Шунт на 10 ампер своими руками
Шунт для амперметра – как сделать самому, откалибровать и расширить возможности тестера
Измерение силы тока – достаточно важная процедура для расчета и проверки электрических схем. Если вы создаете прибор с потребляемой мощностью на уровне зарядки для мобильного телефона – для измерения достаточно обычного мультиметра.
Типичный недорогой бытовой тестер имеет предел измерения силы тока 10 А.
На большинстве подобных приборов имеется дополнительный разъем для измерения больших величин. Переставляя измерительный кабель, вы, наверное не задумывались, по какой причине надо организовывать дополнительную цепь, и почему нельзя просто воспользоваться переключателем режимов?
Почему одним прибором нельзя измерять широкий диапазон величин?
Принцип работы любого амперметра (стрелочного или катушечного) основан на переводе измеряемой величины в визуальное ее отображение. Стрелочные системы работают по механическому принципу.
Через обмотку протекает ток определенной величины, заставляя ее отклоняться в поле постоянного магнита. На катушке закреплена стрелка. Остальное – дело техники. Шкала, разметка и прочее.
Зависимость угла отклонения от силы тока на катушке не всегда линейная, это часто компенсируется пружиной особой формы.
Для обеспечения точности измерения, шкала делается по возможности с большим количеством промежуточных делений. В таком случае, для обеспечения широкого предела измерений шкала должна быть огромного размера.
Или же надо иметь в арсенале несколько прибором: амперметр на десятки и сотни ампер, обычный амперметр, миллиамперметр.
В цифровых мультиметрах картина схожая. Чем точнее шкала – тем ниже предел измерения. И наоборот – завышенная величина предела, дает большую погрешность.
Слишком загруженной шкалой пользоваться неудобно. Большое количество положений усложняют конструкцию прибора, и увеличивают вероятность потери контакта.
Применив закон Ома для участка цепи, можно изменить чувствительность прибора, установив шунт для амперметра.
Справка: Шунтом называется обходное сопротивление, проводник, подключенный параллельно измеряемому участку цепи. Часть тока устремляется в обход основного участка, и на подключенный прибор приходится меньшая нагрузка.
Изучение начнем с теории:
Как рассчитать шунт для амперметра?
- Расчет шунта для незначительного расширения верхнего предела шкалы амперметра.Сопротивление шунта вычисляется по формуле. Rш = (Rа * Iа)/(I — Iа)Rш – сопротивление, которым должен обладать шунт.Rа – внутреннее сопротивление амперметра без нагрузки. I – предполагаемый ток, при котором стрелка прибора займет максимальное положение в конце шкалы.Iа – ток, при котором стрелка прибора занимает крайнее положение в конце шкалы без применения шунта.Величина сопротивления рассчитывается по формуле в Омах, сила тока в Амперах.
- Расчет шунта для амперметра при существенном превышении предела измерений.Сопротивление шунта вычисляется по формуле. Rш = (Rа * Iа)/I
Как сделать шунт для амперметра, какие материалы при этом используются
Фабрично изготовленные шунты рассчитываются под готовые приборы, их параметры учитываются еще при вытягивании проволоки.
При создании учитывается даже расстояние от центра проволоки до мест подключения контактов. Несмотря на массивность конструкции, шунт достаточно точный и чувствительный прибор. На погрешность влияет даже разнесение контактов для прибора и контактов для измеряемой цепи.
Это низкоомные приборы. Сопротивление измеряется единицами Ом. Поэтому на рабочую величину влияет даже сечение проводника. При точной подгонке свойств шунта, можно делать на шине пропилы, для изменения удельного сопротивления.
Еще один вариант юстировки фабричного шунта – подбор дополнительных сопротивлений. Такой способ часто практикуют доморощенные «Кулибины».
Шунт для амперметра своими руками можно изготовить из любого материала, обладающего низким сопротивлением и хорошей теплопроводностью. Если измеряемые токи не более 10 ампер – воспользуйтесь обычной стальной скрепкой большого размера.
Сталь противостоит влиянию высоких температур, и неплохо паяется (при необходимости стационарного монтажа). Если у вас есть медь – тоже хороший выбор. Только не переусердствуйте при калибровке. Случайно отпиленный для изменения сечения кусок нет смысла паять обратно.
Внимание! Если вы делаете проволочный шунт, не следует мотать из нее спираль.
Индуктивность при протекании больших токов может исказить результат. Лучше применить иной материал, или уложить шунт волнами.
Как подобрать шунт для амперметра максимально точно?
Для стенда по подбору сопротивления нам понадобятся:
- блок питания;
- образцовый прибор;
- качественные провода (медные);
- переменное сопротивление;
- собственно шунт и амперметр, для которого он готовится.
Схема нужна для точного подбора сопротивления шунта и калибровки прибора с установленной накладкой.
Установив под нагрузкой (заряд аккумулятора) минимальное и максимальное значение – приступаем к ступенчатому изменению силы тока переменным сопротивлением. Полученные на контрольном приборе значения наносим на шкалу.
Вспоминаем физику. Видео урок по расчету шунта для амперметра.
Шунт на 10 ампер своими руками
Амперметр не такой редкий прибор и часто они есть в старых зарядных устройствах и других приборах. Но пока не столкнёшься с амперметром не узнаешь что ему оказывается нужен шунт. Хотя конечно есть амперметры со встроенными шунтами, но там где постоянный ток шунты обычно внешние. В зарядных устройствах для автомобильных аккумуляторов шунты можно сказать что самодельные. Там шунт представляет из себя отрезок металлической проволоки диаметром около 2мм.
Когда вы вынимаете амперметр из прибора можно сразу вынуть и шунт, но если шунта нет то его можно сделать самостоятельно. Я делал шунты из медной проволоки, из металлической пластины и проволоки, из болта диаметром 6мм зажимая гайками контакты и все они нормально работали. Ниже на рисунке схема подключения амперметра с самодельным шунтом из медного провода.
Ничего сложного в изготовлении шунта из медного провода нет. Нужен отрезок подходящего провода сечением примерно 2.5кв, это для амперметра на 10-30А, если ток больше то сечение лучше потолще. Далее провод зачищается от изоляции, и к одному концу припаивается один провод от амперметра, а второй конец нужно перемещать по проводу пока показания амперметра не совпадают с показаниями второго подключенного амперметра. То-есть чтобы откалибровать показания нужен второй рабочий амперметр. Вот как выглядит мой самодельный шунт (ниже фото).
В общем ничего сложного в этом нет, самое быстрое это изготовление шунта из медного провода, но можно в принципе постараться и сделать шунт похожий на заводской, хотя зачем если этот шунт никто не увидит. Главно правильно откалибровать самодельный шунт, и для этого нужен рабочий второй амперметр, ну или взять обычный мультиметр включить на измерение постоянного тока.
РАСЧЁТ ШУНТА
Не знаю как вы, а я любому цифровому амперметру и вольтметру в лабораторном блоке питания предпочту старые добрые стрелочные индикаторы. Ведь при наличии каких либо коротких импульсов тока, на цифровом индикаторе будет абракадабра, а то и вообще показания останутся без изменений, если стоит в схеме небольшая задержка обновления показаний. Так же и короткое КЗ может остаться без внимания, а вот стрелка амперметра, дёрнувшись, сразу покажет что к чему.
В общем во многих аппаратах таки лучше ставить стрелочные головки. И блок питания — это тот случай, когда за модой на цифровые АЛС-ки лучше не гонятся, а сделать именно стрелочную индикацию вольт и ампер. Убедил? Тогда приступим к расчёту и изготовлению. Не буду грузить вас многострочными формулами, теориями и коэффициентами поправки на температуру воздуха и цены на нефть. Для этих целей подойдёт простая, годами проверенная технология практического расчёта шунта для любого, даже на неизвестный предел измерения, стрелочного индикатора.
Собираем вот эту простенькую экспериментальную схемку с участием контрольного цифрового амперметра (мультиметра), нагрузки (паруваттного резистора на несколько Ом или простой лампочки на 6,3В) и собственно самого неизвестного стрелочного индикатора. Всё это хозяйство соединяем последовательно — цепочкой, и подсоединяем к регулируемому (желательно) блоку питания. Выставляем, допустим 10 В и смотрим, что у нас показывает контрольный цифровой мультиметр — амперметр.
Теоретически он покажет предположим 0,5 А. В идеале, для нужного предела в 1 А и стрелочник должен показать отклонение на пол шкалы. Ах вам надо чтоб он стал амперметром не на 1 А, а на 2 А? Не проблема. Последовательно с головкой включаем подстроечный (для эксперимента, потом замеряем получившееся сопротивление и заменим на постоянный) резистор R3 на несколько килоом, и уменьшаем понемногу его сопротивление, чтоб полное отклонение стрелки индикатора соответствовало току 2 А. Он предварительно должен стоять на максимуме сопротивления. Само собой, что эти 2 А надо предварительно выставить напряжением с блока питания.
Вот, сделали. А если у нас стрелочник наоборот показывает при токе по мультиметру 0,5 А всего четверть шкалы, а по плану вы хотите чтоб полное отклонение стрелки было при 0,1 А? Тогда просто увеличьте сопротивление шунта где-то в два раза и посмотрите что получилось. А получится то, что стрелка отклонится уже дальше, может и на всю шкалу если угадали с номиналом резистора. Перебор? Зашкаливает уже? Тогда подкручиваем переменник пока не вернём стрелку куда надо.
Если теперь вы думаете как всё это добро встроить в блок питания на индикацию тока, вот схема подключения. Шунтируя стрелочный прибор двумя разными резисторами R1 или R1+R2, можно получить два диапазона измерения тока: в нашем случае 0,1 А или 1 А. Сопротивление резисторов этих указано ориентировочно — в процессе настройки и в зависимости от самого микроамперметра их сопротивление может отличаться.
С расчётом шунта для превращения стрелочного индикатора в вольтметр ещё проще. Последовательно включаем цифровой контрольный вольтметр (на схеме не указан), головку, подстроечный резистор R3 на максимальный предел 200 — 1000 килоом, на всякий пожарный защитный резистор R7 на 10-50 килоом и естественно блок питания. Выставляем на БП 10 вольт (по контрольному мультиметру) и вращая подстроечник R3, который предварительно выставлен на максимальное сопротивление (иначе стрелочный индикатор сгорит моментально, помним этот момент всегда!), добиваемся отклонения стрелки на максимум. Во что превратился наш микроамперметр? Правильно — в вольтметр на 10 вольт. По аналогичному принципу можно превратить стрелочный индикатор в вольтметр на любое напряжение. В конце эксперимента меряем сопротивление переменника и заменяем его таким же постоянным.
Ну и наконец вот полная схема вольтметра — амперметра на основе одного стрелочного индикатора. Переключение «вольты — амперы» производим тумблером. Обратите внимание: переключение режимов шунта (0,1-1 А) производится не переключателем, а включателем. Именно включателем, чтоб не возникло ситуации, при которой внутренний рычажок переключателя уже оторвался от одного контакта, а к другому ещё не подключился. Тогда весь ток к нагрузке пойдёт через стрелочник на 100 мкА — вылетит в момент. А нанести деления на шкалу можно так: ненужные циферки индикатора аккуратно зачищаем лезвием, а вместо них гелевой чёрной ручкой пишите свои значения.
Всем добрый вечер! Хочу поделится методикой изготовления шунта для амперметра в зарядное устройство. Не давно у знакомого в зарядном устройстве перегорел шунт и соответственно сгорел и сам амперметр.
И так, нашол вот такой прибор со шкалой от 0 до 50А.
Обмотка измерительной головки и контакты не рассчитана на ток в 50А, для применения в нашем ЗУ надо изготовить шунт.
Шунт — устройство, которое позволяет электрическому току протекать в обход какого либо участка электрической схемы. В нашем случае через шунт проходит основной зарядный ток, а через амперметр малая часть, пропорциональная основной величине тока.
Для шунта берем обычную канцелярскую скрепку.
На упаковке со скрепками было написано «Скрепки никелированные», фото не сделал самой упаковки. Разгибаем ее, чтоб из нее получился прямой кусочек проволоки…
Далее сгибаем кончики проволоки под гайки прибора и прикручиваем их вместе с проводами к амперметру.
Для калибровки амперметра нам понадобится регулируемый блок питания от 0 до 20 В с током в 5А, но можно обойтись обычным автомобильным аккумулятором (напишу далее), проволочный 100 Вт резистор ПЭВ-100,
мультиметр и соединительные провода. Все соединяем проводами между собой последовательно и подключаем к блоку питания.
Выставляем ток в 1А и смотрим на наш амперметр. Он показывает около 1,5 А. Нам надо 1 А.
Уменьшаем длинну шунта, чтоб стрелка амперметра стала показывать 1А.(По шкале амперметра это будет 10А). Далее вместо резистора подключаем лампочку с фары на ближний свет. Проверяем как работает амперметр на больших токах.
После, когда длинна шунта уже нам известна, завернутые под гайку кончики необходимо залудить оловом.
После разбираем наш прибор и белым корректором зарисовываем на шкале нули, собираем прибор. Шкала прибора получилась от 0 до 5А вместо 0-50А.
Если нету под рукой блока питания с регулировкой и проволочного 100 Вт резистора, вместо блока питания можно использовать автомобильный аккумулятор, а вместо резистора лампочку с габаритов задней фары на 15Вт. При подключении к аккумулятору, ток в цепи будет равен около 1 А, что достаточно для начальной калибровки амперметра. Потом так же можна подключить лампочку с передней фары в режиме ближнего света, для проверки амперметра под большим током.
Делаем контрольную поверку мультиметром и прибор можно устанавливать в зарядное.
Вот я поделился наглядной методикой изготовления шунта для амперметра в зарядное устройство…
Задавайте вопросы если что то не понятно…
Удачи всем на дорогах!
Шунты для амперметра: подключение, применение и изготовление
Амперметр – прибор, замеряющий силу проходящего в электрической цепи тока, который часто бывает немалым. По закону Ома, чтобы пропустить больший ток, амперметр должен иметь как можно меньшее сопротивление. Решение – включение параллельно прибору шунта, обеспечивающего такое низкое значение сопротивления.
Зачем нужен шунт?
Шунт – это полосковая линия (усиленная дорожка на плате) или отрезок провода с достаточно толстым сечением, низкоомная (менее 1 Ом) катушка или резистор с мощностью от 10 Вт. Он используется, когда, например, амперметр, рассчитанный на ток в 10 А, не может замерить, скажем, 50-амперный ток, потребляемый включёнными в электроцепь источника питания устройствами. На жаргоне электриков это явление называется «на шкале не хватает ампер». А точнее – диапазон замеров по току на этом же амперметре не охватывает такие высокие токи.
Расчёт сопротивления шунта
Кроме закона Ома для участка цепи – её разрыва, в который включён амперметр, – в расчёт берётся и формула Кирхгофа. Общий ток, протекающий в месте включения прибора, равен сумме токов, проходящих через сам амперметр и его шунт.
Сопротивление амперметра в разы больше внешнего шунта. Ток, проходящий по внешнему шунту, в эти же несколько раз больше, чем на самом амперметре.
В случае с цифровым прибором, где вместо измерительной головки используется датчик тока и аналого-цифровой преобразователь, распределение токов, составляющих общий ток цепи, не меняется.
Схема включения устройства
Амперметр включается последовательно в разрыв цепи. Последний может находиться в любом её месте. Сам прибор показывает, сколько ампер в час потребляет эта цепь. Внешний шунт также включается последовательно в цепь, но в тот же самый разрыв, получается, параллельно самому амперметру.
Что можно использовать?
В идеале используют отрезок провода или проволоки из металла или сплава, незначительно меняющего своё электрическое сопротивление при нагреве. А нагреваться шунт будет обязательно – хотя бы до нескольких десятков градусов, так как по нему протекает ток в единицы и десятки ампер. Специалисты рекомендуют использовать сплав манганина. Манганиновая проволока (или лента) считается наиболее устойчивым электротехническим элементом: её температурный коэффициент сопротивления в 200 раз меньше, чем у меди, и в 300 раз ниже по сравнению с железом. Использование медных и стальных шунтов способно нести ощутимую погрешность при значительных токах, вызывающих их нагрев.
Но для приблизительной оценки иногда используют распрямлённую канцелярскую скрепку или отрезок провода.
Если речь идёт о внушительной силе тока от сотен до тысяч ампер – например, при старте двигателя «КамАЗа», где создаётся пусковой ток в 500 и более ампер для раскручивания стартером вала двигателя, – простой шунт здесь попросту расплавится. Необходимо использовать токовые клещи – они являются более мощной версией шунта. Аналогично поступают в электроустановках и распределителях с высоким напряжением, где общий ток потребителей довольно высок.
Что требуется?
Для изготовления шунта, кроме проволоки, проводов, диэлектрика и крепежа, потребуются следующие приборы.
- Готовый миллиамперметр. Можно использовать и гальванометр – измерительную головку без внутренних шунтов, резисторов и так далее.
- Лабораторный блок питания, выдающий требуемый ампераж. Можно воспользоваться и автомобильным аккумулятором, в цепь с которым последовательно включена, например, фара на 100/90 Вт на основе лампы накаливания. Если такой фары нет, можно подключить отрезок нихромовой электроспирали или мощный керамический резистор на десятки ватт. Ни в коем случае не подключайте шунт с прибором «накоротко», без нагрузки.
- При работе с бытовой осветительной сетью – выпрямительный диодный мост (или одиночные высоковольтные диоды) и дополнительный защитный автомат на 16 А, плавкие предохранители на несколько ампер.
Напряжение подаётся только после правильной сборки цепи.
Шунт своими руками
Спирально сматывать проволоку (или эмальпровод) не рекомендуется – индуктивность получившейся катушки уменьшит точность амперметра. Катушечное шунтирование имеет недостаток – гашение скачков тока, особенно в случае дросселированной (с сердечником) катушки. Если отрезок проволоки слишком длинный, расположите его в виде волнистой «змейки».
В качестве диэлектрика подойдёт любой изолятор – от керамического до текстолитового. К тому же скрученный в виде катушки провод может перегреть диэлектрик, не выдерживающий повышенной – более 150 градусов – температуры. А к перегреву устойчивы лишь керамика и закалённое стекло.
- Сначала вырезается диэлектрическая пластина, в которой сверлятся отверстия под болты с шайбами и гайками. Материал – текстолит, гетинакс, дерево или композитные материалы.
- Для существенной изоляции тепла проволоки от несущей пластины на болты устанавливаются керамические колечки. После них ставятся шайбы, зажимающие проволоку.
- Для предотвращения самопроизвольного раскручивания и выпадения проволоки и проводов перед гайками проставляются гроверные шайбы.
- Наконец, вставляются провода и концы проволоки между шайбами, а гайки затягиваются.
Полученная деталь подключается параллельно амперметру или гальванометру.
Переградуировка прибора
Новую градуировку обновлённого стрелочного амперметра под новый шунт нужно произвести следующим образом.
- Снимите переднюю часть корпуса (смотровое окно прибора) вместе со стеклом.
- Подключите одну из лампочек известного номинала последовательно с амперметром к батарее или сетевому адаптеру питания. Так, на лампочках накаливания указывается ток в амперах и напряжение в вольтах. Если вы подключаете светодиодную панель или фару, на которой, например, указано напряжение 12 В и мощность в 24 Вт – вашим рабочим током будет 2 А (мощность, делённая на напряжение источника питания).
- Отметьте, на какой угол отклонилась стрелка прибора, точкой с числом (в данном случае это 2).
- Идеальный вариант – включите параллельно друг с другом одинаковые лампочки или фары, увеличивая их число каждый раз на одну. Так можно «прометить» всю шкалу амперметра. Этот способ хорош для переменного тока – шкала амперметра получается нелинейной за счёт влияния частоты тока и падения части напряжения на диодах. Разметка «на глаз» или с использованием транспортира (или по уже имеющейся «линейке» прибора), как часто делают при постоянном токе, не подойдёт. Лучше перестраховаться и сделать точнее.
- Закончив разметку, соберите прибор и проверьте, надёжно ли держится крепление шунта, хорош ли электрический контакт между ним и амперметром. Если габариты амперметра позволяют, шунт часто заливают эпоксидным клеем, а затем получившийся элемент (в виде бруска) приклеивают к задней стенке измерительной головки.
Амперметр с новым шунтом готов к работе. Можно подключить щупы или токовые клещи.
С несколькими шунтами
Из амперметра получится и самодельный килоамперметр. Так, из 100-амперного прибора легко сделать амперметр на 2 кА. Более высокие значения на практике вряд ли понадобятся. Если у вас в наличии имеется прибор с одноамперным диапазоном измерений, сделайте несколько коммутируемых шунтов. Незачем переразмечать шкалу – достаточно подобрать шунты на 5, 10, 50, 100 и более ампер. Они помещаются в один внешний корпус вместе с выходными клеммами (для щупов) и многопозиционным переключателем, рассчитанным на такие значения тока.
Режимы помечаются маркером «x5», «x10» и так далее. Когда режим один, а амперметр переделан из одно- в десятиамперный, то слева от буквы «А» надпишите «x10» меньшим шрифтом.
При изготовлении многорежимного амперметра провода, соединяющие переключатель с шунтами и прибором, должны быть максимально короткими. Излишне длинные провода, подключённые к готовому шунту, имеющему точное сопротивление, и уже проградуированному прибору, приведут к заметной погрешности измерений – они включаются последовательно с шунтом и прибором, имеют своё, пусть и очень малое, сопротивление. Переключатель низкого качества со значительно окисленными контактами приведёт к тому, что прибор попросту начнёт «врать» – его токоведущие части и замыкающий подпружиненный шарик также вносят паразитное сопротивление.
Заводские амперметры проходят тщательную поверку, едва сойдя с конвейера. Недочёты учитываются при выпуске приборостроительным заводом следующей партии амперметров. Амперметры, имеющие значительную погрешность, бракуются и направляются на переработку.
Шунт на 10 ампер своими руками
Для контроля величины тока применяется прибор называемый амперметром. Из практики могу сказать, что не всегда под рукой оказывается прибор с нужным диапазоном измерения. Как правило, диапазон либо мал, либо велик. Здесь мы разберем, как изменить рабочий диапазон амперметра. Амперметры на большие токи от 20 ампер и выше имеют в своём составе внешний шунтирующий резистор. Он подключается параллельно амперметру. На рисунке 1 приведена схема включения амперметра с шунтирующем резистором.
В качестве примера в экспериментах будет использован амперметр M367 со шкалой до 150 ампер, соответственно при таком токе амперметр используется с внешним шунтирующим сопротивлением.
Если убрать шунтирующий резистор, то амперметр станет миллиамперметром с максимальным током отклонения стрелки 30 мА (далее будет пояснение, откуда это значение взялось). Таким образом, используя разные шунтирующие сопротивления можно сделать амперметр практически с любым диапазоном измерения.
Рассмотрим подробнее имеющийся измерительный прибор. Из его маркировок можно узнать следующее. Маркировка в верхнем правом углу (цифра 1 на изображении). Модель измерительной головки М367. Сделан на краснодарском заводе измерительных приборов (это можно определить по ромбику с буковками ЗИП). Год выпуска 1973. Серийный номер 165266.
Маркировка в нижнем левом углу (цифра 2 на изображении). Слева на право. Прибор предназначен для измерения постоянного тока. Магнитоэлектрический прибор с подвижной рамкой. Напряжение между корпусом и мангнитоэлектрической системой не должно превышать 2 КВ. Рабочее положение шкалы прибора вертикальное. Класс точности прибора в процентах 1,5. ГОСТ8711-60. Измерительная головка рассчитана на измерения силы тока до 150 ампер с использованием внешнего шунтирующего сопротивления рассчитанного на падение на нём напряжения номиналом в 75 милливольт.
Итак, это максимум что удалось узнать из маркировки амперметра. Теперь перейдём к расчетам. Сопротивление шунта определяется по формуле:
где :
Rш — сопротивление шунтирующего резистора;
Rприб — внутреннее сопротивление амперметра;
Iприб — максимально измеримый ток амперметром без шунта;
Iраб — максимально измеримый ток с шунтом (требуемое значение)
Если все данные для расчёта имеются, то можно приступать к самому расчёту. Для упрощения можно воспользоваться онлайн калькулятором ниже:
В нашем случае из формулы видно, что данных не достаточно. Нам известен только максимальный измеряемый ток с шунтом. То есть, то, что мы хотим видеть в случае максимального отклонения стрелки амперметра.
Из маркировки прибора удалось узнать падение напряжения на шунтирующем сопротивлении. И это уже что-то. Из этого параметра ясно, что при подаче на прибор напряжения номиналом 0,075 вольт (75мВ) стрелка отклониться до крайнего значения на шкале 150 ампер. Таким образом, получается, что максимальное отклонение стрелки прибора достигается подачей напряжения 75 мВ. Вроде как данных для расчета по-прежнему не хватает. Необходимо узнать сопротивление прибора и ток, при котором стрелка откланяется до максимального значения без шунтирующего резистора. Далее предлагаю несколько способов для определения нужных параметров и решения задачи.
Способ первый. При помощи блока питания выясняем максимальное отклонение стрелки по току и напряжению без шунта. В нашем случае напряжение уже известно. Его замерять не будем. Измеряем ток и отклонение стрелки. Так как блока питания под рукой не оказалось, то пришлось воспользоваться очень разряженой батарейкой типа АА. Ток, который батарейка могла ещё отдать, составил 12 мА (по показаниям мультиметра). При этом токе стрелка прибора отклонилась до значения на циферблате 60А. Далее определяем цену деления и рассчитываем полное (максимальное) отклонение стрелки. Поскольку шкала циферблата амперметра размечена равномерно, то не составит труда узнать (рассчитать) ток максимального отклонения стрелки.
Цена деления прибора рассчитывается по формуле:
где:
х1 – меньшее значение,
х2 – большее значение,
n – количество промежутков (отрезков) между значениями
Для упрощения можно воспользоваться онлайн калькулятором ниже:
Расчёт показал, что цена деления прибора штатной шкалы составляет 5 ампер. При токе 12 мА стрелка отклонялась до показания 60А. Таким образом, цена одного деления без шунта составляет 1 мА. Всего делений 30, соответственно максимальное отклонение стрелки до значения 150А без шунта составляет 30 мА.
Далее при помощи закона Ома находим сопротивление прибора. 0,075/0,03=2,5 Ом
Расчёт:
Rш=Rприб*Iприб/(Iраб-Iприб)=2,5*0,03/(10-0,03)=0,00752 Ом для шкалы 10А мах
Rш=Rприб*Iприб/(Iраб-Iприб)=2,5*0,03/(5-0,03)=0,01509 Ом для шкалы 5А мах
Rш=Rприб*Iприб/(Iраб-Iприб)=2,5*0,03/(3-0,03)=0,02525 Ом для шкалы 3А мах
Для упрощения можно воспользоваться онлайн калькулятором расчёта сопротивления шунтирующего сопротивления выше.
Второй вариант. При помощи прецизионного мультиметра замеряем сопротивление амперметра и далее при помощи закона Ома (зная напряжение максимального отклонения стрелки) находим ток максимального отклонения стрелки. Измерения выполнялись прецизионными мультиметрами Mastech MS8218 и Uni-t UT71E. При измерении сопротивления амперметра значение составило 2,50-2,52 Ом прибором UT71E и 2,52-2,53 прибором MS8218.
Формула для расчёта тока отклонения стрелки до максимального значения:
Для упрощения вычислений максимального тока отклонения стрелки амперметра можно воспользоваться калькулятором ниже:
Далее, как и в первом варианте выполняем расчёт сопротивления шунтирующего резистора (калькулятор выше). Для расчёта было принято среднее показание измеренного сопротивления амперметра двумя мультиметрами Rприб = 2,52Ом
Расчёт:
Rш=Rприб*Iприб/(Iраб-Iприб)=2,52*0,02976/(10-0,02976)=0,00752 Ом для шкалы 10А мах
Rш=Rприб*Iприб/(Iраб-Iприб)=2,52*0,02976/(5-0,02976)=0,01508 Ом для шкалы 5А мах
Rш=Rприб*Iприб/(Iраб-Iприб)=2,52*0,02976/(3-0,02976)=0,02524 Ом для шкалы 3А мах
Если сравнить расчёты двух методик между собой, то получились совпадение данных до четвёртого знака после запятой, а в некоторых случаях даже до пяти знаков.
О тонкостях изготовления шунтирующего сопротивления расскажу в следующей статье.
Шунт на 10 ампер своими руками
РАСЧЁТ ШУНТА
Не знаю как вы, а я любому цифровому амперметру и вольтметру в лабораторном блоке питания предпочту старые добрые стрелочные индикаторы. Ведь при наличии каких либо коротких импульсов тока, на цифровом индикаторе будет абракадабра, а то и вообще показания останутся без изменений, если стоит в схеме небольшая задержка обновления показаний. Так же и короткое КЗ может остаться без внимания, а вот стрелка амперметра, дёрнувшись, сразу покажет что к чему.
В общем во многих аппаратах таки лучше ставить стрелочные головки. И блок питания — это тот случай, когда за модой на цифровые АЛС-ки лучше не гонятся, а сделать именно стрелочную индикацию вольт и ампер. Убедил? Тогда приступим к расчёту и изготовлению. Не буду грузить вас многострочными формулами, теориями и коэффициентами поправки на температуру воздуха и цены на нефть. Для этих целей подойдёт простая, годами проверенная технология практического расчёта шунта для любого, даже на неизвестный предел измерения, стрелочного индикатора.
Собираем вот эту простенькую экспериментальную схемку с участием контрольного цифрового амперметра (мультиметра), нагрузки (паруваттного резистора на несколько Ом или простой лампочки на 6,3В) и собственно самого неизвестного стрелочного индикатора. Всё это хозяйство соединяем последовательно — цепочкой, и подсоединяем к регулируемому (желательно) блоку питания. Выставляем, допустим 10 В и смотрим, что у нас показывает контрольный цифровой мультиметр — амперметр.
Теоретически он покажет предположим 0,5 А. В идеале, для нужного предела в 1 А и стрелочник должен показать отклонение на пол шкалы. Ах вам надо чтоб он стал амперметром не на 1 А, а на 2 А? Не проблема. Последовательно с головкой включаем подстроечный (для эксперимента, потом замеряем получившееся сопротивление и заменим на постоянный) резистор R3 на несколько килоом, и уменьшаем понемногу его сопротивление, чтоб полное отклонение стрелки индикатора соответствовало току 2 А. Он предварительно должен стоять на максимуме сопротивления. Само собой, что эти 2 А надо предварительно выставить напряжением с блока питания.
Вот, сделали. А если у нас стрелочник наоборот показывает при токе по мультиметру 0,5 А всего четверть шкалы, а по плану вы хотите чтоб полное отклонение стрелки было при 0,1 А? Тогда просто увеличьте сопротивление шунта где-то в два раза и посмотрите что получилось. А получится то, что стрелка отклонится уже дальше, может и на всю шкалу если угадали с номиналом резистора. Перебор? Зашкаливает уже? Тогда подкручиваем переменник пока не вернём стрелку куда надо.
Если теперь вы думаете как всё это добро встроить в блок питания на индикацию тока, вот схема подключения. Шунтируя стрелочный прибор двумя разными резисторами R1 или R1+R2, можно получить два диапазона измерения тока: в нашем случае 0,1 А или 1 А. Сопротивление резисторов этих указано ориентировочно — в процессе настройки и в зависимости от самого микроамперметра их сопротивление может отличаться.
С расчётом шунта для превращения стрелочного индикатора в вольтметр ещё проще. Последовательно включаем цифровой контрольный вольтметр (на схеме не указан), головку, подстроечный резистор R3 на максимальный предел 200 — 1000 килоом, на всякий пожарный защитный резистор R7 на 10-50 килоом и естественно блок питания. Выставляем на БП 10 вольт (по контрольному мультиметру) и вращая подстроечник R3, который предварительно выставлен на максимальное сопротивление (иначе стрелочный индикатор сгорит моментально, помним этот момент всегда!), добиваемся отклонения стрелки на максимум. Во что превратился наш микроамперметр? Правильно — в вольтметр на 10 вольт. По аналогичному принципу можно превратить стрелочный индикатор в вольтметр на любое напряжение. В конце эксперимента меряем сопротивление переменника и заменяем его таким же постоянным.
Ну и наконец вот полная схема вольтметра — амперметра на основе одного стрелочного индикатора. Переключение «вольты — амперы» производим тумблером. Обратите внимание: переключение режимов шунта (0,1-1 А) производится не переключателем, а включателем. Именно включателем, чтоб не возникло ситуации, при которой внутренний рычажок переключателя уже оторвался от одного контакта, а к другому ещё не подключился. Тогда весь ток к нагрузке пойдёт через стрелочник на 100 мкА — вылетит в момент. А нанести деления на шкалу можно так: ненужные циферки индикатора аккуратно зачищаем лезвием, а вместо них гелевой чёрной ручкой пишите свои значения.
Шунт для амперметра своими руками
Многие домашние электрики недовольны тестерами промышленного производства, поэтому задумываются о том, как из амперметра сделать вольтметр, а также как повысить функциональность тестера промышленного производства. Для этой цели можно изготовить специальный шунт.
Перед тем как приступить к работе, следует выполнить расчет шунта для микроамперметра и найти материал, обладающий хорошей проводимостью.
Конечно, для большей точности измерений можно просто приобрести миллиамперметр, но такие приборы стоят довольно дорого, а применять их на практике приходится весьма редко.
В последнее время в продаже появились тестеры, рассчитанные на большое напряжение и сопротивление. Для них шунт не нужен, но и стоимость их очень высока. Для тех, кто использует классический тестер, изготовленный еще в советское время, или пользуется самодельным, шунт просто необходим.
Недостатки промышленного амперметра
Подобрать токовый амперметр — дело непростое. Большинство приборов выпускается на Западе, в Китае или в странах СНГ, и в каждой стране к ним предъявляют свои индивидуальные требования. Также в каждой стране свои допустимые величины постоянного и переменного тока, требования к розеткам. В связи с этим при подключении амперметра западного производства к отечественному оборудованию может оказаться, что прибор не может правильно измерить силу тока, напряжение и сопротивление.
С одной стороны, такие устройства очень удобны. Они компактны, снабжаются зарядным устройством и просты в пользовании. Классический стрелочный амперметр не занимает много места и имеет визуально понятный интерфейс, но он часто не рассчитан на существующее напряжение сопротивление. Как говорят бывалые электрики, на шкале «не хватает ампер». Приборы, устроенные таким образом, обязательно нуждаются в шунтировании. Например, бывают ситуации, когда нужно измерить величину до 10а, а на шкале прибора отсутствует цифра 10.
Вот основные недостатки классического фабричного амперметра без шунта:
- Большая погрешность в измерениях;
- Диапазон измеряемых величин не соответствует современным электроприборам;
- Крупная калибровка не позволяет измерять малые величины;
- При попытке измерить большую величину сопротивления прибор «зашкаливает».
Для чего нужен шунт
Шунт необходим для того, чтобы правильно измерить сопротивление в тех случаях, если амперметр не предназначен для измерения таких величин. Если домашний мастер часто имеет дело с такими величинами, есть смысл изготовить шунт для амперметра своими руками. Шунтирование значительно повышает точность и эффективность его работы. Это важное и нужное устройство для тех, кто часто пользуется тестером. Обычно его используют владельцы классического амперметра 91с16. Вот основные преимущества самодельного шунта:
- Позволяет измерить сопротивление там, где у фабричного или самодельного амперметра не хватает делений на шкале;
- Помогает адаптировать зарубежные амперметры к российским электрическим цепям;
- Точность тестера значительно увеличивается;
- Защищает тестер от поломок и продлевает срок его службы. Любая ситуация, когда тестер «зашкаливает» является стрессом для прибора. Если амперметр «зашкаливает» часто (обычно так бывает, если он отсутствует), прибор быстро выходит из строя, а починить его непросто (легче купить новый).
Порядок изготовления
С самостоятельным изготовлением шунта легко справится даже первокурсник профессионально-технического училища или начинающий электрик-любитель. Если подключить это устройство соответствующим образом, оно значительно увеличит точность амперметра и прослужит долго. В первую очередь необходимо произвести расчет шунта для амперметра постоянного тока. Узнать о том, как производить расчеты, можно через интернет или из специализированной литературы, адресованной домашним электрикам. Рассчитать шунт можно с помощью калькулятора.
Для этого нужно просто подставить конкретные значения в готовую формулу. Для того чтобы воспользоваться схемой расчета, необходимо знать реальные напряжение и сопротивление, на которые рассчитан конкретный тестер, а также представлять себе тот диапазон, до которого нужно расширить возможности тестера (это зависит от того, с какими именно приборами чаще всего приходится иметь дело домашнему электрику).
Для изготовления прекрасно подойдут такие материалы:
- Стальная скрепка;
- Моток медной проволоки;
- Манганин;
- Медный провод.
Можно приобрести материалы в специализированных магазинах или воспользоваться тем, что есть дома.
По сути, шунт — это источник дополнительного сопротивления, снабженный четырьмя зажимами и подсоединенный к прибору. Если для его изготовления используется стальная или медная проволока, не стоит скручивать его в виде спирали.
Лучше аккуратно уложить его в виде «волн». Если шунт рассчитан правильно, тестер будет работать намного лучше, чем раньше.
Металл для изготовления этого устройства должен хорошо проводить тепло. А вот индуктивность в том случае, если домашний электрик имеет дело с протеканием большого тока, может негативно повлиять на результат и способствовать его искажению. Это тоже нужно иметь в виду при изготовлении шунта в домашних условиях.
Полезные советы
Если домашний электрик решил приобрести амперметр промышленного производства, следует выбирать прибор с мелкой калибровкой, потому что он будет более точным. Тогда, возможно, не понадобится и самодельный шунт.
При работе с тестером следует соблюдать элементарную технику безопасности. Это поможет избежать серьезных травм, вызванных поражением электрическим током.
Если тестер систематически «зашкаливает», использовать его не стоит.
Возможно, что прибор или неисправен, или не способен показать правильный результат измерений без дополнительного приспособления. Лучше всего приобретать современные амперметры отечественного производства, потому что они лучше подходят для тестирования электроприборов нового поколения. Перед тем как начинать работу с тестером, следует внимательно прочитать инструкцию по эксплуатации.
Шунт — прекрасный способ оптимизировать работу домашнего электрика по тестированию электрических цепей. Для того чтобы сделать это устройство своими руками, понадобятся только исправный тестер промышленного производства, подручные материалы и элементарные познания в области электрики.