Каким прибором измеряют сопротивление изоляции
Измерение сопротивления изоляции. Методика и приборы. Порядок
Качественные изолирующие материалы определяют функциональность и надежность снабжения объектов электрической энергией. Каждый специалист на предприятии должен понимать важность свойств изоляции оборудования. Периодически необходимо контролировать работу электрических устройств, проводить измерение сопротивления изоляции.
Материал изоляции кабелей имеет свой срок службы. На качество диэлектрического материала изоляции влияют следующие факторы:
- Высокое напряжение.
- Солнечный свет.
- Механические повреждения.
- Температурный режим.
- Среда использования.
Измерение сопротивления изоляции рекомендуется для более точного выяснения причин повреждений в кабельной цепи, или цепи электрических устройств, а также для проверки возможности дальнейшей эксплуатации изоляции.
Если дефект изоляции обнаружен визуально, то выполнять измерения сопротивления уже нет необходимости. При обнаружении нарушения изоляции с помощью мегомметра, можно предотвратить:
- Неисправности устройств.
- Возникновение пожара.
- Аварийные ситуации.
- Чрезмерный износ устройства.
- Короткие замыкания.
- Удары электрическим током персонала, обслуживающего устройства.
Методика
Главной характеристикой состояния изоляции электрооборудования принято считать сопротивление постоянному току, поэтому обязательной частью проверки цепей является контроль сопротивления изоляции.
Приборы
Значение сопротивления изоляции контролируется при помощи мегомметрами. Сегодня популярными являются мегомметры марок: М — 4100, ЭСО 202 / 2Г, MIC – 30, MIC — 1000, MIC-2500. Прогресс технологий в электротехнике не стоит на месте, поэтому виды измерительных приборов постоянно обновляются.
Мегомметр состоит из источника питания постоянного тока и механизма измерения. В качестве источника тока может использоваться генератор переменного тока с выпрямительным мостом.
Мегомметры можно разделить по величине напряжения:
- До 1000 вольт.
- До 2500 вольт.
В комплекте к прибору приложены гибкие медные проводники. Их длина может достигать до 3 метров. Сопротивление изоляции измерительных проводов должно быть более 100 мегом. Концы проводов мегомметра должны быть оснащены наконечниками со стороны подключения к прибору. Другие концы проводов должны оснащаться зажимами вида «крокодил» с рукоятками из диэлектрического материала.
Порядок измерений
Перед началом контрольных измерений необходимо выполнить:
- Перед непосредственным измерением необходимо выполнить контрольную проверку прибора. Такая проверка производится путем определения показаний прибора во время разомкнутых и замкнутых проводников. При разомкнутых проводниках стрелка или индикатор должны показывать бесконечное сопротивление. При замкнутых проводах показания должны быть близки к нулю.
- Обесточить измеряемый кабель. Для проверки отсутствия напряжения необходимо пользоваться указателем напряжения, который испытан на заведомо подключенном к напряжению участке цепи электроустановки, согласно требованиям правил охраны труда.
- Произвести заземление токоведущих жил испытуемого кабеля.
Во время измерения сопротивления на участках цепи свыше 1000 вольт, необходимо применять диэлектрические резиновые перчатки. Запрещается касаться токоведущих элементов, присоединенных к мегомметру.
Сопротивление проверяется для отдельной фазы по отношению к другим фазам. При отрицательном результате необходимо проверить сопротивление изоляции между отдельной фазой и землей.
Схема проверки сопротивления
Измерение сопротивления изоляции на кабеле, рассчитанном на напряжение более 1000 вольт, на изоляцию накладывают экранное кольцо, которое соединено с экраном.
При работах с кабелями до 1000 вольт, имеющих нулевые жилы, необходимо знать:
- Изоляция нулевых проводов должна быть не хуже, чем у фазных проводников.
- Нулевые проводники должны быть отключены от заземления со стороны приемника и источника питания.
При вращении ручки привода генератора мегомметра необходимо добиться устойчивого состояния стрелки прибора. Только после этого можно измерять сопротивление. Для устойчивого положения стрелки ручку вращают со скоростью около 120 об / мин.
После начала вращения ручки до момента измерения должно пройти не менее 1 минуты. Далее после подключения проводов к кабелю необходимо выждать 15 секунд. После этого зафиксировать величину сопротивления.
При ошибочно выбранном интервале измерений, необходимо выполнить следующие мероприятия:
- Снять напряжение с измеряемого проводника, подключить к нему заземление.
- Установить правильное положение переключателя и возобновить измерение на новом диапазоне.
При подключении и снятии заземления применение диэлектрических перчаток является обязательным. После проведения измерений на кабеле накапливается заряд энергии, который необходимо снять перед отключением прибора. Заряд снимается при помощи наложения заземления.
Проверка изоляции осветительной цепи
Измерение сопротивления изоляции осветительной цепи выполняется мегомметром, рассчитанным на напряжение до 1000 вольт. Работы по измерению включают в себя следующие этапы:
- Измерение сопротивления изоляции магистрали: от щитов 0,4 кВ до электрических автоматов распредщитов.
- Сопротивления изоляции от этажных распредщитов до квартирных щитков.
- Измерение сопротивления изоляции цепи освещения от автоматов выключения и групповых щитков до арматур освещения. В светильниках перед измерением отключается напряжение, выключатели света должны находиться во включенном состоянии, нулевые рабочие и защитные провода должны быть отключены, лампы освещения вывернуты. Если применяются газоразрядные лампы, то их допускается не выкручивать, однако необходимо снять стартеры.
- Значение сопротивления на участках освещения и осветительной арматуры должно быть выше 0,5 мегома.
Информация по применению в измерениях приборов, и итоги замеров оформляются протоколами.
Требования безопасности
Работники измерительной лаборатории, направленные для исполнения работ в различных электроустановках, и не находящиеся в штате предприятия, владеющего электроустановкой, считаются командированными работниками.
Специалисты должны иметь в наличии определенной формы удостоверения. При этом должна быть отметка комиссии командирующей фирмы о присвоении группы электробезопасности. Фирма, отправляющая специалистов, несет ответственность за исполнение нормативов по технике безопасности и соответствию групп по электробезопасности.
Организация работ сотрудников предполагает выполнение мероприятий перед началом работ:
- Извещение владельца проверяемой электроустановки о целях работы.
- Предоставление специалистам права производства работ в виде выдачи наряда, назначения ответственных лиц.
- Проведение вводного инструктажа.
- Ознакомление с электросхемой и особенностями установки.
- Подготовка рабочего места.
Организация (владелец) несет ответственность за соблюдением требований охраны труда. Работы осуществляются по наряду-допуску.
При выполнении измерений необходимо:
- Соблюдать указания инструкций, применяемых приборов, разработанных на предприятии. Также необходимо выполнять вспомогательные требования согласно нарядам-допускам.
- Запрещается начинать работы по измерениям, не убедившись в отсутствии напряжения на измеряемом участке. Контролировать отсутствие напряжения питания при выполнении измерений. Это требование выполняется с помощью испытанного указателя, который должен быть протестирован на подключенных к напряжению элементах электроустановки, согласно правилам ТБ. Напряжения контролировать между фазами, землей и фазами. Эта операция требует особой тщательности и ответственности.
- Коммутацию приборов осуществлять при обесточенных токоведущих частях.
- Обеспечить использование средств защиты и специального инструмента с диэлектрическими ручками, которые заранее испытаны.
Бригада специалистов должна иметь в составе не менее 2-х человек, включая производителя работ с 4 группой электробезопасности, и работника с 3 группой электробезопасности. При выполнении измерений запрещается подходить к токоведущим элементам ближе безопасного расстояния, которое определено в таблице.
Интервалы проведения проверок
Временные нормативы проведения плановых измерений величин сопротивлений, значение напряжения для измерения изоляции описываются в правилах технической эксплуатации. Ежегодно производится измерение сопротивления изоляции осветительной аппаратуры, лифтовой проводки, а также электропроводки подъемно-транспортных механизмов.
В остальных случаях такие проверки осуществляются один раз в несколько лет. Каждые 6 месяцев производится проверка переносного электрооборудования и инструмента, а также сварочных аппаратов.
При невыполнении установленных интервалов проверок повышается вероятность появления различных нежелательных неисправностей электроустановок. Нарушители этих правил могут подвергаться определенным санкциям и штрафам. В организациях должны быть разработаны планы проведения проверок изоляции. При этом делается упор на особенности и технические запросы, которым должны соответствовать электроустановки, а также кабельные сети. Изоляция проверяется во время эксплуатационных испытаний.
Нормы изоляции и измерения сопротивления кабелей
Во многом безопасность электрической сети определяется качеством изоляции. Периодическое ее испытание позволяет предотвратить возникновение различных аварий и даже поражение током живого организма. Суть тестирования заключается в замере сопротивления изоляции с помощью специальных приборов. Любое отклонение от требуемых норм является причиной замены или ремонта электрооборудования.
Суть измерений
Под сопротивлением изоляции понимается способность материала не пропускать через себя электрический ток. Для каждого диэлектрика, в зависимости от места использования, установлены свои нормативные требования. Периодичность проверки и необходимые значения указываются в «Правилах устройства электроустановок» (ПУЭ) и в «Правилах технической эксплуатации электроустановок потребителями» (ПТЭЭП).
Все виды испытаний можно условно разделить на три группы:
- проводимые производителем на заводе;
- выполняемые непосредственно на объекте после модернизации или проведения ремонта;
- запланированные согласно требованиям правил безопасности и нормам.
Возможные повреждения, кроме заводских дефектов, чаще всего возникают из-за условий эксплуатации. Это воздействие сверхтоков, вызывающих перегрев защитной оболочки, влияние химических реагентов, механические разрывы, вызванные как ошибками монтажа, так и грызунами. Цель измерений заключается в предотвращении поражения человека электрическим током и обеспечения пожарной безопасности.
Повреждение изоляции вызывает пробой. Это ситуация, при которой между двумя изолированными друг от друга проводниками появляется электрический контакт. Например, между рядом лежащими проводами в кабеле или при прикосновении человека к частям электроустановки. Обычно при пробое наблюдается прожженное отверстие и изменение цвета изоляционного материала. В основе механизма пробоя твердого диэлектрика лежит электронный лавинообразный процесс. Наступает он из-за образования в материале так называемого плазменного газоразрядного канала.
К измерению изоляции допускается только специалист, имеющий удостоверение о проверке знаний и группу допуска не ниже третьей, если замеры проводятся в сети с напряжением до 1 кВ, и не ниже четвертой — при измерении выше 1 кВ.
После завершения измерения электрического сопротивления изоляции, полученные результаты обрабатываются и делается вывод о возможности дальнейшей эксплуатации сети. Так, большое значение для достоверности результата имеет температура окружающей среды. Нормирование измерений в ПУЭ указано для 20 °C, поэтому если работы выполняют при другой температуре, то полученные данные пересчитывают по формуле: R=K*Rиз, где K — коэффициент приведения указанный в дополнениях к ПУЭ.
Используемые приборы
Приборы, с помощью которых проводят измерения, условно разделяются на две группы: щитовые измерители и мегомметры. Первые применяются с подвижными или стационарными электроустановками с отдельной нейтралью. В типовую конструкцию приборов контроля изоляции щитовой входит индикаторная и релейная часть. Эти измерители могут работать в непрерывном режиме и использоваться в сетях переменного напряжения 220 В или 380 В разной частоты.
В большинстве же случаев проведение измерений осуществляется мегомметром. Его отличие от обыкновенного омметра в том, что он работает с довольно высокими значениями напряжения, которые прибор сам и генерирует. Существует два типа мегомметров:
- Аналоговые. В них для получения необходимой величины напряжения используется механический генератор, представляющий собой динамо-машину. Этот тип часто называют «стрелочным» из-за наличия градуированной шкалы и динамической головки со стрелкой. В принципе измерения лежит магнитоэлектрический эффект. Чем больше значение тока протекает через катушку, тем, в соответствии с законом электромагнитной индукции, на больший угол отклоняется и стрелка. Приборы относятся к простому типу устройств с хорошей надежностью. На сегодня уже морально устарели, так как обладают значительной массой и габаритами.
- Цифровые. В схеме современного устройства используется мощный генератор сигнала, собранный на интегральной микросхеме (ШИМ контроллер) и полевых транзисторах. Дискретные мегомметры, в зависимости от своей конструкции, могут работать от сетевого адаптера или независимого источника питания, например, аккумуляторной батареи. Результаты выводятся на жидкокристаллический дисплей. Работа построена на сравнении измеренного сигнала с эталонным и обработкой данных в специальном блоке — анализаторе. Прибор обладает небольшим весом и размерами, но для работы с ним необходима определенная квалификация.
Главным параметром, характеризующим работу измерителя, является погрешность выдаваемого результата. Кроме того, к его основным техническим параметрам относят: пределы сопротивления, величину генерируемого напряжения, температурный диапазон.
Методика испытания
Для того чтобы правильно измерить сопротивление изоляции, необходимо подготовить как предмет испытаний, так и сам прибор. Температура в помещении должна находиться в пределах 25±10 °C с относительной влажностью не более 80%. Перед началом работ следует отключить измеряемый объект от питающей сети. Убедиться в том, что на отключенной линии не выполняются работы и никто не прикасается к токоведущим частям. Все предохранители, лампы и тому подобные электрические приборы должны быть сняты.
Перед испытанием с отключенных токоведущих частей снимается остаточный заряд. Делается это путем их соединения с шиной заземления. Контактная перемычка убирается только после подключения измерителя. По окончании испытания остаточный заряд снова снимается кратковременным восстановлением заземления.
В стандартную комплектацию мегомметра входит три щупа. К ним подключается: защитное заземление, тестируемая линия, экран. Последний используется для исключения токов утечки.
Методику измерения можно представить следующим образом:
- В соответствии с требованиями ПУЭ, предъявляемыми к линии, выбирается тестовое напряжение. Например, для домашней проводки устанавливается значение от 100 В до 500 В. При работе с цифровым прибором для этого необходимо нажать кнопку «Тест», а на аналоговом покрутить ручку до того момента, пока индикатор не сообщит о появлении нужной величины напряжения.
- Линейный вывод тестера подключается к проверяемой жиле кабеля, а земляной — к остальным проводам, объединенным в жгут. То есть каждая жила проверяется относительно остальных проводов, электрически связанных между собой.
- Каждая жила испытывается относительно земли, при этом остальные провода к заземлению не подключаются.
- Если полученные данные оказываются неудовлетворительными, то измерения проводят отдельно для каждой жилы по отношению ко всем взятым проводникам в кабеле.
- Все полученные значения записывают, а затем их сравнивают с нормами ПУЭ и ПТЭЭП.
Следует отметить, что если по каким-либо причинам в низковольтной сети перед испытанием отключить нагрузку не представляется возможным, то замер фазного и нулевого проводников проводится только относительно РЕ (земли). При этом рабочие нули следует отключить от нейтральной шины. Если же это не выполнить, то полученные данные для любого провода будут одинаковы и равны сопротивлению проводника с наихудшими параметрами.
Допустимые значения
Минимальное показание измеренных напряжений должно быть выше нормированных значений. Необходимая величина сопротивления закладывается заводом изготовителем кабельной или электротехнической продукции, согласно действующим техническим условиям.
Выпускаемая электротехническая продукция различается на несколько типов и бывает: общего применения, силовой, контрольной и распределительной. Между собой изделия разделяют не только по физическим характеристикам, но и конструктивным. Их разнообразие обусловлено средой окружения, в которой они используются. Например, кабель, предназначенный для прокладки в земле, усиливается металлической лентой и состоит из нескольких слоев изоляции.
Измеряется сопротивление изоляции в Омах. Но из-за больших величин с показателем всегда используется приставка мега. Указываемое число обычно рассчитано для определенной длины, чаще всего это километр. Если же длина меньше, то просто выполняется перерасчет.
Для кабелей, использующихся в связи и передающих низкочастотный сигнал, сопротивление изоляции, должно быть не менее 5 тыс. МОм/км. А вот для магистральных линий — выше 10 тыс. МОм/км. Но при этом всегда минимальное необходимое значение указывается в паспорте на изделие.
В общем же случае приняты следующие нормы сопротивления изоляции:
- кабель, проложенный в помещении с нормальными условиями окружающей среды, — 0,50 МОм;
- электроплиты, не предназначенные для переноса, — 1 МОм;
- электрощитовые, содержащие распределительные части и магистральные провода, — 1 МОм;
- изделия, на которые подается напряжение до 50 В, — 0,3 МОм;
- электромоторы и другие приборы, работающие при напряжении 100−380 вольт, — 0,5 МОм;
- устройства, подключаемые к электрической линии, предназначенной для передачи сигнала с амплитудой до 1 кВ, — 1 МОм.
Для кабелей, подключенных к силовым линиям, действует немного другая норма. Так, провода, используемые в электрической сети с напряжением более 1 кВ, должны иметь значение сопротивления не менее 10 МОм. Для остальных же, кроме контрольных, минимальный порог снижен вдвое. Для контрольных проводов норматив требует значение сопротивления не менее 1 МОм.
Контроль над изоляцией
Сопротивление изоляции относится к важному параметру электротехнической продукции. Именно от нахождения параметра в установленных нормах зависит безопасность работы. Поэтому важно периодически замерять величину, вовремя выявляя отклонения. Кроме того, для промышленных объектов предусмотрена обязательная периодичность проведения измерений.
В соответствии с установленными нормами и правилами, измерения изоляции должны осуществляться:
- для передвижных или переносных установок не реже одного раза в полугодии;
- для внешних приборов и кабелей наружной прокладки, а также в помещениях с повышенной опасностью — не менее одного раза в год;
- для всех остальных случаев не реже одного раза в три года.
То есть в помещениях, например, таких как офис, магазин, школа, измерение на сопротивление должно выполняться не реже одного раза в 36 месяцев. После окончания испытаний в обязательном порядке составляется акт, в котором указываются измеренные данные. Если замеры неудовлетворительные, то электрический участок выводится в ремонт до момента его приведения к требуемым нормам.
Требования безопасности
Одно из основополагающих правил при исследовании изоляции заключается в том, что приступать к работе, не удостоверившись в отсутствии напряжения на измеряемом участке, нельзя. Прибор, используемый для испытаний, должен быть поверенным или хотя бы быть сертифицированным.
Использовать необходимо лишь только тот мегомметр, выдаваемое напряжение которого соответствует установленным нормам. Так, для сетей или оборудования с напряжением до 50 В, используется тестер, выдающий 100 В. Применение прибора с меньшим значением не даст правдивости информации о состоянии участка, а большего — может привести к повреждениям.
Измерение сопротивления мегомметром необходимо выполнять только на отключенных токоведущих частях, с обязательным снятием остаточного заряда. При этом заземление с токопроводящих частей снимается лишь после подключения тестера. Соединительные провода подсоединяются с помощью изолирующих штанг. При работе прикасаться к токоведущим частям, даже в диэлектрических перчатках, запрещено.
Как провести замер сопротивления изоляции
Сопротивление изоляции — важный параметр, без нормального показателя которого невозможна безопасная работа электроприборов. Что такое замер сопротивления, как проводить эту процедуру, как проверить электропроводку на этот показатель в электролаборатории и многое другое далее.
Что это такое
Сопротивление изоляции — показатель, который влияет на безопасность работы электрических установок. Также это главный параметр во всех кабелях и проводах, поскольку при эксплуатации они всегда подвергаются разным физическим и другим воздействиям. Согласно понятию из учебника физики это соотношение напряжения, которое приложено к диэлектрическому элементу к току, протекающему через этот элемент.
Несмотря на то, что кабели сделаны из качественного и долговечного материала, он может выйти из строя вследствие:
- высокого напряжения и солнечного света;
- механического повреждения и постановки неправильного температурного режима;
- неблагоприятной среды эксплуатации.
Чтобы точно выяснить причины повреждений в цепи кабеля или проверить возможность в дальнейшем эксплуатировать изоляцию, необходимо сделать замер сопротивления изоляции.
Обратите внимание! В случае визуального обнаружения изоляции, выполнение измерений уже не требуется. Осуществляя проведение замеров сопротивления изоляции мегаомметром, можно убрать неисправность, предотвратить пожар и аварийную ситуацию, убрать чрезмерно изношенное устройство, устранить короткие замыкания с возможными ударами тока людей.
Как обследовать электропроводку
Сделать обследование электрической проводки можно только после осмотра ее целостности. Так, на проводных изгибах не должно быть поломанных, потресканных и раскрошенных частей. Если после визуального просмотра, не были выявлены предпосылки того, чтобы заменить кабель, необходимо сделать измерение сопротивления изоляции. Для этого нужно воспользоваться мегаомметром.
Согласно правилам устройства электрических установок, в сети не должно быть сопротивление меньше 0,5 МОм, чтобы можно было правильно провести испытание с напряжением в тысячу вольт.
Кроме того, исследуется электропроводка в качестве профилактики. К примеру, изоляционное сопротивление нужно проверять каждые три года по правилам технической эксплуатации электрических установок. Где есть особо опасные объекты и наружные установки, проверку делают раз в год.
Обратите внимание! При начале работы необходимо сделать подсчет общей мощности потенциальных установленных электрических приборов. Исходя из данной информации, необходимо вычисление сечения кабели по показателям мощности. Далее необходимо сравнить получившуюся цифру с той, что равна сечению кабеля. Если она меньше, значит нужно в срочном порядке менять всю электрическую проводку.
Потом нужно проверить всю скрытую проводку. На части изоляции не должно быть никаких повреждений. Провода должны иметь специальные клеммы.
Обязательно необходимо осуществить проверку распределительного щита. Он должен быть правильным образом собран. В противном случае, когда будут подключены все электроприборы к щитку, автомат будет выбивать из-за предельной нагрузки.
Шкала допустимого сопротивления
Как правило, каждая шкала на предприятии своя, в зависимости от оборудования. Далее даны примеры допустимого изоляционного сопротивления электрических установок, аппаратов, цепей и проводок:
- Электроустановка 12 ватт = менее 0,5 МОм;
- Аппарат напряжения от 42 до 380 ватт = менее 0,5 МОм;
- Электрический инструмент ручного типа в виде трансформатора, переносного светильника = менее 0,5МОм, а в напряжении 2 МОм;
- Бытовая стационарная электроплита = 1МОм;
- Кран и люфт = 0,5МОм;
- Силовая и осветительная электропроводка, распределительная установка, щиток и токопровод = 0,5 МОм;
- Вторичная управленческая цепь защиты измерения или сигнализации = 1 МОм и выше;
- Цепь управления, цепь питания и цепи напряжения — 1 МОм и выше.
Замер сопротивления изоляции кабеля
Замер сопротивления изоляции электропроводки происходит около двух точек электрической установки, характеризующей утечку при подаче напряжения в сети. Результат — показатель, выражаемый в мегаомах. Измерение осуществляется при помощи мегаомметра, который исследует утечку тока, возникающую при действии регулярно поступающего напряжения к электрической установке.
Современными мегаомметрами выдаются разные уровни напряжения, чтобы испытать различное оборудование. В итоге, обязательная часть проверки цепи — изучение изоляционного сопротивления.
Приборы для измерений
Сегодня измерением сопротивления изоляции в кабелях занимаются мегаомметры, лучшие из которых М — 4100, ЭСО 202 / 2Г, MIC — 30, MIC — 1000 и MIC-2500. Поскольку электротехника, как и мир, не стоит на месте, появляются новые устройства и обновления старых.
Мегаомметр
Мегаомметр является специальным прибором, используемым профессиональными электриками, чтобы измерять электросети и приборы. Отличается от омметра тем, что может измерять на более высоком напряжении. Чтобы проверять сопротивление, прибором напряжение генерируется самостоятельно благодаря встроенному механическому генератору или батареи.
Обратите внимание! Конструкция его проста: источник питания, к примеру, генератор переменного тока, имеющий выпрямительный мост, и измерительный механизм.
Применение его широкое. Его используют, чтобы выявить повреждения в электросетях перед тем, как начать эксплуатировать ее, а также обнаружить места, где уже создалась аварийная ситуация. Чтобы проверить изоляцию кабеля в трансформаторной, электродвигательной части и любых устройствах, обладающих электрической обмоткой и изоляцией. Главное предназначение в измерении изоляционного сопротивления кабелей.
Благодаря испытаниям, можно понять, где находятся слабые места в электрических сетях. Показатели, снимаемые с мегаомметра, используются, чтобы определить степень изоляционной изношенности для предотвращения неожиданных и нежелательных случаев возгорания.
Принцип работы устройства прост. Он подает напряжение на кабельный участок, который и проверяется в итоге на наличие нормального поступления тока. При утечках, показатели попадают на панель, откуда пользователь и делает выводы. Если утечка больше допустимого значения, значит, речь идет о повреждении изоляции и появления короткого замыкания, недопустимого для того, чтобы была нормальная эксплуатация электрических сетей. В противном случае, кабели могут загореться.
Укомплектован каждый мегаомметр на 1000 и 2500 вольт гибкими медными проводниками, достигающими в длину до трех метров. Каждый прибор оснащен наконечниками в виде крокодила.
Обратите внимание! Отличаются устройства друг от друга модели дизайном и устройством. Аналоговые измерительные устройства обладают динамо машиной, которая вращением специальной ручки делает выработку напряжения, производящего изоляционные замеры. Также есть приборы с аналоговым табло и механической стрелкой. Современные модели оснащены аккумуляторными батареями и блоком питания, имеют цифровое табло, которое отображает изоляционные показатели с памятью.
Инструкция по технике безопасности
Вся измерительная работа сводится к тому, что используется мегомметр для изучения показателя сопротивления при напряжении до 1000 вольт. При рассмотрении светильников, до работы с ними, отключается напряжение, они выключаются из сети. При применении газоразрядных ламп, можно не выкручивать, а только убрать стартеры.
Важно до начала контрольных измерений проверить прибор, определив показания при разомкнутом и замкнутом проводнике. В первом случае должно появится бесконечное сопротивление, а во втором случае — значение около нуля.
Затем необходимо обесточить кабель. Чтобы убедиться в том, что напряжение отсутствует, нужно использовать указатель напряжения, испытанный на подключенном к участку цепи электрической установки.
Потом нужно заземлить токоведущие жила кабеля и при измерении его надеть диэлектрического вида резиновые защитные перчатки.
Обратите внимание! Прикасаться к токоведущим элементам запрещено!
Сопротивление можно проверить только по отдельной фазе. Если есть отрицательный результат, необходима проверка изоляции в участке фазы и земли.
Выполняя измерения, необходимо полное следование инструкции, разработанной на предприятии. Воспрещено начинать работу, не убедившись в том, что отсутствует напряжение. Коммутация должна быть осуществлена только в том случае, если обесточены токоведущие части и использованы средства защиты.
В целом, сопротивление изоляции — параметр, который нужно измерять при выходе из строя кабели или в качестве профилактики при помощи мультиметра и других доступных способов. Важно при этом полностью следовать инструкции и соблюдать технику безопасности, чтобы все измерения проходили без ущерба для здоровья.
Мегаомметр — друг инженера-электрика
краткое содержание статьи:
Мегаомметр – это прибор для измерения сопротивления изоляции, который подает постоянное напряжение величиной 100, 250, 500, 1000, 2500, 5000В. Это универсальный переносной прибор, предназначенный также для испытаний повышенным напряжением. Мегаомметром испытывают обмотки электродвигателей, силовые кабельные линии, обмотки турбогенераторов и прочее электрооборудование. В общем, везде где есть изоляция, применяют мегаомметр. Данные приборы бывают ручные, цифровые, аналоговые, электронные, механические, высоковольтные.
Сопротивление изоляции, физика процесса
Наиболее часто встречающимся видом измерения в моей практике является измерение сопротивление изоляции. Данный вид измерения можно производить на кабеле (до и после высоковольтных испытаний), обмотке статора турбогенератора, электродвигателе, трансформаторе, даже в релейной защите мегерить цепи приходится постоянно. В общем, на любом электрооборудовании, которое имеет изоляцию, необходимо следить за её величиной и выявлять возможные несоответствия для предотвращения возможных неблагоприятных для оборудования последствий.
Поговорим о физической модели сопротивления изоляции. Более подробно о классах и видах изоляции будет написано в отдельной статье. Уточним же, что факторами, портящими изоляцию являются токи, протекающие в оборудовании и сверхтоки (пусковые, токи кз). В этом материале я остановлюсь на схеме замещения изоляции. Это будет схема, состоящая из двух активных сопротивлений и двух емкостей. Значит, что мы имеем:
- С1 — геометрическая емкость
- С2- абсорбционная емкость
- R1 – сопротивление изоляции
- R2 – сопротивление, потери в котором вызываются абсорбционными токами
Зачем Вам это знать? Ну, я не знаю, возможно, покрасоваться перед не знающими эти основы людьми. Или же, чтобы понять характер прохождения постоянного тока через изоляцию.
Первая цепь состоит из емкости С1. Эта емкость называется геометрической, она характеризуется геометрическими характеристиками изоляции, её расположения относительно земли. Эта емкость разряжается мгновенно, при заземлении изоляции после испытания. Та самая бдыщ, искра при поднесении заземления к испытуемой фазе после опыта.
Вторая цепь имеет в своем составе два элемента – емкость С2 и активное сопротивление R2. Эта цепь имитирует потери при подаче на изоляцию переменного напряжения. R2 характеризует строение и качество изоляции. Чем более изоляция потрепана, тем меньшая величина R2. Емкость С2 называется абсорбционной емкостью. Эта емкость заряжается, при подаче постоянного напряжения, не мгновенно, а за время пропорциональное произведению R2 на С2. Чем лучше диэлектрические свойства изоляции, тем дольше будет заряжаться емкость С2, потому что величина R2 будет больше у здоровой изоляции. В общем, эта емкость отвечает на вопрос, почему после искры надо держать заземление еще пару минут на испытуемой жиле. Она разряжается медленно и заряжается не мгновенно.
Третья ветка состоит из активного сопротивления R3, которое характеризует ток утечки изоляции и потери. Ток возрастает при увлажнении изоляции, пропорционален площади изоляции и обратно пропорционален толщине изоляции. Вот такая электрическая модель изоляции.
История развития мегаомметра
Поговорим про историю развития мегаомметров. Откуда взялось такое название? Вероятно из-за названия измеряемой величины. Кстати, также мегаомметр называют мегер, или говорят промегерить цепь. Знакомо? Оказывается, и возможно, вы это знали, это название происходит от названия древнейшей фирмы по производству измерительного оборудования под названием «Megger». Эта компания появилась еще в 19 веке, а первые тестеры выпускали еще в 1951 году.
Первые мегаомметры, тогда еще мегомметры, были с ручками. Ты крутишь ручку, вырабатывается постоянное напряжение, и ты производишь испытания. Крутить надо было с частотой 120 об/мин. Однако, долго крутить могли не все. Ведь измерения необходимо производить одну минуту, для определения коэффициента абсорбции. Поэтому наука шагнула вперед, и появились аналогичные мегаомметры, но с питанием от сети и кнопкой подачи напряжения. Держать кнопку куда удобнее, чем крутить ручку. Однако тут встает неудобство в том плане, что необходимо найти розетку.
Однако и на этом прогресс не остановился, и появились электронные мегаомметры. Они уже с подсветкой, не обязательно держать кнопку подачи напряжения на протяжении всего испытания, однако, при испытании кабеля, остаточная емкость может спалить прибор (ну я не проверял, но так говорят некоторые инженера).
Как правильно мегаомметр, мегометр, мегомметр, мегаометр или еще как?)
Внимание, говорю правду. Подробнее об этом писал вот тут, но повторюсь еще раз. Правильно прибор для измерения мегаОмов называется мегаомметр. Ранее он назывался мегомметр (например, в книге 1966 года он так и именуется). Новые времена, новые правила. Правильно называть его мегаомметр, так давайте же и будем использовать это название в своей электротехнической жизни. И если мегомметр — это название устаревшее, то прочие интерпретации являются просто неправильными и неграмотными. Хотя можно, например, старые приборы с ручкой, выпущенные в советском союзе называть мегомметры, а новые цифровые, например электронные типа Sonel именовать мегаомметрами. Но это моё личное мнение, скорее даже шутка, чем мнение.
Основные типы и марки приборов мегаомметров из моей практики (устройство и принцип работы)
Мегаомметр ЭСО-210
Начнем с простеньких. Итак, первые участники сегодняшнего парада – украинские приборы ЭСО 210/3 и ЭСО 210/3Г. Буква «Г» говорит о том, что прибор работает от внутреннего генератора и имеет ручку. Модель без ручки работает от сети 220В и от кнопки. Они невелики по размеру и удобны в пользовании. Это верные помощники энергетиков. Ими удобно мегерить любое электрооборудование. А еще можно взять после испытания один из концов и разземлять им, ибо концы с обеих сторон имеют металлические наконечники. В моделях с ручкой в качестве источника напряжения выступает генератор переменного тока, в моделях с кнопкой — трансформатор, преобразующий переменное напряжение в постоянное.
Значит, пройдемся по настройкам прибора. Прибором можно испытывать, подавая постоянное напряжение величиной 500, 1000 или 2500 Вольт. Показания появляются на стрелочной шкале, которая имеет несколько пределов, которые переключаются выключателем. Это шкала «I», «II» и «IIx10».
Шкала «I» — нижние цифры верхней шкалы. Отсчет идет справа налево. Значения от 0 до 50 МОм.
Шкала «II» — верхние цифры верхней шкалы. Отсчет идет слева направо. Значения от 50МОм до 10 ГОм.
Шкала «IIx10» — аналогична шкале «II», однако, значения от 500МОм до 100 ГОм.
В приборе также имеется нижняя шкала от 0 до 600 В. Эта шкала имеется в приборе ЭСО-210/3 и при не нажатом положении кнопки подачи напряжения показывает напряжение на концах. В общем, поднесли концы мегаомметра к розетке, и стрелка поднялась до 220В. Но только правильно подключить их надо на измерение напряжения, а не сопротивления изоляции. Один на молнию, а второй на Ux.
При подаче напряжения загорается красная лампочка на шкале, что сигнализирует о наличии напряжения на концах прибора.
Как подсоединить щупы прибора? У нас имеется три отверстия для присоединения щупов – экран, высокое напряжение и третий измерительный (rx, u). Вообще два щупа спарены и один из них подписан. Ошибиться внимательному человеку непросто.
Мегаомметр sonel mic-2510
Шагнем далее и остановим свой взор на мощном польском приборе под названием Sonel – мегаомметр mic-2510. Этот мегаомметр является цифровым. Внешне он очень симпатичный, в комплект входит сумка, в которую складываются щупы типа крокодилы (достаточно мощные и надежные) и втычные. Кроме того, в комплект входит зарядное устройство. Сам же прибор работает на батарейке, что достаточно удобно. Не требуется подключение к сети и не требуется вращение ручки, как у старых моделей отечественных мегаомметров. Также имеется лента, для удобного расположения на шее. Вначале это казалось мне не очень удобно, но в итоге к этому привыкаешь и осознаешь все достоинства. Кроме надежной батарейки к плюсам можно отнести возможность подачи напряжения без поддержания кнопки. Для этого вначале нажимаешь старт, потом «энтер» и всё – следи за показаниями и не подпускай никого под напряжение.
Этим прибором можно измерять следующие величины двухпроводным способом и трехпроводным. Трехпроводный способ используется для измерений, где необходимо исключить влияние поверхностных токов – трансформаторы, кабели с экраном.
Также прибором можно измерять температуру с помощью термодатчиков, напряжение до 600 вольт, низкоомное сопротивление контактов.
Шкала прибора имеет значения 100, 250, 500, 1000, 2500 Вольт. Это достаточно широкий диапазон, который может удовлетворить нужды инженеров при проведении самых различных испытаний. От коэффициента абсорбции, до коэффициента поляризации. Максимально измеряемое сопротивление изоляции, которое способен измерить прибор составляет 2000 ГОм — впечатляющая величина.
Коэффициент поляризации характеризует степень старения изоляции. Чем он меньше, тем более изоляция изношена. Коэффициент поляризации на 2500В и замеряем сопротивление изоляции через 60 и 600с или через 1 и 10минут. Если он больше двух, то всё хорошо, если от 1 до 2 – то изоляция сомнительна, если же коэффициент поляризации меньше 1 – время бить тревогу. Западные шеф-инженеры не приветствуют высоковольтные испытания, тем же АИДом, а рады провести мегер-тест на 5кВ или 2,5кВ с измерением данного коэффициента.
Коэффициент абсорбции это отношения сопротивления изоляции через 60 и 15 секунд. Этот коэффициент характеризует увлажненность изоляции. Если он стремится к единице, то необходимо поднимать вопрос о сушке изоляции. Более подробно о его величине для разного типа оборудования описано в нормах испытания электрооборудования вашей страны.
В процессе работы я встречался и с другими приборами, но именно эти два показывают, как далеко шагнул прогресс в процессе производства мегаомметров. У каждого из увиденных мною приборов есть свои плюсы и минусы.
Как пользоваться мегаомметром
Как же производятся измерения сопротивления изоляции (самое популярное измерение, которое выполняют мегаомметром) у различного электрооборудования. Рассмотрим, как испытывать, на примере энергосистемы РБ. Хотя, нормы в принципе одни и те же, за минимальными различиями.
Замер сопротивления изоляции мегаомметром, прозвонка с помощью мегаомметра
Перед началом измерения необходимо проверить, что прибор рабочий, для этого необходимо произвести подачу напряжения при закороченных концах и замкнутых. При замкнутых мы должны получить «0», а в разомкнутом состоянии должны иметь бесконечность (так как мы меряем сопротивление изоляции воздуха). Далее сажаем один конец на землю (заземляющий болт, шина, заземленный корпус оборудования), а второй на испытываемую фазу, обмотку. Два человека производят испытания, один держит концы, а второй подает напряжение. Записывается показание через 15 секунд и через 60. По окончании заземляется жила, на которую подавалось напряжение и через минуту-другую (в зависимости от величины и времени подачи напряжения) снимаются концы и измерения производятся на другой жиле по аналогичной схеме.
Как же прозвонить что угодно с помощью мегаомметра, прозвонка это проверка на целостность цепи. Прозвонка – это первый прибор электрика, который он должен собрать сам из лампочки, батарейки и проводков. Как же прозвонить с помощью мегаомметра? Мегаомметр не совсем прозванивает, он показывает, что отсутствует связь между фазой и землей, то есть отсутствие замыкания обмотки на землю. Однако если подать большое напряжение, то вполне можно спалить обмотку реле или двигателя.
Замер сопротивления изоляции электродвигателей мегаомметром
Значит, подходим мы к электродвигателю, например это 380-вольтовый мотор какого-нибудь насоса. Снимаем крышку, отсоединяем питающий кабель. Далее подаем 500В и смотрим. Если в конце минуты сопротивление меньше 1МОм, значит, не соответствует нормам. Коэффициент абсорбции не нормируется для маленьких электродвигателей. Напряжение подается между одной фазой и землей. Две другие фазы соединяются с корпусом. По окончании испытания производится заземление испытанной жилы.
Замер сопротивления изоляции кабелей мегаомметром
Значит, имеем кабель. С одной стороны он, например, подключен к пускателю, а с другой стороны к электродвигателю или приводу, который пускает электродвигатель. Нам необходимо промегерить этот кабель. Мы отключаем его от пускателя и от электродвигателя. Ставим человека у электродвигателя, если он в другом помещении, чтобы не подпускал никого к открытым жилам, которые мы будем испытывать. Далее подаем напряжение между жилой и землей 2500 В в течение минуты. Величина сопротивления изоляции для кабелей напряжением до 1000В должна составлять не ниже 0,5 МОм. Для кабелей напряжением выше 1кВ величина сопротивления изоляции не нормируется. Если мегаомметр показывает ноль, значит, жила пробита и надо искать повреждение. Также измеряется сопротивление изоляции между жилами. Или объединяют три жилы и на землю и если величина неадекватная, то необходимо уже измерять каждую жилу на землю по отдельности.
Также в конце испытаний необходимо до снятия провода, по которому подавалось напряжение, повесить заземляющий провод на него. Чем больше напряжение подавалось, тем дольше необходимо ждать. Для высоковольтных кабелей это время достигает нескольких минут.
Безопасность при работе мегаомметром
Так как мегаомметр подает высокое напряжение, то он является потенциальным источником опасности как для тех, кто это напряжение подает, так и для тех, кто находится рядом с оборудованием, кабелем, на который это напряжение подается.
О чем же необходимо помнить, при работе с мегаомметром? Во-первых, необходимо правильно подсоединять концы к прибору, во-вторых надо надежно закреплять концы, по которым подается напряжение к электрооборудованию. Также не стоит забывать про заземление испытываемого оборудования, как до измерения, так и по окончании для снятия остаточного заряда.
Фокусы с мегаомметром
Про фокусы с мегаомметром могу только отметить, что есть у нас один работник, которого мы мегерили на 500 вольт, тут, как он говорит главное держать концы плотно и не отпускать. Внимание. Не советую вам это повторять . . Зрелище было стремное конечно. А теоретически ток небольшой и термическое воздействие не напрягает.
В общем, желаю вам удачи в вашей работе с мегаомметром, и будьте внимательны, ведь наша профессия не только очень интересная, но и достаточно опасная. ТБ превыше всего.
Сохраните в закладки или поделитесь с друзьями
Измерение сопротивления изоляции постоянному току
Сопротивление изоляции постоянному току является основным показателем состояния изоляции, и его измерение является неотъемлемой частью испытаний всех видов электрооборудования и электрических цепей.
Нормы проверок и испытаний изоляции электрооборудования , определяются ГОСТ, ПУЭ и другими директивными материалами.
Сопротивление изоляции практически во всех случаях измеряется мегомметром — прибором, состоящим из источника напряжения — генератора постоянного тока чаще всего с ручным приводом, магнитоэлектрического логометра и добавочных сопротивлений.
В электромеханических приборах источником питания служит электрома-шинный генератор, приводимый во вращение рукояткой, измерительная система выполнена в виде магнитоэлектрического логометра.
В других типах мегаомметров в качестве измерительного элемента используется вольтметр, фиксирующий падение напряжения на образцовом резисторе от тока в измеряемом сопротивлении. Измерительная система электронных мегаомметров строится на двух операционных усилителях с логарифмической характеристикой, выходной ток одного из которых определяется током объекта, а другого — падением напряжения на нем.
Измерительный прибор включается на разность этих токов, а шкала выполняется в логарифмическом масштабе, что дает возможность градуировать ее в единицах сопротивления. Результат измерения мегаомметрами всех этих систем практически не зависит от напряжения. Однако в некоторых случаях (испытание изоляции, измерение коэффициента абсорбции) следует учитывать, что при малых сопротивлениях изоляции напряжение на зажимах мегаомметра может быть существенно ниже номинального из-за высокого сопротивления ограничивающего резистора, служащего для защиты источника питания от перегрузки.
Выходное сопротивление мегаомметра и истинное значение напряжения на объекте можно рассчитать, зная ток короткого замыкания прибора, в частности: 0,5 для мегаомметров типа Ф4102; 1,0 — для Ф4108 и 0,3 мА — для ЭС0202.
Поскольку в мегомметрах есть источник постоянного тока, то сопротивление изоляции можно измерять при значительном напряжении (2500 В в мегомметрах типов МС-05, М4100/5 и Ф4100) и для некоторых видов электроаппаратуры одновременно испытывать изоляцию повышенным напряжением. Однако следует иметь в виду, что при подключении мегомметра к аппарату с пониженным сопротивлением изоляции напряжение на выводах мегомметра также понижается.
Измерение сопротивления изоляции с помощью мегомметра
Перед началом измерений необходимо убедиться, что на испытываемом объекте нет напряжения, тщательно очистить изоляцию от пыли и грязи и на 2 — 3 мин заземлить объект для снятия с него возможных остаточных зарядов. Измерения следует производить при устойчивом положении стрелки прибора. Для этого нужно быстро, но равномерно вращать ручку генератора. Сопротивление изоляции определяется показанием стрелки прибора мегомметра. После окончания измерений испытываемый объект необходимо разрядить. Для присоединения мегомметра к испытываемому аппарату или линии следует применять раздельные провода с большим со противлением изоляции (обычно не меньше 100 МОм).
Перед пользованием мегомметр следует подвергнуть контрольной проверке, которая заключается в проверке показания по шкале при разомкнутых и короткозамкнутых проводах. В первом случае стрелка должна находиться у отметки шкалы «бесконечность», во втором — у нуля.
Для того чтобы на показания мегомметра не оказывали влияния токи утечки по поверхности изоляции, особенно при проведении измерений в сырую погоду, мегомметр подключают к измеряемому объекту с использованием зажима Э (экран) мегомметра. При такой схеме измерений токи утечки по поверхности изоляции отводятся в землю, минуя обмотку логометра.
Значение сопротивления изоляции в большой степени зависит от температуры . Сопротивление изоляции следует измерять при температуре изоляции не ниже + 5°С, кроме случаев, оговоренных специальными инструкциями. При более низких температурах результаты измерения из-за нестабильного состояния влаги не отражают истинной характеристики изоляции.
В некоторых установках постоянного тока (аккумуляторных батареях, генераторах постоянного тока и т. п.) можно контролировать изоляцию с помощью вольтметра с большим внутренним сопротивлением (30 000 — 50 000 Ом). При этом измеряют три напряжения — между полюсами (U) и между каждым из полюсов и землей.
Мегаомметр — прибор для измерения сопротивления изоляции
Мегаоомметр – прибор для измерения сопротивления изоляции. Его устройство основано на схеме логарифмического измерителя отношений. Основные узлы мегаомметра – электронный измеритель, электромеханический генератор, преобразователь. Генератор постоянного тока в мегаомметре представляет собой гальванические элементы или аккумуляторные батареи, в ранних моделях, которые по возрасту начитывают уже более полувека, ток подавался через динамо-машину, в которой, для того, чтобы она заработала, надо было покрутить ручку. Тем не менее, как прибор для проверки и измерения сопротивления изоляции, мегаомметр М1101М, например, вполне годится: как и полвека назад, он показывает высокую точность измерений.
Мегаомметр работает так: измерительное напряжение поступает через входящий резистор R11 одновременно на резисторы R16, R33, R32 и измеряемый резистор (см. схему). Ток измерителя рассчитывается по формуле:
где К — коэффициент пропорциональности, Rх — измеряемое сопротивление, R16, R17, R18, R32, R33 — сопротивления. Из приведенной выше зависимости следует, что ток измерителя пропорционален логарифму отношения сопротивлений и не зависит от измерительного напряжения.
Обычно мегаомметр, являясь прибором для измерения сопротивления изоляции, имеет токонепроводящий корпус – пластмассовый, или обрезиненный, как, например, в Е6-32. Это создает дополнительное удобство есть защита от поражения электрическим током.
Сопротивление изоляции: как и для чего измерять
Итак, мегаомметр – средство измерений, которое проводит замеры с использованием повышенного выпряиленного напряжения, исключает необходимость подключения к сети, а также имеет несколько фиксированных значений выходного напряжения на зажимах, что дает возможность проводить измерения по разным нормативным требованиям. Мегаомметр применяется как прибор для измерения сопротивления изоляции в различных областях, например в производстве: как правило, требуются замеры обмоток электрических машин и трансформаторов, сопротивления изоляции проводов и кабелей, разъемов, поверхностных и объёмных сопротивлений изоляционных материалов.
Мегаомметр как прибор для измерения сопротивления изоляции довольно редко имеется в организациях, непрофильных электроизмерениям, несмотря на его доступность и широкую распространенность: низкие напряжения измеряются омметром, и еще один прибор, как правило, не приобретают – тем более, что для измерений требуется не только мегаомметр, но и допуск соответствующего уровня. Почему такое важное значение придается изоляции, измерению ее сопротивления, испытаниям?
В силовых кабелях и проводах изоляция разделяет токоведущие жилы, в ячейках распредустройств — отделяет токоведущие установки от заземления, создает систему безопасности при работе с электроустановками и силовыми линиями. Если значение сопротивления изоляции ниже нормируемого, то возможно наступление сразу нескольких последствий: это пожарная опасность – от задымления ядовитыми веществами от горящей изоляции до постоянных утечек тока. И первое, и последнее создает серьезную угрозу жизни и безопасности обслуживающего персонала электрооборудования. При этом измерение сопротивления изоляции, особенно в организациях, занимающихся обслуживанием потребителей (обывателей, покупателей, клиентов), которые, в отличие от персонала, могут не иметь даже минимальной грамотности в сфере электробезопасности – единственная возможность избежать несчастных случаев.
Повреждения изоляции могут возникать по разным причинам. Это заломы и повреждения при транспортировке, перетирание из-за неправильной установки, деградация изоляции вследствие времени, агрессивной среды, температурных воздействий, перепадов напряжения, по каким-либо иным причинам. С помощью мегаомметра – прибора для измерения сопротивления изоляции – при проведении измерений сопротивления изоляции силами специалистов электролаборатории — можно выявить место утечки и впоследствии ликвидировать нарушения в кратчайшие сроки. Нельзя также исключать человеческий фактор – ошибочные действия персонала также могут повредить изоляцию, причем повреждения могут быть системными, поэтому измерение сопротивления изоляции требуется проводить согласно графику измерительных работ и испытаний, утвержденных в нормативных документах: ПУЭ, ПТЭЭП ОиНИЭ, ГОСТ. Измерение для различных видов электрооборудования проводят при значениях постоянного (выпрямленного) напряжения U=250,500,1000,2500,5000В. Значения измеряемого напряжения указываются в методиках, пособиях, руководствах на оборудование.
Специфика измерения сопротивления изоляции
Первым этапом проверки изоляции электропроводки является визуальный осмотр, во время которого можно выявить серьезные нарушения: оплавление изоляции, разрывы, заломы, отсутствие частей изолирующего покрытия, трещины, съеживание или провисание. Точно так же перед тем, как использовать прибор для измерения сопротивления изоляции, необходимо проинспектировать места стыка кабелей, присоединение их к шинам, контакты распределительной коробки, клеммы и пр. Несмотря на то, что, в отличие от показаний мегаомметра при измерениях, визуальный осмотр не дает точных численных значений , его результаты также заносятся в протокол и подшиваются к акту.
Затем производится полное отключение оборудования: силовых трансформаторов, кабельных линий , в электроустановках до 1000В остаточное напряжение снимается, выкручиваются лампы накаливания, выключатели переводятся в режим включения. Это делается для того, чтобы при измерении сопротивления изоляции контуры были замкнуты, но при этом не произошло перегорание «слабых звеньев», не рассчитанных на перепады напряжения.
При использовании мегаомметра — прибора для проверки и измерения сопротивления изоляции – проводятся следующие работы:
- измерение сопротивления между токоведущими частями электроустановок и заземляющими элементами;
- измерение сопротивления между обмотками первичного и вторичного напряжения в силовых и измерительных трансформаторах;
- измерение сопротивления изоляции между нейтралью и землей, между фазными проводниками и землей, между фазой и нулем, между фазными проводниками.
В любом случае, проверка должна выявить либо полное соответствие ПУЭ и ПТЭЭП, либо некоторое несоответствие, которое измеряется дополнительно – если это необходимо — фиксируется и заносится в акт проверки. Проверочное напряжение мегаомметра может быть разным, поэтому измерения классифицируются еще и для разного типа оборудования:
- напряжение 1 кВ используется при проверке проводов, кабелей до 1000В в соответствии с требованиями НД.
- напряжение 2,5 кВ используется для магистральных кабельных линий до 1000В и оборудования выше 1000В.
Отметим, что сотрудникам электротехнической лаборатории, проводящим проверку, необходимо иметь достаточный уровень квалификации: для работ с мегаомметром производителю работ IV группу по электробезопасности, членам бригады — III группу по электробезопасности, при этом в бригаде должно быть не менее двух человек.
Правила эксплуатации мегаоомметра
Правила эксплуатации мегаомметра – прибора для проверки и измерения сопротивления изоляции описаны в Руководстве по эксплуатации средства измерений.
«5.4.1. Измерения мегаомметром в процессе эксплуатации разрешается выполнять обученным работникам из числа электротехнического персонала. В электроустановках напряжением выше 1000 В измерения производятся по наряду, в электроустановках напряжением до 1000 В — по распоряжению. В тех случаях, когда измерения мегаомметром входят в содержание работ, оговаривать эти измерения в наряде или распоряжении не требуется.
5.4.2. Измерение сопротивления изоляции мегаомметром должно осуществляться на отключенных токоведущих частях, с которых снят заряд путем предварительного их заземления. Заземление с токоведущих частей следует снимать только после подключения мегаомметра.
5.4.3. При измерении мегаомметром сопротивления изоляции токоведущих частей соединительные провода следует присоединять к ним с помощью изолирующих держателей (штанг). В электроустановках напряжением выше 1000 В, кроме того, следует пользоваться диэлектрическими перчатками.
5.4.4. При работе с мегаомметром прикасаться к токоведущим частям, к которым он присоединен, не разрешается. После окончания работы следует снять с токоведущих частей остаточный заряд путем их кратковременного заземления».
При работе с мегаомметром нашими специалистами, все правила по предварительной подготовке измерений, безопасности труда, проведению измерений и фиксации их результатов соблюдаются неукоснительно, что обеспечивает высокое качество выполнения исследований. Сотрудники электролаборатории имеют необходимые допуски, а организация –разрешительные документы на виды деятельности. Работы проводятся на территории Северо-Западного Федерального Округа.
Если проверка сопротивления изоляции выявила несоответствие показаний требованиям нормативных документов (например ПТЭЭП или ПУЭ), то данное испытуемое оборудование бракуют, о чем делают запись в протоколе и ведомости дефектов.
Измерение сопротивления изоляции кабелей, имеющих фазные жилы, сечение которых – 16мм2 или меньше, выполняется при помощи мегаомметра (проверочное напряжение — 1000В).
Измерение сопротивления изоляции кабелей и проводов, фазные жилы которых имеют сечение больше 16мм2, осуществляется мегаомметром (проверочное напряжение — 2500В).
Удовлетворительным принято считать сопротивление изоляции линий напряжением до 1000В при значении между любыми её проводами не больше 0,5МОм.
Для силовых кабельных линий значение сопротивления не нормируется.
Для оборудования электроустановок до и выше 1000В нормируемые значения сопротивления изоляции используют из НД : ПУЭ , 7-е изд., гл.1.8., ПТЭЭП, ОиНИЭ, паспорта заводов –производителей оборуования.
Работы выполняются специалистами имеющими III гр. по ЭБ для членов бригады и IV гр. по ЭБ до и выше 1000В для производителя работ.