количество проводника. Лучше рассчитать его с запасом, возможны потери от перекосов на витках.
Этот способ годится в случаях, когда внутренний диаметр тора достаточно большой, а проводник тонкий и гибкий. Количество витков также имеет значение. Мотать обмотку даже в 500-700 витков вы будете очень долго.
Вторая технология более прогрессивная. Намотка с помощью размыкаемого обода.
Намоточный обод продевается в «дырку от бублика» и соединяется в единое кольцо. Затем на него наматывается требуемое количество проволоки. После чего проводник сматывается с обода на тороид, с одновременным его вращением для равномерной укладки.
Несмотря на кажущуюся сложность приспособления, его можно изготовить самостоятельно.
Как рассчитать и сделать простой тороидальный трансформатор
Большинство электронных устройств для своей работы нуждаются в определённом типе питания, отличающегося от поступающего из промышленной сети. Одним из видов таких устройств является тороидальный трансформатор. Прибор нашёл широкое применение в различных областях энергетики, электроники и радиотехники. Наиболее часто трансформаторы используются в электрических сетях и в блоках питания всевозможной электронной техники.
Конструкция и принцип работы
Трансформатор — название слова происходит от латинского transformare, что в переводе означает превращать. Общепринятое определение для него следующее: трансформатор — это устройство, которое, используя явление электромагнитной индукции, способно изменять амплитуду напряжения без изменения формы и частоты сигнала.
Трансформатор — это электротехнический прибор, с помощью которого происходит уменьшение или увеличение переменного электрического напряжения. Такие трансформаторы называют понижающими или повышающими. При этом следует отметить, что существуют и такие приборы, которые оставляют величину синусоидального сигнала без изменения, они называются гальваническими или дроссельными.
Любой трансформатор в своей конструкции содержит следующие компоненты:
- магнитопровод (сердечник);
- обмотки;
- каркас для расположения обмоток;
- изолятор;
- различные дополнительные элементы (скобы для крепления, планки для вывода контактов и т. п. ).
Трансформатор в своей конструкции имеет две или более обмотки с индуктивной связью. Выпускаются они как проволочного, так и ленточного типа и всегда покрываются слоем изоляции. Обмотки закрепляются на магнитопроводе, изготовленном из мягкого ферромагнитного материала. Первичная обмотка подсоединяется к источнику напряжения, а вторичная к нагрузке.
Общий принцип работы устройства, независимо от его вида и назначения, заключается в следующем. На первичную обмотку прибора подаётся переменный сигнал, что приводит к появлению в ней переменного тока. Этот ток, в свою очередь, наводит в сердечнике переменное магнитное поле, под действием, которого происходит возникновение переменной электродвижущей силы (ЭДС) в обмотках. При подключении нагрузки к вторичной обмотке по ней начинает протекать переменный ток. Обмотка, на которую подаётся сигнал, называется первичкой. Обмотка, подключённая к нагрузке, называется вторичкой.
По способу охлаждения тороидальные устройства различаются на использующие воздушное и жидкостное охлаждение. Кроме этого, существуют трансформаторы с совмещённым охлаждением — жидкостно-воздушным. К главным техническим параметрам устройства относятся:
- Величина входного напряжения: допустимое значение напряжения, подаваемое на первичку.
- Величина выходного напряжения. Определяется коэффициентом трансформации.
- Тип трансформации. Существует с повышением или понижением уровня сигнала.
- Число фаз. В зависимости от сети, в которой используются трансформаторы, они делятся на однофазные или трехфазные.
- Число обмоток. Существуют двухобмоточные или многообмоточные устройства.
К основным параметрам устройства относят: номинальную мощность и коэффициент трансформации. Единица измерения мощности вольт-ампер (ВА). Коэффициент трансформации показывает соотношение уровней напряжения на входе устройства к его выходу. Его значение прямо пропорционально отношению количества витков первички к вторичке.
В тороидальном трансформаторе в качестве основы используется кольцевой сердечник, геометрически представляющий собой тор. Преимущество такого вида магнитопровода заключается в простой перемотке трансформатора своими руками и получении наибольшего коэффициента полезного действия (КПД) по сравнению с другими типами трансформаторов при тех же габаритных значениях. К недостаткам торов относят повышенный нагрев при работе.
Трансформатор тока
Кроме стандартного типа трансформаторов напряжения существует особый вид, называемый трансформатором тока. Основное его назначение — изменять значение тока относительно своего входа. Другое название такого вида устройства — токовый.
Токовый трансформатор — измерительный прибор, предназначенный для измерения силы переменного тока. Применяются токовые устройства тогда, когда нужно измерить ток большой силы или для защиты полупроводниковых приборов от возникших на линии нештатных его значений.
Токовое устройство по виду ничем не отличается от трансформатора напряжения, его отличия — в подключении и количестве витков в обмотке. Первичка выполняется с помощью одного или пары витков. Эти витки пропускаются через тороидальный магнитопровод, и именно через них измеряется ток. Токовые устройства выполняются не только тороидального типа, но и могут быть выполнены и на других видах сердечниках. Главным условием является то, чтобы измеряемый провод совершил полный виток.
Вторичная обмотка при таком исполнении шунтируется низкоомным сопротивлением. При этом величина напряжения на этой обмотке не должна быть большого значения, так как во время прохождения наибольших токов сердечник будет находиться в режиме насыщения.
В некоторых случаях измерения проводятся на нескольких проводниках которые пропущены через тор. Тогда величина тока будет пропорциональна силе суммы токов.
Расчёт параметров изделия
Перед тем как намотать тороидальный трансформатор в домашних условиях понадобится рассчитать его значения. Для этого нужно знать исходные данные. К ним относят: величину напряжения на выходе, внешний и внутренний диаметр сердечника.
Мощность устройства определяется произведением площадей S и Sо, умноженных на коэффициент: P=1,9* S * Sок.
Площадь поперечного сечения рассчитывается по формуле: S=h*(D-d)/2, где:
- S- площадь сечения;
- h- высота конструкции;
- D- наружный диаметр;
- d — внутренний диаметр.
Для вычисления площади окна используется формула: Sок=3,14*d2/4.
Количество витков во вторичной обмотке равно произведению W2=U2*50/Sок.
Далее остаётся рассчитать количество витков в первичке. Для этого используется выражение: W1=(Uвх*W2)/Uвых, где Uвх — напряжение на входе, а Uвых — напряжение на выходе устройства.
Такую методику расчёта можно применить почти для любого вида тороидального трансформатора. Но для расчёта некоторых изделий существует своя методика.
Сварочное устройство
Такой тип трансформатора характеризуется большой силой тока на выходе. В качестве вводных параметров используется максимальная сила тока и напряжение. Например, для устройства с величиной сварочного тока 200 ампер и напряжением 50 вольт расчёт происходит следующим образом:
1. Рассчитывается мощность трансформатора: Р = 200 А * 50 В = 1000 Вт.
2. Вычисляется сечение окна: Sок = π * d2/ 4 = 3,14 * 144 / 4 (см2) ≈ 113 см².
3. Площадь поперечного сечения: Sс=h * Н = 2 см * 30 см = 60 см².
4. Мощность сердечника: Рс = 2,76 * 113 * 60 (Вт) ≈ 18712,8 Вт.
5. Количество витков первичной обмотки: W1 = 40 * 220 / 60 = 147 витков.
6. Количество витков для вторичной обмотки: W2 = 42 * 60 / 60 = 42 витка.
7. Площадь провода вторички находится исходя из наибольшего рабочего тока: Sпр = 200 А /(8 А/мм2) ≈ 25 мм².
8. Вычисляется площадь провода первички: S1 = 43 А /(8 А/мм2) ≈ 5,4 мм².
Такой вариант расчёта применим не только для сварочников, но и с успехом может быть использован для других типов. Как видно, никаких трудностей при расчёте возникнуть не должно.
Токовый трансформаторный прибор
Трансформатор тока своими руками сделать несложно, но перед его изготовлением понадобится выполнить расчёт. Такой расчёт отличаетчя от общепринятого в связи с конструктивными особенностями изделия. Начинается он с необходимой величины тока вторички (единица измерения ампер): Iам = Iпер / Iвт, где:
• Iпер — величина тока первичной обмотки, умноженная на число витков в ней;
• Iвт — количество витков во вторичной обмотке.
Для того чтобы разобраться, как правильно выполнить расчёт, проще рассмотреть практический пример самодельного токового устройства. Пусть на выходе токового устройства необходимо получить 4 вольта, а ток ограничить уровнем 5 ампер.
Поэтапно методика вычисления выглядит так:
- Берётся ферритовое кольцо, для примера 20×12х6 из 2000hМ.
- Мотается 100 витков провода. Эти витки составляют вторичную обмотку, так как первичная — это просто один виток проволоки, пропущенный через феррит.
- Значение тока во вторичке будет равно: I/Kтр = 5 / 100 = 0,05 A. где Ктр — коэффициент трансформации трансформатора (отношение количества первичной обмотки к вторичной).
- Величина нагрузочного шунта рассчитывается согласно закону Ома: R = U/I. Получается R= 4/0,05 = 80 Ом.
Таким образом можно выполнить расчёт для любых требуемых параметров. Независимо от формы тока на входе, на выходе токового устройства напряжение всегда двухполярное. В качестве шунта вторичной обмотки используется именно сопротивление, а не диод. Если есть необходимость в диоде, то вначале подключается резистор, а затем диод или диодный мост. Во втором случае сопротивление включается в диагональ моста.
Самостоятельное изготовление
Цена на готовые изделия велика, при этом не всегда удаётся найти прибор с требуемыми параметрами. Поэтому целесообразно изготовить трансформатор или автотрансформатор своими руками. Кроме изготовления трансформатора с нуля существует возможность перемотать неисправное устройство.
Для изготовления изделия потребуются трансформаторное железо и провод. Железо представляет собой пластины собранные в виде тора и образующие магнитопровод. Его можно купить либо взять со старых разобранных приборов. Например, взять пластины от промышленных трансформаторов и, используя приспособление в виде разрезанного кольца, скатать из металла пластинки в виде бублика. Пластинки собрать, сердечник обтянуть стеклотканью и залить лаком.
Витки обмоток изготавливаются из медного провода нужного диаметра. Сама намотка не вызывает сложностей:
- Наматывается первичная обмотка. Для этого один конец проволоки закрепляется на расстоянии около трёх сантиметров от поверхности железа, а оставшаяся часть провода сворачивается в виде полоски.
- Полоска с проводом поочерёдно продевается через внутреннее отверстие сердечника, обматывая его грани, и равномерно распределяется по всей поверхности. В конце вывод фиксируется и выводится в районе начала обмотки на таком же расстоянии, что и начало.
- Сверху первичная обмотка проматывается слоем диэлектрика (стеклотканью).
- Таким же способом наматывается вторичная обмотка.
- После выполнения требуемого количество витков сверху наматывается стеклоткань, и трансформатор покрывается лаком.
Если в процессе намотки необходимо выполнить отвод, тогда наматываемый провод разрывается. На место разрыва впаивается отвод, а основной провод мотается дальше. Место отвода, как правило, тщательно изолируется. Закрепление концов обмоток обычно выполняется с помощью ниток, которыми привязываются провода к поверхности сердечника или проложенного провода. Полоску продеваемого провода лучше разместить на «челнок». Изготавливается он из небольшого пластикового профиля с прорезями в торцах для фиксации проволоки.
Такая работа требует внимательности и аккуратности, особенно при наматывании первичной обмотки. Для изготовления нескольких устройств целесообразно использовать станок для намотки тороидальных трансформаторов. Своими руками такой прибор выполнить сложно, но возможно.
Намоточный станок своими руками
Один из возможных вариантов — сделать станок, оснащённый регулируемым укладчиком и счётчиком витков, используя принцип велосипедного колеса.
Колесо надевается на штырь в стене, при этом его обод снабжается резиновым кольцом. Для того чтобы на обод надеть сердечник, предварительно потребуется его разрезать, а затем снова скрепить, получив цельный круг. Намотав на него необходимую длину проволоки, один ее конец подсоединяется к свободно расположенному на ободе сердечнику. Катушка передвигается по ободу полными кругами, в результате чего проволока укладывается на каркас. При этом для подсчёта оборотов используется велосипедный счётчик.
Создание более совершенного устройства потребует применение шаговых двигателей с позиционированием их положения. Для этого используются микроконтроллеры и электронный счётчик. Такое конструирование требует определённых навыков в радиоэлектронике.
Изготовление тороидального трансформатора своими руками
Трансформатор переводится с латинского как «превращатель», «преобразователь». Это электромагнитное устройство статического типа, предназначенное для преобразования переменного напряжения или электрического тока. Основу любого трансформатора составляет замкнутый магнитопровод, который иногда называют сердечником. На сердечник наматываются обмотки, которых может быть 2−3 и более в зависимости от вида трансформатора. Когда на первичной обмотке возникает переменное напряжение, внутри сердечника возбуждается магнитный ток. Он, в свою очередь, вызывает на остальных обмотках токовое переменное напряжение с точно такой же частотой.
Обмотки различаются между собой количеством витков, что определяет коэффициент изменения величины напряжения. Иными словами, если вторичная обмотка имеет в своём составе в два раза меньше витков, то на ней возникает переменное напряжение по величине в два раза меньшее, чем на обмотке первичной. Но мощность тока при этом не меняется. Это делает возможным работу с токами большой силы при относительно небольшом напряжении.
Виды трансформаторов
В зависимости от формы магнитопровода различают три вида трансформаторов:
- Броневой. Имеет квадратную форму с двумя боковыми, одним центральным и двумя поперечными стержнями. При этом эффективно используется только центральный стержень. Именно на него надевается обмотка. Поэтому КПД данного устройства не очень высокое. Образует два витка магнитного поля. Данный трансформатор рассчитан на большие нагрузки. Этим объясняется его очень большой вес.
- Стержневой. В каком-то смысле похож на первый вид. По форме это половинка от броневого магнитопровода. Имеет в своём составе два боковых сердечника и два поперечных. Магнитное поле одновитковое, и, как следствие, мощность у него меньше. КПД у такого трансформатора составляет 40%.
- Тороидальный. Своё название получил за счёт оригинальной формы. В математике существует такое понятие, как тороидальная поверхность. Если говорить проще — это объёмный круг или форма бублика. Благодаря такой форме магнитопровода тороидальные трансформаторы имеют самый высокий уровень КПД, приближающийся к 100%. Поэтому такие трансформаторы всегда имеют меньшие размеры при одинаковой мощности, по сравнению с другими видами. Ввиду того, что обмотки равномерно распределяются по всей площади сердечника, происходит более эффективное охлаждение витков. Что, в свою очередь, позволяет максимально нагружать такие устройства без возникновения опасности перегрева.
Материалы пластин
Сердечники для трансформаторов изготавливают либо из металла, либо из феррита. Феррит, или ферромагнетик, — это железо с особым строением кристаллической решётки. Применение феррита увеличивает КПД трансформатора. Поэтому чаще всего сердечник трансформатора изготавливается именно из феррита. Существует несколько способов изготовления сердечника:
- Из наборных металлических пластин.
- Из намотанной металлической ленты.
- В виде отлитого из металла монолита.
Любой трансформатор может работать как в повышающем, так и в понижающем режиме. Поэтому условно все трансформаторы делятся на две большие группы. Повышающие: на выходе напряжение больше, чем на входе. Например, было 12 В, стало 220 В. Понижающие: на выходе напряжение ниже, чем на входе. Было 220, а стало 12 вольта. Но в зависимости от того, на какую обмотку подаётся первичное напряжение, можно понижающий трансформатор превратить в повышающий, который 10 А превратит в 100 А.
Тороидальный трансформатор своими руками
Тороидальный трансформатор, или просто тор, чаще всего изготавливают в домашних условиях в качестве главной детали для домашнего сварочного аппарата и не только. По сути, это самый распространённый вариант трансформатора, впервые изготовленный ещё Фарадеем в 1831 году.
Преимущества и недостатки тора
Тор обладает несомненными достоинствами по сравнению с другими видами:
- Относительно небольшие размеры.
- Очень сильный выходной сигнал.
- Обмотки имеют маленькую длину, и, как следствие, эти устройства характеризуются небольшим сопротивлением и очень высоким КПД.
- Благодаря своей форме легко устанавливаются и также легко демонтируются в случае необходимости.
Простейший тор состоит из двух обмоток на своём кольцевидном сердечнике. Первичная обмотка соединяется с источником электрического тока, вторичная идёт к потребителю электроэнергии. Посредством магнитопровода происходит объединение обмоток и усиление их индукции. Когда включается питание, в обмотке первичной возникает переменный магнитный поток. Соединяясь со вторичной обмоткой, этот поток порождает в ней электромагнитную силу. Величина этой силы зависит от количества намотанных витков. Изменяя число витков, можно преобразовывать любое напряжение.
Расчет мощности тороидального трансформатора
Изготовление сварочного тороидального трансформатора в домашних условиях начинается с расчёта его мощности. Основным параметром будущего тора является ток, который будет подаваться на сварочные электроды. Чаще всего для бытовых нужд вполне достаточно электродов диаметром 2−5 мм. Соответственно, для таких электродов мощность тока должна быть в пределах 110−140 А.
Мощность будущего трансформатора рассчитывается по следующей формуле:
U — напряжение холостого хода
cos f — коэффициент мощности, равный 0.8
n — коэффициент полезного действия, равный 0.7
Далее расчётная величина мощности с помощью соответствующей таблицы сверяется с размером площади сечения сердечника. Для домашних сварочных трансформаторов это значение, как правило, равно 20−70 кв. см в зависимости от конкретной модели.
После этого с помощью следующей таблицы подбирается количество витков провода по отношению к площади сечения сердечника. Закономерность простая: чем больше площадь сечения магнитопровода, тем меньшее количество витков наматывается на катушку. Непосредственное количество витков вычисляется по следующей формуле:
U — напряжение тока на первичной обмотке.
I — ток вторичной обмотки, или сварочный ток.
S — площадь сечения магнитопровода.
Количество витков на вторичной обмотке вычисляется по следующей формуле:
Тороидальный сердечник
Тороидальные трансформаторы имеют достаточно сложный сердечник. Лучше всего его изготавливать из специальной трансформаторной стали (сплав железа с кремнием) в виде стальной ленты. Лента предварительно свёртывается в габаритный рулон. Такой рулон, по сути, уже имеет форму тора.
Где взять готовый сердечник? Неплохой тороидальный сердечник можно обнаружить на старом лабораторном автотрансформаторе. В этом случае будет необходимо размотать старые обмотки и намотать новые на уже готовый сердечник. Перемотка трансформатора своими руками ничем не отличается от намотки нового трансформатора.
Особенности намотки тора
Первичная обмотка осуществляется медным проводом в стеклотканевой или хлопчатобумажной изоляции. Ни в коем случае нельзя использовать провода в резиновой изоляции. Для силы тока на первичной обмотке в 25 А наматывающийся провод должен иметь сечение 5−7 мм. На вторичной необходимо использовать провод значительно большего сечения — 30−40 мм. Это необходимо ввиду того, что на вторичной обмотке будет протекать ток значительно большей силы — 120−150 А. В обоих случаях изоляция провода должна быть термостойкой.
Для того чтобы правильно перемотать и собрать самодельный трансформатор, необходимо понимать некоторые детали процесса его работы. Нужно грамотно осуществлять намотку проводов. Первичная обмотка производится с помощью провода меньшего сечения, а количество самих витков здесь значительно больше, это приводит к тому, что первичная обмотка испытывает очень большие нагрузки и, как следствие, может очень сильно греться в процессе работы. Поэтому укладка первичной обмотки должна производиться особенно тщательно.
В процессе намотки каждый намотанный слой необходимо изолировать. Для этого используют либо специальную лакоткань, либо строительный скотч. Предварительно изоляционный материал нарезается на полоски шириной 1−2 см. Изоляцию укладывают таким образом, что внутренняя часть обмотки покрывается двойным слоем, а внешняя, соответственно, одним слоем. После этого весь изоляционный слой обмазывается толстым слоем клея ПВА. Клей в этом случае несёт двойную функцию. Он укрепляет изоляцию, превращая её в единый монолит, а также значительно уменьшает звук гудения трансформатора во время работы.
Приспособления для намотки
Намотка тора — сложный процесс, занимающий много времени. Для того чтобы как-то его облегчить, используют специальные приспособления для намотки.
- Так называемый вилочный челнок. Предварительно на него наматывается необходимое количество провода, и затем посредством челночных движений производят последовательную намотку провода на сердечник трансформатора. Этот способ годится лишь в том случае, если наматываемый провод достаточно тонок и гибок, а внутренний диаметр тора настолько велик, что позволяет свободно протаскивать челнок. При этом намотка происходит достаточно медленно, поэтому если необходимо намотать большое количество витков, то придётся потратить на это очень много времени.
- Второй способ более продвинутый и требует для своего осуществления специального оборудования. Но зато с его помощью можно намотать трансформатор практически любого размера и с очень большой скоростью. При этом качество намотки будет очень высоким. Приспособление называется «размыкаемый обод». Суть процесса состоит в следующем: намоточный обод аппарата вставляется в отверстие тора. После этого намоточный обод замыкается в единое кольцо. Затем на него наматывается необходимое количество обмоточной проволоки. И в заключение намоточный провод сматывается с обода аппарата на катушку тора. Такой станок можно изготовить в домашних условиях. Его чертежи находятся в свободном доступе в Интернете.
Изготовление тороидального трансформатора своими руками
Многие домашние мастера задумываются об изготовлении тороидального трансформатора своими руками. Объясняется это тем, что его эксплуатационные характеристики значительно лучше, чем у трансформаторов с сердечниками другой формы. Например, при тех же электрических характеристиках, его вес может быть до полутора раз меньше. К тому же и КПД такого трансформатора заметно выше.
Устройство тороидального сварочного трансформатора.
Основных причин, по которым изготовление тороида не всегда удается, две:
- Трудно найти подходящий сердечник.
- Трудоемкость изготовления, особенно сложна намотка трансформатора.
Что такое плазморез и как он устроен.
Об аргонно-дуговой сварке читайте здесь.
Расчет тороидального трансформатора
Схема сварочного полуавтомата.
Для упрощенного расчета трансформатора на тороидальном магнитопроводе необходимо знать следующие исходные данные:
- Подаваемое на первичную обмотку входное напряжение U1.
- Наружный диаметр D сердечника.
- Его внутренний диаметр – d.
- Толщина магнитопровода – H.
Площадь поперечного сечения магнитопровода Sc определяет мощность трансформатора и, соответственно, надежность работы будущего сварочного аппарата. Оптимальными считаются значения 45-55 см 2 . Рассчитать ее значение можно по формуле:
Важной характеристикой сердечника является площадь его окна S0, поскольку этот параметр определяет не только удобство намотки обмоточных проводов и интенсивность отвода избытков тепла, но и оказывает влияние на характер магнитного рассеяния. Оптимальные значения этого параметра 80-110 см 2 . Вычислить его значение позволяет формула:
Броневой тип трёхфазных трансформаторов.
Зная эти значения, можно рассчитать ориентировочную мощность трансформатора:
P = 1,9 * Sc * S0, где Sc и S0 берутся в квадратных сантиметрах, а P получается в ваттах.
Далее можно найти число витков на вольт:
Зная значение k, можно рассчитать количество витков во вторичной обмотке:
Количество витков в первичной обмотке лучше рассчитать, используя в качестве исходного данного напряжение на вторичной обмотке:
W1 = (U1 * w2) / U2, где U1 – напряжение, подводимое к первичной обмотке, а U2 – снимаемое со вторичной.
Дело в том, что регулировать сварочный ток лучше изменением числа витков первичной обмотки, поскольку величина тока в ней меньше, чем во вторичной. Пусть, например, нужно получить три значения выходного тока 60 А, 80 А и 100 А при мощности трансформатора 5000 Вт.
Этим значениям сварочного тока будут соответствовать следующие значения напряжений на вторичной обмотке:
U21 = P / I21 = 5000 Вт / 60 А = 83,3 В;
U22 = P / I22 = 5000 Вт / 80 А = 62,5 В;
Классификационная схема трансформаторов.
U23 = P / I23 = 5000 Вт / 100 А = 50 В.
Пусть вторичная обмотка содержит w2 = 70 витков. Теперь можно рассчитать число витков в соответствующих ступенях первичной обмотки для напряжения в сети U1 = 220 В:
W11 = (U1 * w2) / U21 = 220 В * 70 / 83,3 В ≈ 185 витков;
W12 = (U1 * w2) / U22 = 220 В * 70 / 62,5 В ≈ 246 витков;
W13 = (U1 * w2) / U23 = 220 В * 70 / 50 В = 308 витков.
Последнее значение следует увеличить на 5%:
W13 = 308 * 1,05 ≈ 323 витка – это и будет их необходимое число в первичной обмотке, а отводы следует сделать от 185-го и 246-го витка.
Для самодельных трансформаторов для сварки допустимая плотность тока в обмотках j = 3 А/мм 2 . Зная ее, можно найти площадь поперечного сечения проводов обмоток. В приведенном ранее примере максимальный ток в первичной обмотке:
Сечение этого провода должно составлять:
S1 = I1m / j = 23 А / 3 А/мм 2 ≈ 8 мм 2 .
Во вторичной обмотке следует применить провод с площадью поперечного сечения:
S2 = I23 / j = 100 А / 3 А/мм 2 ≈ 33 мм 2 .
Вам может быть интересно: Сайт о сантехнике.
Подбор и изготовление тороидального сердечника
Наилучшим материалом для изготовления тороидального магнитопровода является ленточная трансформаторная сталь. Для изготовления сердечника эта лента сворачивается в рулон, имеющий форму тора прямоугольного сечения. Если имеется такая лента или сердечник из нее, то особых проблем при изготовлении магнитопровода для тороидального трансформатора не будет.
Характеристики сварочных трансформаторов.
При малом значении внутреннего диаметра d можно часть ленты с внутренней стороны тора отмотать, а затем намотать ее на наружную поверхность сердечника. В результате возрастут оба диаметра, а площадь внутренней части магнитопровода увеличится. Правда, несколько уменьшится площадь поперечного сечения сердечника S0. При необходимости можно добавить ленту с другого магнитопровода.
Хороший готовый тороидальный сердечник можно взять от рассчитанного на ток 9 А лабораторного автотрансформатора ЛАТР 1М. Нужно только перемотать его обмотки. Бывает, что для изготовления тороидального сердечника для трансформатора используется магнитопровод статора подходящего электродвигателя.
Еще один способ изготовления тороидального сердечника – использование в качестве материала пластин от неисправного мощного промышленного или силового трансформатора, питавшего в свое время ламповый цветной телевизор. Сначала из этих пластин с помощью заклепок изготовляется обруч, имеющий диаметр около 26 см. Затем внутрь этого обруча начинают вставлять одну за другой пластины встык, придерживая их рукой от разматывания.
После набора нужного сечения S0 магнитопровод готов. Для увеличения S0 можно изготовить два тороида одинаковых размеров, а затем соединить их вместе. Края тороидов следует слегка закруглить с помощью напильника. Из электроизоляционного картона следует изготовить два кольца, имеющих внутренний диаметр d и внешний D, а также две полоски на внутреннюю и наружную сторону тора. После наложения их на тороид, сердечник обматывается поверх картонных прокладок киперной или тканой изоляционной лентой. Магнитопровод готов, и можно начинать наматывать обмотки.
Намотка трансформатора
Основные части обмотки трансформатора.
Как уже говорилось, мотать обмотки на любой тороидальный трансформатор, в том числе и сварочный, непросто. Самый простой способ – это использование для этой цели челнока, на который предварительно наматывается провод нужной длины, а затем, пропуская челнок через внутреннее окно сердечника, виток за витком формируется соответствующая обмотка.
Челнок обычно изготовляют из дерева или выпиливают из оргстекла. Его толщина 5-6 мм, ширина сантиметра 3-4, а длина порядка 40 см. В его торцах делаются полукруглые вырезы для провода. Для оценки длины провода, который нужно намотать на челнок, производится оценка средней длины одного витка наматываемой обмотки, ее значение умножается на число витков, и на всякий случай делается запас в 15-20%.
Удобнее производить намотку с помощью так называемого кругового челнока. В качестве заготовок для изготовления кругового челнока могут служить согнутые в кольцо пластмассовые трубы или гимнастический обруч со спиленной наружной частью, обод от велосипедного колеса и т. д.
Обруч или колесо распиливаются в одном месте, продеваются сквозь внутреннее окно сердечника, а затем место распила фиксируется любым удобным способом. Намотанный на челнок провод можно в нескольких местах зафиксировать изолентой, но удобнее резиновая лента по длине челнока, натянутая поверх провода. Она не дает проводу рассыпаться, но не препятствует его вытаскиванию сбоку.
Из описания ясно, что хотя изготовление тороидального сварочного трансформатора не такое уж простое дело, но оно вполне выполнимо.
Были бы только нужные материалы, а самое главное – желание.
Как намотать тороидальный трансформатор для мощного усилителя НЧ
Надоело уже собирать усилители НЧ на микросхемах, руки чешутся, и захотелось что-нибудь серьезное спаять. Задумал я паять транзисторный усилитель с двуполярным питанием. Источником питания будет служить линейный блок питания с тороидальным трансформатором, о намотке которого я буду рассказывать в этой статеечке.
Сначала нужно нам определится с мощностью усилителя, количеством каналов и сопротивления нагрузки.
Каналов у меня будет два, выходная мощность будет приблизительно 100Вт на канал, сопротивление нагрузки будет составлять 4Ом.
Можно не заморачиваться и взять трансформатор мощностью 300Вт, но это лишние размеры и масса. По хорошему, если усилитель класса АБ имеет КПД приблизительно 50%, то чтобы на выходе получить 100Вт, необходимо потребить 200Вт. Если два канала по 100Вт, то потребление будет 400Вт. Это все приблизительно, и с условием, что входным сигналом будет являться синусоида с постоянной амплитудой. Я не думаю, что среди разумных людей есть любители слушать ужасный писк в колонках.
Музыка, которую мы прослушиваем, имеет форму сигнала в виде синусоиды, которая меняется как по частоте, так и по амплитуде. Этот сигнал будет не всегда иметь максимальную амплитуду, в такие моменты будет заряжаться электролитический конденсатор источника питания, а на максимальных амплитудах разряжаться, тем самым можно сэкономить на мощности трансформатора. Опять же если вы не любитель слушать писк в акустической системе.
Вычислим мощность и напряжение нашего будущего трансформатора. Скачиваем и запускаем программу PowerSup .
Заполняем в верхней части программы все поля, ток покоя ставим 10мА, ток предусилителя 0мА, назначение и тип сигнала выбираем по вкусу прослушиваемой музыки. Нажимаем “Применить”.
Программа произвела расчет напряжение холостого хода источника питания, а также емкость конденсаторов, эти номиналы имеют рекомендательный характер и даны для одного плеча.
Далее заполняем два нижних окошка в соответствии с рекомендательными величинами и нажимаем “Вычислить”. Получили выходное напряжение обмоток трансформатора, у меня 34,5В на каждое плече, ток вторичных обмоток 1,7А, параметры диодов и схему подключения.
С параметрами трансформатора мы определились, теперь скачиваем и запускаем программу Trans50Hz(3700) . Будем вычислять намоточные данные.
Сердечник у меня тороидальный и имеет размеры 130*80*25. Заполняем поля программы.
Амплитуду индукции выставляем 1.2 Тл, можно полтора (как в моем случае), это для ленточных сердечников, а для пластинчатых ставим 1 Тл. Этот параметр зависит от железа.
Плотность тока для класса АБ от 3.5- 4 А/мм2, для класса А 2.5 А/мм2.
Выставляем токи и напряжение вторичных обмоток, нажимаем рассчитать.
Итак, мы получили количество витков первичной и вторичных обмоток, а также диаметры проводов.
Можно обойтись без расчетов, мотать примерно 900 витков, и периодически обмотку включать в сеть 220В последовательно через лампу накаливания, с номинальным напряжением 220В.
Если лампа будет гореть, даже в пол накала, то мотаем дальше, периодически проверяя. Как только лампа перестанет светиться, необходимо замерить ток холостого хода (но уже без лампы, обмотку подключаем в сеть напрямую), который должен составлять 10-100мА.
Если ток холостого хода будет меньше 10мА, то это не очень хорошо. Из-за большого сопротивления трансформатор будет греться на нагрузке. Если ток будет превышать 100мА, то трансформатор будет греться на холостом ходу. Хотя есть трансформаторы с током холостого хода и 300мА, но они греются без нагрузки и ужасно гудят.
Можно приступать к самой намотке трансформатора. Мотать мне нужно 1291 виток первичной обмотки, проводом, диаметр которого составляет 0,6мм. Заметьте диаметр, а не сечение! У меня провод 0.63мм.
Обматываю тряпочной изолентой. Как-то раз я обмотал сердечник одной лавсановой лентой, без изоленты (или картона), после намотки нескольких слоев произошел пробой. Видимо передавило нижние слои провода, и повредился лак об острую кромку сердечника. Теперь всегда при намотке тороидальных трансформаторов, произвожу обмотку сердечника тряпочной изолентой.
Далее слой лавсановой ленты.
Лавсановую ленту можно купить в магазине, в виде рукава для запекания, который нарезается лентами с помощью лезвия бритвы и металлической линейки.
Берем деревянную линейку на 40см, пропиливаем оба края, чтобы на нее можно было намотать провод. Наматываем большое количество провода (мне пришлось несколько раз наматывать 1300 витков).
Далее определяемся с направлением обмотки, можете выбрать любое, но с условием, что все обмотки (первичная и вторичные) будут мотаться в выбранную вами сторону.
Я мотаю все обмотки по часовой, как на картинке.
Закрепляем скотчем, можно ниткой, свободный конец провода и мотаем виток к витку слой обмотки.
Припаиваем провода первичной обмотки. Изолируем места пайки и зачистки лака.
Дам вам один маленький совет. Припаивая провода, к выводам первичной обмотки выбирайте качественные и прочные провода, либо не припаивайте, а уложите их в диэлектрические трубки (термоусадка, кембрик). Пока я мотал вторичные обмотки, мои выводы из-за многократных изгибов отломились. Я брал провода от блока питания ПК.
Мотаем внахлёст 4-5 слоев лавсановой ленты, добытой из рукава для выпекания.
Не забываем записывать на листочек количество витков в каждом слое, чтобы не забыть. Ведь намотка трансформатора может продолжаться не 1-2 дня, а месяц или несколько месяцев, когда нет времени, и вы все можете позабыть.
Мотаем в том же направлении остальные слои провода, между которыми располагаем слои изоляции лавсановой ленты.
Места соединения необходимо паять и изолировать термоусадочной трубкой.
Когда намотаете необходимое количество витков первичной обмотки тороидального трансформатора, нужно подключить обмотку последовательно через лампу 220В к сети, как говорилось выше. Лампа не должна светиться. Если светиться, значит у вас малое количество витков, либо короткое замыкание между слоями или витками (если провод плохой).
Далее нужно померить ток холостого хода, но уже без лампы (конечно если она у вас не светилась). Рекомендуемый ток холостого хода 10-100мА.
У меня ток холостого хода 11мА.
Припаиваем отвод. Изолируем первичную обмотку от вторичной хорошенько, можно слоев 6-8 лавсановой ленты.
Вторичную обмотку можно мотать по расчетам, сделанным выше, либо следующим методом.
Берем тонкий провод и мотаем десятка два-три витков поверх “первички”. Далее включаем первичную обмотку в сеть и измеряем напряжение на нашей экспериментальной обмотке. У меня получилось 18 витков 2,6В.
Разделив 2.6В на 18витков, я вычислил, что один виток равен 0,144В. Чем больше витков на экспериментальной обмотке будет намотано, тем точнее расчет. Далее беру необходимую мне величину напряжения на одной из вторичных обмоток (у меня 35В) и делю на 0,144В, получаю количество витков вторичной обмотки равное 243.
Намотка “вторички” ничем не отличается. Мотаем в туже сторону, тем же челноком, только диаметр провода берем из расчетов выше. Мой диаметр провода равен 1,25мм (меньше у меня не оказалось).
Как только наберется нужное нам количество витков, включаем наш трансформатор в сеть и измеряем величину выходного напряжения, если она нас устраивает, то делаем отвод и продолжаем мотать вторую вторичную обмотку.
Можно сделать отвод и начать мотать новую вторичную обмотку, то есть, у вас получится четыре вывода “вторички”, а можно скрутить конец первой “вторички”, с началом второй “вторички”, как у меня. Зависит от того какое исполнение вам нужно и будете ли вы использовать по отдельности вторичные обмотки.
Намотав вторую “вторичку”, выставляем одинаковое напряжение между плечами относительно общего провода, увеличивая или наоборот уменьшая количество витков.
Изолируем выводы (термоусадкой или кембриком), изолируем обмотку лавсановой лентой. Все наша намотка тороидального трансформатора закончена. Я еще добавил одну обмотку на 12В, для запитывания различных устройств (пока не решил каких), например, предусилитель, темброблок, вентилятор, индикаторы.
Трансформатор продается. Цена 1500 руб. gavrilser@yandex.ru
Программа для расчета силовых трансформаторов с частотой 50 Гц — Trans50Hz(3700) СКАЧАТЬ
Программа для расчета параметров блока питания (50Гц) PowerSup СКАЧАТЬ
Изготовление тороидального трансформатора своими руками
Многие домашние мастера задумываются об изготовлении тороидального трансформатора своими руками. Объясняется это тем, что его эксплуатационные характеристики значительно лучше, чем у трансформаторов с сердечниками другой формы. Например, при тех же электрических характеристиках, его вес может быть до полутора раз меньше. К тому же и КПД такого трансформатора заметно выше.
Устройство тороидального сварочного трансформатора.
Основных причин, по которым изготовление тороида не всегда удается, две:
- Трудно найти подходящий сердечник.
- Трудоемкость изготовления, особенно сложна намотка трансформатора.
Что такое плазморез и как он устроен.
Об аргонно-дуговой сварке читайте здесь.
Расчет тороидального трансформатора
Схема сварочного полуавтомата.
Для упрощенного расчета трансформатора на тороидальном магнитопроводе необходимо знать следующие исходные данные:
- Подаваемое на первичную обмотку входное напряжение U1.
- Наружный диаметр D сердечника.
- Его внутренний диаметр – d.
- Толщина магнитопровода – H.
Площадь поперечного сечения магнитопровода Sc определяет мощность трансформатора и, соответственно, надежность работы будущего сварочного аппарата. Оптимальными считаются значения 45-55 см 2 . Рассчитать ее значение можно по формуле:
Важной характеристикой сердечника является площадь его окна S0, поскольку этот параметр определяет не только удобство намотки обмоточных проводов и интенсивность отвода избытков тепла, но и оказывает влияние на характер магнитного рассеяния. Оптимальные значения этого параметра 80-110 см 2 . Вычислить его значение позволяет формула:
Броневой тип трёхфазных трансформаторов.
Зная эти значения, можно рассчитать ориентировочную мощность трансформатора:
P = 1,9 * Sc * S0, где Sc и S0 берутся в квадратных сантиметрах, а P получается в ваттах.
Далее можно найти число витков на вольт:
Зная значение k, можно рассчитать количество витков во вторичной обмотке:
Количество витков в первичной обмотке лучше рассчитать, используя в качестве исходного данного напряжение на вторичной обмотке:
W1 = (U1 * w2) / U2, где U1 – напряжение, подводимое к первичной обмотке, а U2 – снимаемое со вторичной.
Дело в том, что регулировать сварочный ток лучше изменением числа витков первичной обмотки, поскольку величина тока в ней меньше, чем во вторичной. Пусть, например, нужно получить три значения выходного тока 60 А, 80 А и 100 А при мощности трансформатора 5000 Вт.
Этим значениям сварочного тока будут соответствовать следующие значения напряжений на вторичной обмотке:
U21 = P / I21 = 5000 Вт / 60 А = 83,3 В;
U22 = P / I22 = 5000 Вт / 80 А = 62,5 В;
Классификационная схема трансформаторов.
U23 = P / I23 = 5000 Вт / 100 А = 50 В.
Пусть вторичная обмотка содержит w2 = 70 витков. Теперь можно рассчитать число витков в соответствующих ступенях первичной обмотки для напряжения в сети U1 = 220 В:
W11 = (U1 * w2) / U21 = 220 В * 70 / 83,3 В ≈ 185 витков;
W12 = (U1 * w2) / U22 = 220 В * 70 / 62,5 В ≈ 246 витков;
W13 = (U1 * w2) / U23 = 220 В * 70 / 50 В = 308 витков.
Последнее значение следует увеличить на 5%:
W13 = 308 * 1,05 ≈ 323 витка – это и будет их необходимое число в первичной обмотке, а отводы следует сделать от 185-го и 246-го витка.
Для самодельных трансформаторов для сварки допустимая плотность тока в обмотках j = 3 А/мм 2 . Зная ее, можно найти площадь поперечного сечения проводов обмоток. В приведенном ранее примере максимальный ток в первичной обмотке:
Сечение этого провода должно составлять:
S1 = I1m / j = 23 А / 3 А/мм 2 ≈ 8 мм 2 .
Во вторичной обмотке следует применить провод с площадью поперечного сечения:
S2 = I23 / j = 100 А / 3 А/мм 2 ≈ 33 мм 2 .
Вам может быть интересно: Сайт о сантехнике.
Подбор и изготовление тороидального сердечника
Наилучшим материалом для изготовления тороидального магнитопровода является ленточная трансформаторная сталь. Для изготовления сердечника эта лента сворачивается в рулон, имеющий форму тора прямоугольного сечения. Если имеется такая лента или сердечник из нее, то особых проблем при изготовлении магнитопровода для тороидального трансформатора не будет.
Характеристики сварочных трансформаторов.
При малом значении внутреннего диаметра d можно часть ленты с внутренней стороны тора отмотать, а затем намотать ее на наружную поверхность сердечника. В результате возрастут оба диаметра, а площадь внутренней части магнитопровода увеличится. Правда, несколько уменьшится площадь поперечного сечения сердечника S0. При необходимости можно добавить ленту с другого магнитопровода.
Хороший готовый тороидальный сердечник можно взять от рассчитанного на ток 9 А лабораторного автотрансформатора ЛАТР 1М. Нужно только перемотать его обмотки. Бывает, что для изготовления тороидального сердечника для трансформатора используется магнитопровод статора подходящего электродвигателя.
Еще один способ изготовления тороидального сердечника – использование в качестве материала пластин от неисправного мощного промышленного или силового трансформатора, питавшего в свое время ламповый цветной телевизор. Сначала из этих пластин с помощью заклепок изготовляется обруч, имеющий диаметр около 26 см. Затем внутрь этого обруча начинают вставлять одну за другой пластины встык, придерживая их рукой от разматывания.
После набора нужного сечения S0 магнитопровод готов. Для увеличения S0 можно изготовить два тороида одинаковых размеров, а затем соединить их вместе. Края тороидов следует слегка закруглить с помощью напильника. Из электроизоляционного картона следует изготовить два кольца, имеющих внутренний диаметр d и внешний D, а также две полоски на внутреннюю и наружную сторону тора. После наложения их на тороид, сердечник обматывается поверх картонных прокладок киперной или тканой изоляционной лентой. Магнитопровод готов, и можно начинать наматывать обмотки.
Намотка трансформатора
Основные части обмотки трансформатора.
Как уже говорилось, мотать обмотки на любой тороидальный трансформатор, в том числе и сварочный, непросто. Самый простой способ – это использование для этой цели челнока, на который предварительно наматывается провод нужной длины, а затем, пропуская челнок через внутреннее окно сердечника, виток за витком формируется соответствующая обмотка.
Челнок обычно изготовляют из дерева или выпиливают из оргстекла. Его толщина 5-6 мм, ширина сантиметра 3-4, а длина порядка 40 см. В его торцах делаются полукруглые вырезы для провода. Для оценки длины провода, который нужно намотать на челнок, производится оценка средней длины одного витка наматываемой обмотки, ее значение умножается на число витков, и на всякий случай делается запас в 15-20%.
Удобнее производить намотку с помощью так называемого кругового челнока. В качестве заготовок для изготовления кругового челнока могут служить согнутые в кольцо пластмассовые трубы или гимнастический обруч со спиленной наружной частью, обод от велосипедного колеса и т. д.
Обруч или колесо распиливаются в одном месте, продеваются сквозь внутреннее окно сердечника, а затем место распила фиксируется любым удобным способом. Намотанный на челнок провод можно в нескольких местах зафиксировать изолентой, но удобнее резиновая лента по длине челнока, натянутая поверх провода. Она не дает проводу рассыпаться, но не препятствует его вытаскиванию сбоку.
Из описания ясно, что хотя изготовление тороидального сварочного трансформатора не такое уж простое дело, но оно вполне выполнимо.
Были бы только нужные материалы, а самое главное – желание.