326 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Оптический термометр принцип действия

Как устроены и работают бесконтактные термометры

Бесконтактные термометры или пирометры являются сегодня удобными приборами для дистанционного измерения температуры разнообразных объектов, жидкостей или твердых тел. Они широко применяются в теплоэнергетике для оперативного контроля температуры важных участков, в электроэнергетике — для обеспечения пожаробезопасности, в лабораторных условиях, на предприятиях, в строительстве для расчета теплопотерь, в быту, в охранных системах и много где еще.

Первый подобный прибор был изобретен в далеком 1731 году голландским физиком Питером ван Мушенбруком, и измерения производились визуально, можно было по цвету раскаленного тела судить о его температуре. Но современные типы пирометров сильно расширили область своего применения, и позволяют измерять даже температуры близкие к нулю градусов Цельсия и ниже. Однако принцип остался в целом тем же — измеряется мощность исходящего от объекта теплового излучения, и из этого делается заключение о его температуре. Измерения осуществляются в инфракрасном и видимом диапазоне спектра.

В 1967 году американская компания Wahl представила первый переносной пирометр, поскольку именно в 60-е годы были сделаны важнейшие научные открытия, положившие начало развитию направления создания промышленных пирометров, обладающих достаточно высокими характеристиками при небольших габаритах. Принцип на основе построения сравнительных параллелей, с применением инфракрасного приемника, способного определить количество излучаемой объектом тепловой энергии, позволил значительно расширить диапазон температурных измерений как для жидких, так и для твердых тел.

На данный момент пирометры очень популярны, и широко используются для бесконтактного измерения на расстоянии температуры объектов в быту, в сфере ЖКХ, на предприятиях, — везде, где требуется контроль за температурой различных процессов на этапах производства и в процессе работы многих устройств. Пирометры дают возможность безопасно измерить температуру даже раскаленного тела, без необходимости физически контактировать с ним.

Пирометры бывают оптическими, радиационными и цветовыми. Первые позволяют осуществить визуальное сравнение цвета нагретого тела с цветом эталонной нити, и таким образом определить его температуру. Радиационные пересчитывают мощность теплового излучения, и могут измерять довольно широкий спектр температур. Цветовые сравнивают тепловое излучение объекта в различных спектрах, и производят затем вычисление его температуры, такие пирометры также отличаются широким спектром измерения.

Все пирометры можно также разделить на низкотемпературные и высокотемпературные. Низкотемпературные позволяют измерять даже температуры ниже нуля, а высокотемпературные отличаются высоким верхним пределом измерений.

По типу исполнения пирометры различаются на переносные и стационарные. Последние используются на крупных промышленных предприятиях для очень точного и непрерывного контроля за технологическим процессом, например при производстве расплавов пластиков и металлов. Переносные пирометры популярны в быту и в качестве портативных термометров на различных производствах, они наглядно представляют информацию о температуре на дисплее в текстовом или графическом виде.

Устройство и функционирование современного инфракрасного пирометра можно описать следующим образом. Тепловой луч, принятый прибором, фокусируется оптической системой, и затем попадает на датчик температуры (это первичный пирометрический преобразователь), на выходе пирометрического преобразователя получается в результате электрический сигнал, значение которого пропорционально значению температуры исследуемого объекта. Полученный от датчика сигнал проходит далее через электронный преобразователь (это вторичный пирометрический преобразователь), и попадает в измерительно-счетное устройство и в нем обрабатывается. Результат вычислений отображается на дисплее, в наиболее популярных моделях — в виде цифр.

Так, для получения точного значения температуры поверхности исследуемого объекта, пользователю достаточно лишь включить прибор, навести его на исследуемый объект и нажать на пусковую кнопку. Результат измерения отобразится на дисплее в виде цифр или графически в виде разноцветного изображения, где спектрально области низких, средних и высоких температур будут выделены разными цветами.

Основные технические характеристики пирометров:

оптическое разрешение (выпускаются модели с разрешением от 2:1 до 600:1);

измеряемый температурный диапазон ( максимальный — от -50° C до +4000° C );

разрешение измерения — типичные значения 0,1° C или 1° C;

точность измерения (оптимальной считается ± 1,5%);

быстродействие (современные пирометры требуют не более 1 секунды);

коэффициент излучения — может быть настраиваемым или фиксированным;

способ нацеливания — лазерный целеуказатель или оптическое наведение.

Наиважнейшими параметрами пирометров являются настройка степени черноты объекта и оптическое разрешение (показатель визирования) прибора. Оптическое разрешение пирометра характеризуется отношением расстояния от пирометра до поверхности тела к диаметру круглого пятна на поверхности тела (область точного измерения температуры ограничена этим пятном ), температура которого измеряется.

Так, если требуются температурные измерения с небольшого расстояния, применяют пирометр с небольшим разрешением, например, 4:1, а если измерения планируется проводить с нескольких метров, то разрешение должно быть побольше, чтобы посторонние объекты не попали в поле зрения прибора. Зачастую пирометры оснащаются лазерным целеуказателем для более точного наведения прибора на исследуемый объект.

Степень черноты или коэффициент излучения материала характеризует отражающую способность самого материала, температура которого дистанционно измеряется пирометром. Для инфракрасного термометра, коими и являются популярные сегодня пирометры, данный показатель крайне важен. Он определяет отношение излучаемой исследуемой поверхностью энергии к энергии излучаемой абсолютно черным телом при той же температуре, и значение данного параметра лежит в диапазоне от 0 до 1. Так, окисленная сталь обладает степенью черноты 0,85, а полированная — 0,075.

На многих торговых интернет-площадках, да и в магазинах электроники, сегодня широко представлены портативные пирометры с лазерным нацеливанием, которые отлично подойдут для бытовых нужд, а также специальные медицинские пирометры на замену ртутным градусникам. Для промышленных же целей применяются более точные и более дорогие пирометры, обладающие кроме прочего вспомогательными средствами передачи информации и возможностью соединения с компьютером и специальными устройствами.

Пирометры

Для измерения температуры выше 800 град C применяют пирометры, принцип действия которых основан на определении величины излучения, испускаемого нагретыми телами.

Радиационные пирометры. Принцип действия радиационных пирометров состоит в том, что поток теплового излучения, испускаемого раскаленным телом, улавливается и фокусируется’ на теплочувствительыой части прибора, соединенной с термопарой.

Принципиальная схема радиационного пирометра показана на рис. 278. Он состоит из корпуса 6, имеющего объектив 2, который улавливает, тепловой поток и направляет его на теплочувствительную. часть 1 прибора. Эта часть представляет собой крестообразную пластину из платины, покрытую платиновой чернью. К этой пластине припаяны четыре горячих спая хромель-копелевых термопар, образующих термобатарею. При нагревании или охлаждении теплочувствительной части также нагреваются или охлаждаются горячие спаи этой термобатареи. Таким путем достигается увеличение электродвижущей силы и,следовательно, увеличивается точность прибора.

Рис. 278. Схема радиационного пирометра: 1- термочувствительная часть; 2 — объектив; 3 — диафрагма; 4 — температурная лампа; 5 —медный кожух; 6-корпус; 7— светофильтр; 8 —окуляр; 9-температура; 10 — милливольтметр

Платиновая пластинка и термопары заключены в стеклянную температурную лампу 4, закрытую почерненным медным кожухом 5. В медном кожухе имеются отверстия для прохода тепловых лучен на теплочувствительную часть прибора и для наблюдения за правильностью фокусирования. Через цоколь лампы выведены концы термопар и присоединены внутри прибора к клеммам.

При фокусировании прибора нужно добиваться того, чтобы раскаленное тело было виднов в телескопе и закрывало бы все поле зрения. Если изображение будет больше или меньше поля зрения, то условия наблюдения будут отличаться от градуировочиых и результат измерения будет неправильным. Четкость изображения для правильной наводки достигается перемещением окуляра 8. Чтобы предохранить глаз наблюдателя от яркого света, можно пользоваться светофильтром 7, который перемещают при помощи ручки, расположенной рядом с клеммами.

Для измерения величины электродвижущей силы, возбуждаемой в термобатарее радиационного пирометpa, пользуются или гальванометром, или потенциометром, которые должны быть градуированы в градусах по температуре излучения абсолютно черного тела.

Истинную температуру раскаленного реального тела по измеренной радиационным пирометром определяют введением поправок с учетом коэффициента черноты реального тела, температуру которого измеряют. Для этого пользуются специальными таблицами коэффициентов черноты полного излучения материалов при различных истинных температурах, а также таблицами соотношений между температурой, измеренной радиационным пирометром, или радиационной температурой и истинной температурой в зависимости от коэффициента черноты полного излучения.

При помощи радиационных пирометров полного излучения можно измерять температуру от 900 до 1800° С и даже, до 2000° С.

Оптические пирометры. Принцип действия оптических пирометров основан на сравнении в монохроматическом свете яркости излучения исследуемого накаленного тела с яркостью накала нити, интенсивность излучения которой в зависимости от температуры известна.

Схема» наиболее распространенного оптического пирометра ОППИР-09 показана на рис. 279. Это —переносный прибор, все части которого смонтированы в общем кожухе или корпусе. Луч света, испускаемый накаленным телом, попадает в прибор через объектив 1, а затем через окуляр 6 в глаз наблюдателя, сравнивающего яркость светового потока тела с яркостью нити 4 температурной лампы 3. Сравнение проводят в монохроматическом свете, получаемом с помощью светофильтра 5, расположенного за окуляром и пропускающего узкий спектральный участок света (область красных лучей).

Нить температурной лампы накаливается от щелочного аккумулятора, присоединенного к прибору проводами, проходящими через, рукоятку

Накал нити регулируют реостатом 8, включенным в цепь лампы последовательно. Движок 9 реостата передвигают при помощи кольцевой рукоятки 10. На рукоятке и на корпусе прибора имеются черточки белого цвета, около которых стоит отметка «0». Когда черточки на рукоятке и на корпусе прибора совпадают — цепь лампы разомкнута и аккумулятор отключен. Сила тока, подаваемого лампе, уменьшается, при повороте рукоятки по направлению стрелки, которая имеется на ней.

Температуру отсчитывают по показанию пирометрического милливольтметра 7, градуированного в градусах по накалу нити.

При измерении температуры оптическим пирометром ОППИР-09 его придерживают за рукоятку и направляют объектив на накаленное тело, предварительно убрав светофильтр. Передвигая окуляр и объектив, добиваются получения четких изображений нити температурной лампы и тела,температуру которого измеряют. После этого светофильтр .снова помещают на его место и, поворачивая ручку реостата в сторону, противоположную направлению стрелки, постепенно повышают накал нити до тех пор, пока ее верхняя часть, хорошо заметная на фойе раскаленного тела, не сольется с фоном и не исчезнет из поля зрения.

Рис. 279. Схема оптического пирометра ОППИР 09: 1 — объектив; 2 — ослабляющий светофильтр; 3 — температурная лампа; 4 — нить накаливания температурной ламды; 5— монохроматический светофильтр; 6 — окуляр; 7 — милливольтметр; S- реостат; 9 — движок реостата; 10 — кольцевая рукоятка реостата: рукоятка прибора.

Когда температура нити лампы ниже измеряемой температуры тела, видна темная линия на светлом фоне. Если же температура нити лампы выше измеряемой, видна светлая линия на темном фоне. При равенстве температур нить перестает быть видимой.

Читать еще:  Под каким углом резать потолочный плинтус

Оптический пирометр ОППИР-09 предназначен для измерения температуры от 800 до 2000 С, однако нить температурной лампы не выдерживает накала больше 1400° С. При температуре выше указанной материал нити начинает испаряться, вследствие чего характеристика лампы меняется. Чтобы избежать этого, при измерении температуры выше 14000C для ослабления светового потока накаленного тела между объективом и температурной лампой помещают дополнительный светофильтр 2. Таким образом, прибор имеет два диапазона измерений: 800—1400 0C и 1200—2000° С.

Ввиду того, что оптические пирометры градуируют по излучению абсолютно черного тела, для измерения температуры реальных тел с различными’ коэффициентами черноты в показания прибора следует вводить соответствующие поправки по специальным таблицам.

Кроме описанного, имеются эталонные оптические пирометры ОР-48, имеющие три диапазона измерений: до 1400° С, до 2QOO0C и до 3000° С. Оптический пирометр ЭОП-1 имеет пять диапазонов — от 1400 до 6000° С, с погрешностью измерения 0,05% при 1063° С, 0,2% при 3000° С и 1 % при 6000° С.

К приборам всегда прилагаются инструкции, содержащие описание прибора, правила его использования, а также правила зарядки аккумуляторов. В паспорте прибора указывается его характеристика, данные о его градуировке свидетельство о его пригодности для работы. Как все точные приборы, оптические пирометры следует периодически проверять.

Фотоэлектрический’ пирометр. Для непрерывного и бесконтактного измерения и записи температуры неподвижных и движущихся тел применяют фотоэлектрический пирометр ФЭП-4*. При его помощи можно измерять температуры от 500 до 4000° С. Прибор выпускается как одношкальный с предельной температурой измерения 2000° С, так и двушкальный— с пределом измерения до 4000° С. Основная погрешность показателей пирометра не превышает ±1% для приборов с верхним пределом измерения больше 2000° С.

Вторичным прибором этого пирометра служит быстродействующий показывающий и записывающий электронный потенциометр БП-5164 с прямолинейной шкалой и ленточной диаграммой. Время установления показаний потенциометра не превышает 1 сек.

Изображение визируемой поверхности / фокусируется линзой 2 на отверстии 4 в держателе светофильтра 7, установленного перед фотоэлементом 5. Диафрагма 3 и отверстие 4 ограничивают световой поток, падающий на фотоэлемент. Если изображение нагретой поверхности полностью перекрывает отверстие 4, величина светового потока, падающего на катод фотоэлемента, зависит от яркости визируемой поверхности и, следовательно, от ее температуры. Через отверстие 6 в том же держателе светофильтра на фотоэлемент падает световой поток от лампы накаливания 10 (лампа обратной связи), питаемой током выходного каскада электронного усилителя 9. При помощи этой лампы в приборе осуществляется обратная связь по световому потоку. Световые потоки от визируемого тела и от лампы 10 модулируются с частотой 50 гц в противофазе. Благодаря этому через фотоэлемент течет ток, переменная составляющая которого пропорциональна разности иитеисивностей этих потоков. Переменная составляющая фототока усиливается усилителем 8 и выпрямляется фазовым детектором (на рисунке не показан). Выпрямленное напряжение поступает на сетку выходного каскада усилителя 9.

Интенсивности светового потока лампы обратной связи и потока визируемого тела несколько отличаются друг от друга, однако благодаря большому коэффициенту усиления системы разность между ними невелика. При увеличении этой разности ток в цепи лампы обратной связи довольно быстро изменяется, и разность снова уменьшается. Таким образом, ток лампы обратной связи, связанный с интенсивностью ее светового потока, с достаточной точностью характеризует яркость и температуру визируемого тела.

Рис. 281. Принципиальная схема фотоэлектрического пирометра ФЭП-4: 1 — визируемая поверхность; 2 — линза; 3 — диафрагма; 4, 6 — отверстия в держателе светофильтра; 5 — фотоэлемент; 7-держатель светофильтра; 8, 9 — усилители; 10-лампа накаливания.

Пирометры. Виды и устройство. Измерения и применение

Пирометры это приборы для определения температуры объекта бесконтактным методом. Особенностью пирометра является его невысокая стоимость. Чтобы измерить температуру объекта, необходимо направить на него прибор, в результате определяется его температура.

Виды

Пирометры классифицируются по определенным признакам, и разделяются на основные виды.

По основному принципу действия:
  • Оптические устройства, действующие в диапазонах спектра видимого света и инфракрасных невидимых лучей.

1 — Объектив
2 — Ослабляющий светофильтр
3 — Лампа
4 — Нить накаливания лампы
5 — Милливольтметр
6 — Реостат
7 — Движок реостата
8 — Монохроматический светофильтр
9 — Окуляр
10 — Кольцевая рукоятка реостата
11 — Рукоятка прибора

Принцип его работы основан на сравнении яркости излучения объекта с яркостью нити, излучение которой заранее известно. Луч света от нагретого объекта по объективу попадает в прибор. Далее по окуляру наблюдатель видит и сравнивает яркость объекта с яркостью нити температурной лампы.

Такое сравнение производят в монохроматическом свете, который создает специальный светофильтр. Нить накаливается от аккумулятора, ее накал регулируют реостатом. Температуру определяют по показанию милливольтметра пирометра, который имеет градуировку в градусах соответственно накалу нити.

  • Радиометры (инфракрасные), применяющие радиационный способ для ограниченного интервала инфракрасных лучей. Оснащаются лазерным указателем для обеспечения точности наведения.

1 — Объектив
2 — Диафрагма
3 — Лампа
4 — Медный кожух
5 — Корпус
6 — Светофильтр
7 — Окуляр
8 — Накал
9 — Милливольтметр
10 — Накал

Принцип их работы заключается в том, что тепловое излучение от нагретого объекта улавливается и фокусируется чувствительным элементом прибора, который соединен с термопарой. Прибор состоит из корпуса с объективом. Чувствительная часть пирометра выполнена в виде крестообразной платиновой пластины, к которой припаяны 4 спая термопар, выполненных в виде термобатареи.

При охлаждении или нагревании чувствительного элемента нагреваются и эти термопары. Термопары и платиновая пластина находятся в стеклянной лампе, закрытой медным кожухом, в котором есть отверстия для тепловых лучей, проходящих на чувствительный элемент. По цоколю лампы отведены концы термопар и подключены к клеммам.

При наведении пирометра необходимо добиться того, чтобы объект оказался в телескопе и закрыл поле зрения. Четкость изображения достигают передвижением окуляра. Для предохранения глаза человека от яркого света пользуются светофильтром. Он передвигается ручкой, находящейся возле клемм.

Оптические устройства также разделяют:
  • Цветовы е , мультиспектральные, действующие путем сравнения энергии яркости предмета с другими областями спектра. Они применяются минимум для двух исследуемых участков.
  • Яркостные пирометры. Их называют устройствами с пропадающей нитью. Работа основана на сравнении излучения поверхности со значением излучения нити, по которой проходит электрический ток. Величина силы тока и является значением исследуемой температуры объекта.
По методу прицеливания пирометры разделяют:
  • С лазерным прицелом.
  • С оптическим наведением.
По виду коэффициента излучения:
  • С постоянным коэффициентом.
  • С переменным коэффициентом.
По методу перемещения:
  • Переносные (мобильные), применяемые на производственных участках, где необходима мобильность измерений. Предназначены для эксплуатации в тяжелых климатических и промышленных условиях. Имеют повышенное оптическое разрешение, что позволяет определять тепловое состояние предметов размером 5 мм. Переносные устройства применяются в различных сферах промышленности для измерения температуры и слежения за сложными технологическими процессами, которые связаны с соблюдением температурного режима.

  • Стационарные пирометры, применяемые в тяжелой промышленности. Служат для постоянного контроля над процессом производства в литейном производстве металлов, а также изготовления пластиковых элементов. Их монтируют в труднодоступных местах, где нет возможности применить датчики температуры с точки зрения безопасности работников.

По рабочей температуре:
  • Высокотемпературные (более +400 градусов). Служат для измерения высоко нагретых предметов.
  • Низкотемпературные (до -30 градусов). Служат для исследования температуры тел при отрицательных величинах.
Устройство и работа

Температуру можно измерять различными устройствами, которые разделяют на контактные модели, и с дистанционным методом измерения. Пирометры относятся к приборам с дистанционным принципом действия.

Пирометр стандартного исполнения выполнен в виде пистолета. На нем имеется маленький жидкокристаллический индикатор, на котором выводится информация измеряемых параметров температуры.

Удобный корпус и панель управления, лазерное наведение и повышенная точность сделали популярным этот инструмент среди инженерно-технических работников. Дисплей прибора может быть цифровым или аналоговым. Для обеспечения необходимой точности измерения, диаметр поверхности излучения допускается не меньше 15 мм

В функции пирометра обычно включены:
  • Визуальный и звуковой сигнал при достижении определенной границы измерения.
  • Определение наибольшего и наименьшего значения среди серии замеров.
  • Встроенная память для сохранения информации.

Инновационные модели пирометров оснащены USB выходом для передачи информации на внешний носитель или компьютер.

Работа пирометра заключается в идентификации тепловых волн, излучающихся от нагреваемой поверхности. Схема прибора изображена ниже.

1 — Измеряемый объект
2 — Тепловое излучение
3 — Оптика
4 — Зеркало
5 — Видоискатель
6 — Ось видоискателя
7 — Измерительно-счетное устройство
8 — Электронный преобразователь
9 — Корпус
10 — Кнопка
11 — Датчик

Тепловое излучение поступает на датчик пирометра через раструб. В датчике энергия тепла преобразуется в сигнал электрического тока. Мощность этого полученного сигнала имеет зависимость от температуры исследуемого объекта. Чем больше температура, тем большая величина тока возникает в датчике.

Далее сигнал поступает на электронный преобразователь, который подает информацию на жидкокристаллический экран. Одной из разновидностей пирометров являются тепловизоры, которые работают по принципу сравнивания спектра излучения тепла с образцовым спектром.

На многоцветном экране появляется проекция картинки от воздействия теплового излучения объектов, попавших в зону действия прибора. С помощью параметров спектра определяют значение температуры и наглядно наблюдают ее динамическое изменение на поверхности материала. Тепловизоры стали популярными для контроля функциональности отопления жилых домов, а также выявления мест утечки теплоносителя, находящегося в скрытой области.

Технические параметры

Функционирование пирометров сопровождается своими определенными параметрами, которые учитываются при выборе модели прибора, основные из таких параметров рассмотрим подробнее.

Оптическое разрешение

Этот параметр определяет площадь исследуемого предмета для измерения температуры, и зависит от угла обзора объектива прибора, чем больше угол обзора, тем больше возможная площадь исследования, с учетом удаленности до объекта.

Основным условием выполнения точного исследования является наведение прибора именно на измеряемую поверхность. Если захват площади будет больше, то температура определится с большой погрешностью. Оптическим разрешением называется величина отношения размера (диаметра) захвата пирометра к удаленности до объекта.

Этот параметр зависит от модели устройства и колеблется в значительных пределах: от 2:1 до 600:1. Показатель с более высоким разрешением относится к профессиональным пирометрам, используемым для измерения температуры поверхностей в промышленном производстве. Для бытовых условий вполне подойдут модели пирометров с оптическим разрешением 10:1.

Рабочий диапазон

Величина диапазона работы зависит от свойств датчика прибора. Чаще всего этот параметр находится в пределах -30 +360 градусов. Для бытовых нужд вполне подойдут любые виды пирометров, так как в системе отопления наибольшая температура теплоносителя не превосходит 110 градусов.

Точность

Эта величина показывает пределы колебаний температуры при измерении, и зависит от правильности настройки прибора. Средняя величина точности пирометров равна 2%.

Читать еще:  Как отрезать плитку дома
Коэффициент излучения

Отношение мощности излучения тепла исследуемой поверхности к мощности излучения абсолютно черного тела называют коэффициентом излучения. Черные неблестящие предметы имеют коэффициент излучения, равный 0,95. Поэтому многие приборы дистанционного измерения температуры имеют настройки на эту величину.

Однако, при попытке измерения температуры предмета, выполненного из алюминия, и отполированного до блеска, величина температуры на экране прибора будет иметь большие отличия от действительной температуры.

Для обеспечения необходимой точности исследований температурного режима большинство приборов оснащают лазерной указкой, с помощью которой пятно света находится не в центре, а определяет оптимальную границу измерения.

Правила пользования

После покупки устройства следует тщательно изучить прилагаемую инструкцию. Правила применения прибора несложные. Неправильное пользование пирометром приведет к большой погрешности измерения, или к возникновению неисправностей.

Рекомендуется следовать некоторым правилам при применении этого устройства.
  • Включить прибор.
  • Направить на исследуемую поверхность раструб.
  • Лазерной указкой определить пределы измерений.
  • После приведения прибора в рабочий режим на дисплее появится величина температуры. От конструктивных особенностей прибора зависит, будут ли сохранены данные в память пирометра или они заменятся следующими данными.

Обычный человек легко справится с практическим использованием пирометра. Для фирм, монтирующих и проектирующих автономные отопительные системы, они стали необходимым прибором.

Сфера применения

Широкую популярность пирометры приобрели на производстве с наличием оборудования теплоэнергетики: паропроводы, теплотрассы, бойлеры, различные нагревательные устройства.

Нередко пирометрами пользуются в сфере электроэнергетике для измерения элементов в распределительных щитах, трансформаторах, кабелей и контактных соединений.

В металлургической отрасли такими приборами измеряют температуру прессов, станков, печей. В электронной промышленности его используют для замера уровня нагревания деталей и компонентов схем.

Автолюбители используют их для диагностики двигателя автомобиля. Другими сферами применения этого полезного прибора являются: определение нагрева электродвигателей, узлов транспортных средств, температуры при хранении пищевых продуктов.

При обследовании сооружений и жилых домов состояние функционирования отопления, кондиционирования и вентиляции, контроля холодильного оборудования пирометры являются незаменимыми помощниками.

Принцип действия, устройство и применение инфракрасного бесконтактного термометра

Термометр инфракрасный бесконтактный имеет специальное название пирометр (от греческих слов руr — огонь и metreo — измеряю). Пирометр предназначен для дистанционного измерения температуры поверхности твёрдых тел.

Принцип действия инфракрасного термометра основан на измерении амплитуды электромагнитного излучения от объекта в инфракрасной части спектра и последующем пересчётом измеренного значения в мощность теплового излучения.

  1. Поверхность измеряемого объекта,
  2. Тепловое излучение от объекта,
  3. Оптическая система инфракрасного термометра,
  4. Датчик-преобразователь,
  5. Электронный преобразователь,
  6. Счётное устройство,
  7. Корпус пирометра,
  8. Курок-кнопка,
  9. Дисплей.

Тепловое излучение, сфокусированное оптической системой, передаётся на датчик-преобразователь, на выходе которого появляется электрический сигнал, пропорциональный значению температуры поверхности измерения. Этот сигнал проходит через электронный преобразователь, попадает в счётное устройство, результаты из которого отображаются на дисплее.

Чтобы замерить температуру объекта нужно навести инфракрасный термометр на объект и нажать кнопку. Полученная температура тут же отображается на дисплее. Чтобы центр пятна измерения пришёлся на нужную точку проверяемой поверхности, пирометры имеют лазерный целеуказатель, световая точка которого смещена от центра пятна измерения приблизительно на 2 см.

Расстояние до объекта может быть любым, дальность действия ИК-термометра ограничена диаметром пятна и прозрачностью среды.

Современный термометр инфракрасный бесконтактный имеет следующие основные технические характеристики:

  • оптическое разрешение (соотношение расстояния к диаметру пятна);
  • диапазон измеряемых температур (предельно от -50 до 4000oC);
  • разрешение (как правило 0,1oC);
  • точность измерения (от ± 1% до ±2%);
  • быстродействие (у хороших моделей очень высокое — меньше 1 секунды);
  • излучающая способность — переменная либо фиксированная;
  • приспособление для нацеливания — оптический или лазерный прицел.

Зная оптическое разрешение пирометра, можно правильно выбрать расстояние до объекта. Дело в том, что пятно измерения не должно превышать размер проверяемого объекта. Иначе инфракрасный бесконтактный термометр будет измерять ещё и температуру окружающих предметов, которые попали в зону пятна. А это вводит искусственно созданную погрешность и не позволяет точно измерить температуру именно нужной поверхности.

Излучающая способность простых моделей ИК-термометров имеет фиксированное значение (как правило 0,95, потому что именно такое значение является подходящим для большинства применений в быту и технике). Но бывают ситуации, когда фиксированное значение коэффициента излучения не позволяет получить точные данные. Чем более светлой является поверхность, тем ниже нужен коэффициент излучения. Тем более, если поверхность обладает высокой отражающей способностью, как например полированный металл. В моделях пирометров с настраиваемой излучающей способностью этот параметр может быть задан от 0,1 до 1,0 — и это значительно расширяет возможности прибора.

Магазин запчастей для бытовой техники работает без выходных с 9.00 до 18.00, звоните и заказывайте интересующие Вас детали, мы проконсультируем и подберем наиболее подходящие запчасти.

Вы можете купить товар самовывозом в Москве. Для доставки в другой город помимо Москвы выберите один из трех вариантов: через удобную Вам транспортную компанию, через почту России или через Вашего представителя в Москве. Магазин принимает оплату как по наличному, так и безналичному расчету.

Приведённая здесь информация даётся для общего ознакомления. Технические характеристики, внешний вид, конструктивные особенности могут отличаться от фактически предлагаемых к продаже товаров. Любые особенности товаров можно уточнить по телефону магазина в его рабочие часы.

Магазин Запчастей находится в Митинском радиорынке:
Москва, Пятницкое шоссе, дом 18,
вход в Цокольный этаж,
Павильон 38

Термометр. Виды и устройство. Работа и применение. Особенности

Термометр – это прибор, предназначенный для измерения температуры жидкостной, газообразной или твердой среды. Изобретателем первого устройства для измерения температуры является Галилео Галилей. Название прибора с греческого языка переводится как «измерять тепло». Первый прототип Галилея существенно отличался от современных. В более привычном виде устройство появилась спустя более чем через 200 лет, когда за изучение данного вопроса взялся шведский физик Цельсий. Он разработал систему измерения температуры, разделив термометр на шкалу от 0 до 100. В честь физика уровень температуры измеряются в градусах Цельсия.

Разновидности по принципу действия

Хотя с момента изобретения первых термометров прошло уже более через 400 лет, эти устройства до сих пор продолжают совершенствоваться. В связи с этим появляются все новые устройства, основанные на ранее не применяемых принципах действия.

Сейчас актуальными являются 7 разновидностей термометров:
  • Жидкостные.
  • Газовые.
  • Механические.
  • Электрические.
  • Термоэлектрические.
  • Волоконно-оптические.
  • Инфракрасные.
Жидкостные

Термометры относятся к самым первым приборам. Они работают на принципе расширения жидкостей при изменении температуры. Когда жидкость нагревается – она расширяется, а когда охлаждается, то сжимается. Само устройство состоит из очень тонкой стеклянной колбы, заполненной жидким веществом. Колба прикладывается к вертикальной шкале, выполненной в виде линейки. Температура измеряемой среды равна делению на шкале, на которое указывает уровень жидкости в колбе. Эти устройства являются очень точными. Их погрешность редко составляет более 0,1 градуса. В различном исполнении жидкостные приборы способны измерять температуру до +600 градусов. Их недостаток в том, что при падении колба может разбиться.

Газовые

Работают точно так же как и жидкостные, только их колбы заполняются инертным газом. Благодаря тому, что в качестве наполнителя используется газ, увеличивается диапазон измерения. Такой термометр может показывать максимальную температуру в пределах от +271 до +1000 градусов. Данные приборы обычно применяются для снятия показания температуры различных горячих веществ.

Механический

Термометр работает по принципу деформации металлической спирали. Такие приборы оснащаются стрелкой. Они внешне немного напоминает стрелочные часы. Подобные устройства используется на панели приборов автомобилей и различной спецтехнике. Главное достоинство механических термометров в их прочности. Они не боятся встряски или ударов, как модели из стекла.

Электрические

Приборы работают по физическому принципу изменения уровня сопротивления проводника при различных температурах. Чем горячее металл, тем его сопротивляемость при передаче электрического тока выше. Диапазон чувствительности электротермометров зависит от металла, который использован в качестве проводника. Для меди он составляет от -50 до +180 градусов. Более дорогие модели на платине могут указывать на температуру от -200 до +750 градусов. Такие приборы применяются как датчики температуры на производстве и в лабораториях.

Термоэлектрический

Термометр имеет в своей конструкции 2 проводника, которые измеряют температуру по физическому принципу, так называемому эффекту Зеебека. Подобные приборы имеют широкий диапазон измерения от -100 до +2500 градусов. Точность термоэлектрических устройств составляет около 0,01 градуса. Их можно встретить в промышленном производстве, когда требуется измерение высоких температур свыше 1000 градусов.

Волоконно-оптические

Делаются из оптоволокна. Это очень чувствительные датчики, которые могут измерять температуру до +400 градусов. При этом их погрешность не превышает 0,1 градуса. В основе такого термометра лежит натянутое оптоволокно, которое при изменении температуры растягивается или сжимается. Проходящий сквозь него луч света преломляется, что фиксирует оптический датчик, сопоставляющий преломление с температурой окружающей среды.

Инфракрасный

Термометр, или пирометр, является одним из самых недавних изобретений. Они имеют верхний диапазон измерения от +100 до +3000 градусов. В отличие от предыдущих разновидности термометров, они снимают показания без непосредственного контакта с измеряемым веществом. Прибор посылает инфракрасный луч на измеряемую поверхность, и на небольшом экране отображает ее температуру. При этом точность может отличаться на несколько градусов. Подобные устройства применяются для измерения уровня нагрева металлических заготовок, которые находятся в горне, корпуса двигателя и пр. Инфракрасные термометры способны показать температуры открытого пламени. Подобные устройства применяются еще в десятках различных сфер.

Разновидности по предназначению
Термометры можно классифицировать на несколько групп:
  • Медицинские.
  • Бытовые для воздуха.
  • Кухонные.
  • Промышленные.
Медицинский термометр

Медицинские термометры обычно называют градусники. Они имеют низкий диапазон измерения. Это связано с тем, что температура тела живого человека не может составлять ниже +29,5 и выше +42 градусов.

В зависимости от исполнения медицинские градусники бывают:
  • Стеклянные.
  • Цифровые.
  • Соска.
  • Кнопка.
  • Инфракрасный ушной.
  • Инфракрасный лобный.

Стеклянные термометры являются первыми, которые начали применять для медицинских целей. Данные устройства универсальны. Обычно их колбы заполняются спиртом. Раньше для таких целей использовалась ртуть. Подобные устройства имеют один большой недостаток, а именно необходимости длительного ожидания для отображения реальной температуры тела. При подмышечном исполнении продолжительность ожидания составляет не менее 5 минут.

Цифровые термометры имеют небольшой экран, на который выводится температура тела. Они способны показать точные данные спустя 30-60 секунд с момента начала измерения. Когда градусник получает конечную температуру, он создает звуковой сигнал, после которого его можно снимать. Данные приборы могут работать с погрешностью, если не очень плотно прилегают к телу. Существуют дешевые модели электронных термометров, которые снимают показания не менее долго, чем стеклянные. При этом они не создают звуковой сигнал об окончании измерения.

Читать еще:  Как проверить ssd на работоспособность

Термометры соски сделаны специально для маленьких детей. Устройство представляет собой соску-пустышку, которая вставляется в рот младенца. Обычно такие модели после завершения измерения подают музыкальный сигнал. Точность устройств составляет 0,1 градуса. В том случае если малыш начинает дышать через рот или плакать, отклонение от реальной температуры может быть существенным. Продолжительность измерения составляет 3-5 минут.

Термометры кнопки применяются тоже для детей возрастом до трех лет. По форме такие приборы напоминают канцелярскую кнопку, которая размещается ректально. Данные устройства снимают показания быстро, но имеют низкую точность.

Инфракрасный ушной термометр считывает температуру из барабанной перепонки. Такое устройство способно снять измерения всего за 2-4 секунды. Оно также оснащается цифровым дисплеем и работает на батарейках. Данное устройство имеет подсветку для облегчения введения в ушной проход. Приборы подходят для измерения температуры у детей старше 3 лет и взрослых, поскольку у младенцев слишком тонкий ушной канал, в который наконечник термометра не проходит.

Инфракрасные лобные термометры просто прикладываются ко лбу. Они работают по такому же принципу, как и ушные. Одно из преимуществ таких устройств в том, что они могут действовать и бесконтактно на расстоянии 2,5 см от кожи. Таким образом, с их помощью можно измерить температуру тела ребенка не разбудив его. Скорость работы лобных термометров составляет несколько секунд.

Бытовые для воздуха

Для измерения температуры воздуха на улице или в помещении применяются бытовые термометры. Они, как правило, выполнены в стеклянном варианте и заполнены спиртом или ртутью. Обычно диапазон их измерения в уличном исполнении составляет от -50 до +50 градусов, а в комнатном от 0 до +50 градусов. Подобные приборы часто можно встретить в виде украшений для интерьера или магнита на холодильник.

Кухонные

Кухонные термометры предназначены для измерения температуры различных блюд и ингредиентов. Они могут быть механическими, электрическими или жидкостными. Их применяют в тех случаях, когда необходимо строго контролировать температуру по рецепту, к примеру, при приготовлении карамели. Обычно подобные устройства идут в комплекте с герметичным тубусом для хранения.

Промышленные

Промышленные термометры предназначены для измерения температуры в различных системах. Обычно они представляют собой приборы механического типа со стрелкой. Их можно увидеть в магистралях водяного и газового снабжения. Промышленные модели бывают электрические, инфракрасные, механические и пр. Они имеют самое большое разнообразие форм, размеров и диапазонов измерения.

Для чего нужен пирометр и как измерять температуру бесконтактным методом

Для измерения температуры различных поверхностей используют различные датчики, том числе и пирометр. Работает он довольно просто и быстро. А что представляет собой пирометр, давайте разберемся.

Что такое пирометр?

Современное инженерное устройство для определения температуры любого предмета, основывающееся на инфракрасном датчике, называется пирометром. Также он известен под названиями термодетектора, даталоггера температуры, цифрового термометра или инфракрасного пистолета. В основе действия прибора заложен принцип определения температурного значения поверхности объекта по тепловому электромагнитному излучению его поверхности. Пирометр улавливает невидимое инфракрасное излучение, преобразует его в градусы, и полученный результат выводит на дисплее. Бесконтактный и быстрый метод исследования необходимых объектов позволяет специалистам избежать возможных травм.

Область применения

Достаточно широкое применение нашлось для пирометров на тех производствах, где установлено большое количество нагревательных приборов. В области строительства и теплоэнергетики они используются для расчета теплопотерь конструкций, в том числе пирометр помогает выявить повреждения теплоизоляции.

В промышленности подобные приборы дают возможность подвергать анализу температуру всевозможных процессов дистанционно. Это бывает необходимо, например, в машиностроении, металлургии и в прочих отраслях промышленности.

Так, электрики проверяют уровень нагрева мест соединения проводов, а автослесари проверяют нагрев деталей машины. Ученым пирометры приходят на помощь во время осуществления различных исследований или опытов: так они определяют верность показателей температуры веществ и тел.

В быту люди применяют подобные устройства для определения температуры тела, воды, еды и др.

Типы и классификация

В зависимости от функционального признака, выделяют несколько классификаций пирометров.

По существенному методу, используемому в работе:

Оптические пирометры подразделяются на:

  • Яркостные;
  • Цветовые, или мультиспектральные.

По образу прицеливания различают устройства с оптическим или лазерным прицелами.

По применяемому коэффициенту излучения выделяют пирометры с переменным и фиксированным коэффициентом.

По возможности транспортировки пирометры делятся на стационарные и мобильные (переносные).

Основываясь на возможном диапазоне измерений выделяют:

  • низкотемпературные (-35…-30 °С);
  • высокотемпературные (+400 °С и выше).

Устройство и принцип действия

Основу структуры пирометра составляет детектор инфракрасного излучения. Данные преобразуются посредством встроенной электронной системы и отображаются на дисплее.

Типовой пирометр по форме напоминает пистолет с небольшим дисплеем. Компактная панель управления, наводка лазером и высокая точность при близком взаимодействии с объектом объясняют востребованность инструмента среди работников инженерных и технических сфер.

Основными рабочими элементами пирометра считают линзу, приёмник, а также дисплей, на который выводится результат измерения. Принцип действия пирометра следующий: от изучаемого объекта исходит инфракрасное излучение и посредством линзы оно фокусируется и отправляется в приемник (термобатарея, полупроводник, термопара).

Если используется термопара, в момент нагрева приемника меняется напряжение. Сопротивление – в случае использования полупроводников. Эти изменения преобразуются в показания температуры.

Для того, чтобы провести измерение, необходимо просто навести пирометр на объект, привести его в действие и отметить полученный результат. Используя специальную кнопку, вы можете регулировать формат измерения температуры – по шкале Цельсия или Фаренгейта.

Технические характеристики

Пирометр обладает рядом параметров, которые характеризуют его функциональность. Выбор желаемой модели аппарата осуществляется по их значениям. Обратимся к основным из них.

Оптическое разрешение

Так называют показатель отношения диаметра пятна инструмента к расстоянию до предмета. Эта функция зависит от угла объектива устройства: чем он больше, тем значительную площадь он сможет охватить. Важнейшим фактором точности измерения является наложение пятна исключительно на материал поверхности. Если площадь превышена, измеренное значение скорее всего будет неточным.

СПРАВКА. У каждой модели пирометра разное оптическое разрешение. Разница между ними внушительная, например, от 2:1 до 600:1. Последнее соотношение характерно для профессиональных устройств. Как правило, используются они в тяжелой промышленности. Оптимальным показателем для бытовых и полупрофессиональных пирометров считается 10:1.

Рабочий диапазон

Диапазон действия прибора зависит от пирометрического датчика и, зачастую, варьируется от -30 °С до 360 °С. Так, для бытового использования подойдут почти все виды пирометров, если учесть максимальную температуру теплоносителя в системе отопления до 110 °С.

Погрешность

Погрешность предполагает уровень возможных отклонений значений температуры и зависит от точности пирометра. В среднем допустимые отклонения – не превышающие 2% от нормы.

Коэффициент излучения

Данный параметр представляет собой отношение мощности текущего температурного излучения к такому же показателю эталонного абсолютно черного тела.

СПРАВКА. Для матовых материалов коэффициент излучения равняется 0,9-0,95. По этой причине большее количество приборов подбираются именно на это значение. Результат будет заметно отличаться от реального, например, в случае измерения степени нагрева поверхности блестящего алюминия.

В целях более точного измерения многие модели оснащаются лазерной указкой. При этом световой луч размещается не в центре, а указывает оптимальную границу области измерения.

Преимущества и недостатки

Как и любой другой прибор, пирометр обладает своими достоинствами и недостатками. Их наличие объясняется нюансами устройства и условиями применения.

  • Мобильность, малогабаритность и весьма простая конструкция;
  • Доступная низкая стоимость, обусловленная использованием минимального количества элементов в конструкции;
  • Высокий уровень надежности;
  • Достаточно широкий диапазон измерения.
  • Прямая зависимость показаний пирометра от излучаемой способности исследуемого предмета;
  • Точность результатов измерений может быть ниже из-за особенности физического состояния поверхности объекта;
  • Функция внесения поправки в показатели и установления погрешности предусмотрена только на самых новых приборах;
  • Расстояние играет большую роль в точности измерения.

Наиболее популярные модели

ЭОП-66

Пирометр ЭОП-66 применяется при осуществлении научно-лабораторных исследований. Рассчитан он на измерение показателей поверхностей предметов при температуре от +900 до +10000°С,

Данная стационарная модель оснащена телескопом, который состоит из объектива и окулярного микроскопа. Двухлинзовый объектив располагает возможностью фокусировки на дистанции до 25,4 см, а его оптическое разрешение составляет 3:1. Обратите внимание: телескоп данного прибора фиксируется на основании и плавно передвигается в горизонтальной плоскости.

Кельвин ИКС 4-20

Это пирометр высокой точности, который обладает универсальным спектром определения температурных показателей: от -50 до +350 °С, весьма высокая скорость действия – 0,2 с. Применение инструмента предусмотрено в диапазоне 8-14 мкм.

Данный пирометр совмещает в себе возможности как мобильного, так и стационарного устройства. Это обусловлено компактными размерами (17х17х22 см) и наличием посадочного гнезда крепления объектива М12. Производитель гарантирует абсолютную водо- и пыленепроницаемость. Так, представленную модель пирометра возможно использовать в сложных производственных и строительно-промышленных отраслях.

С-700 «Стандарт»

Данное бесконтактное устройство предпочтительно использовать, например, в строительстве или металлургии. Он достойно служит в качестве инфракрасного детектора определения степени нагрева поверхностей сыпучих и твердых объектов, а также расплавленных и текучих материалов.

Температурный диапазон колеблется в пределах от +700 до + 2200 °С, что характерно для высокотемпературных приборов. Расширения возможности взаимодействия с внешними носителями достигается посредством двух вариантов выходного интерфейса: аналоговый выход 4 – 20 мА или цифровой RS-485.

СПРАВКА. Приобрести оптический пирометр возможно по весьма доступной цене: минимальная стоимость такого прибора составляет 6000 рублей, максимальная – 30000 рублей.

Как правильно измерять температуру пирометром

После покупки устройства необходимо внимательно изучить инструкцию к нему. Несмотря на весьма простые требования к эксплуатации, опрометчивые действия могут повлечь за собой значительные искажения температурных значений. Процесс правильного измерения температуры пирометром выглядит следующим образом:

  • Включите прибор пирометра;
  • Определите материал, из которого изготовлен объект (например, сталь или медь);
  • Затем, в зависимости от модели прибора, занесите коэффициент излучения в качестве правки на дисплее;
  • Направьте луч инфракрасного пирометра на измеряемую поверхность;
  • Определите границу пятна измерения при помощи лазерной указки.

При такой последовательности измерения вы получите результаты наиболее близкие к фактической температуре.

Пирометр – универсальный и незаменимый по своей функциональности прибор. Разобравшись в нюансах его эксплуатации, им легко можно пользоваться как в профессиональной сфере, так и в быту.

Ссылка на основную публикацию
Adblock
detector