54 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Схема вольтметра переменного напряжения

Простой самодельный вольтметр

Здравствуй дорогой читатель. Иногда возникает необходимость иметь «под рукой» небольшой простенький вольтметр. Сделать такой вольтметр своими руками не составит большого труда.

О пригодности вольтметра для измерения напряжений в тех или иных цепях судят по его входному сопротивлению, которое складывается из сопротивления рамки стрелочного прибора и сопротивления добавочного резистора. Так как на разных пределах добавочные резисторы имеют разные номиналы, то и входное сопротивление прибора будет другим. Чаще вольтметр оценивают его относительным входным сопротивлением, характеризующим отношение входного сопротивления прибора к 1В измеряемого напряжения, например 5кОм/В. Это удобнее: входное сопротивление вольтметра на разных пределах измерений разное, а относительное входное сопротивление постоянное. Чем меньше ток полного отклонения стрелки измерительного прибора Iи, используемого в вольтметре, тем больше будет его относительное входное сопротивление, тем точнее будут производимые им измерения. В транзисторных конструкциях приходится измерять напряжение от долей вольта до нескольких десятков вольт, а в ламповых еще больше. Поэтому однопредельный вольтметр неудобен. Например, вольтметром со шкалой на 100В нельзя точно измерить даже напряжения 1— 5В, так как отклонение стрелки получится малозаметным. Поэтому нужен вольтметр, имеющий хотя бы три — четыре предела измерений. Схема такого вольтметра постоянного тока показана на рис.1. Наличие четырех добавочных резисторов R1, R2, R3 и R4 свидетельствует о том, что вольтметр имеет четыре предела измерений. В данном случае первый предел 0-1В, второй 0-10В, третий 0-100В и четвертый 0-1000В.
Сопротивления добавочных резисторов можно рассчитать по формуле, вытекающей из закона Ома: Rд= Uп/Iи — Rп, здесь Uп — наибольшее напряжение данного предела измерений, Iи – ток полного отклонения стрелки измерительной головки, а Rп – сопротивление рамки измерительной головки. Так, например, для прибора на ток Iи = 500мкА (0,0005А) и рамкой сопротивлением 500 Ом сопротивление добавочного резистора R1, для предела 0-1В должно быть 1,5кОм, для предела 0-10В — 19,5кОм, для предела 0-100В — 199,5кОм, для предела 0-1000 – 1999,5кОм. Относительное входное сопротивление такого вольтметра будет 2кОм/В. Обычно, в вольтметр монтируют добавочные резисторы с номиналами, близкими с расчетными. Окончательно же «подгонку» их сопротивлений производят при градуировке вольтметра путем подключения к ним параллельно или последовательно других резисторов.

Если вольтметр постоянного тока дополнить выпрямителем, преобразующим переменное напряжение в постоянное (точнее — пульсирующее), получим вольтметр переменного тока. Возможная схема такого прибора с однополупериодным выпрямителем показана на рис.2. Работает прибор следующим образом. В те моменты времени, когда на левом (по схеме) зажиме прибора положительная полуволна переменного напряжения, ток идет через диод Д1 и далее через микроамперметр к правому зажиму. В это время диод Д2 закрыт. Во время положительной полуволны на правом зажиме, диод Д1 закрывается, и положительные полуволны переменного напряжения замыкаются через диод Д2, минуя микроамперметр.
Добавочный резистор Rд рассчитывают так же, как и для постоянных напряжений, но полученный результат делят на 2,5-3, если выпрямитель прибора однополупериодный, или на 1,25-1,5, если выпрямитель прибора двухполупериодный — рис.3. Более точно сопротивление этого резистора подбирают опытным путем во время градуировки шкалы прибора. Можно рассчитать Rд и по другим формулам. Сопротивление добавочных резисторов вольтметров выпрямительной системы, выполненных по схеме на рис.2, вычисляют по формуле:
Rд = 0,45*Uп/Iи – (Rп + rд);
Для схемы на рис.3 формула имеет вид:
Rд = 0,9*Uп/Iи – (Rп + 2rд); где rд – сопротивление диода в прямом направлении.
Показания приборов выпрямительной системы пропорциональны средне выпрямленному значению измеряемых напряжений. Шкалы же их градуируют в среднеквадратических значения синусоидального напряжения, поэтому показания приборов выпрямительной системы равны среднеквадратичному значению напряжения лишь при измерении напряжений синусоидальной формы. В качестве выпрямительных диодов используются германиевые диоды Д9Д. Такими вольтметрами можно измерять и напряжение звуковой частоты до нескольких десятков килогерц. Шкалу для самодельного вольтметра можно начертить с помощью программы FrontDesigner_3.0_setup.

Как сделать простой вольтметр своими руками – схемы и рекомендации

Ситуации, когда под рукой должен находиться вольтметр, встречаются достаточно часто. Для этого нет необходимости использовать заводской сложный прибор. Изготовить простенький вольтметр своими руками – не проблема, потому что состоит он из двух элементов: стрелочный измерительный блок и резистор. Правда, необходимо отметить, что пригодность вольтметра определяется его входным сопротивлением, которое состоит из сопротивлений его элементов.

Но необходимо учитывать тот факт, что резисторы есть разные с разными номиналами, а это говорит о том, что от установленного резистора будет зависеть входное сопротивление. То есть, подобрав правильно резистор, можно сделать вольтметр под замеры определенных уровней напряжений сетей. Сам же измерительный прибор чаще оценивается по показателю – относительное входное сопротивления, приходящееся на один вольт напряжения, его единица измерения – кОм/В.

То есть, получается так, что входное сопротивления на разных измеряемых участках разное, а относительная величина – показатель постоянный. К тому же, чем меньше отклоняется стрелка измерительного блока, тем больше относительная величина, а, значит, точнее будут измерения.

Прибор для измерения нескольких пределов

Кто не раз сталкивался с транзисторными конструкциями и схемами знает, что очень часто вольтметром приходится замерять цепи с напряжением от десятков долей одного вольта до сотен вольт. Простой приборчик, изготовленный своими руками, с одним резистором это не осилит, поэтому в схему придется подключить несколько элементов с разным сопротивлением. Чтобы вы поняли, о чем идет речь, предлагаем ознакомиться со схемой, расположенной снизу:

На ней показано, что в схеме установлено четыре резистора, каждый из которых отвечает за свой диапазон измерений:

  1. От 0 вольт до единицы.
  2. От 0 вольт до 10В.
  3. От 0 В до 100 вольт.
  4. От 0 до 1000 В.

Номинал каждого резистора поддается подсчету, который проводится на основе закона Ома. Здесь используется следующая формула:

  • Rп – это сопротивление измерительного блока, возьмем, к примеру. 500 Ом;
  • Uп – это максимальное напряжение измеряемого предела;
  • Iи – это сила тока, при которой стрелка отклоняется до конца шкалы, в нашем случае – 0,0005 ампер.

Для несложного вольтметра из китайского амперметра можно выбрать следующие резисторы:

  • для первого предела – 1,5 кОм;
  • для второго – 19,5 кОм;
  • для третьего – 199,5;
  • для четвертого – 1999,5.

А вот относительная величина сопротивления этого прибора будет равна 2 кОм/В. Конечно, расчетные номиналы не совпадают со стандартными, поэтому резисторы придется подбирать близкими по значению. Далее проводится финишная подгонка, при которой производится градуировка самого прибора.

Как переделать вольтметр постоянного напряжения в переменное

Показанная на рисунке №1 схема – это вольтметр постоянного тока. Чтобы его сделать переменным или, как говорят специалисты, пульсирующим, необходимо в конструкцию установить выпрямитель, с помощью которого постоянное напряжение преобразуется в переменное. На рисунке №2 вольтметр переменного тока показан схематически.

Данная схема работает так:

  • когда на левом зажиме находится положительная полуволна, то открывается диод D1, D2 в этом случае закрыт;
  • напряжение проходит через амперметр к правому зажиму;
  • когда положительная полуволна находится на правом конце, то D1 закрывается, и напряжение через амперметр не проходит.

В схему обязательно добавляется резистор Rд, сопротивление которого рассчитывается точно так же, как и остальные элементы. Правда, его расчетное значение делится на коэффициент, равный 2,5-3. Это в том случае, если в вольтметр устанавливается однополупериодный выпрямитель. Если используется двухполупериодный выпрямитель, то значение сопротивления делится на коэффициент: 1,25-1,5. Кстати, схема последнего изображена на рисунке №3.

Читать еще:  Схема подключения счетчика меркурий 201 фото

Как правильно подключить вольтметр

Тот, кто не знает, но хочет проверить напряжение на каком-то участке электрической сети, должен задаться вопросом – как подключить вольтметр? Это на самом деле серьезный вопрос, в ответе которого лежит простое требование – подключение вольтметра необходимо проводить только параллельно нагрузке. Если будет произведено последовательное подключение, то сам прибор просто выйдет из строя, и вас может ударить током.

Все дело в том, что при таком соединении уменьшается сила тока, действующая на сам измерительный прибор. При этом сопротивлении его не меняется, то есть, остается большим. Кстати, никогда не путайте вольтметр с амперметром. Последний подключается к цепи последовательно, чтобы снизить показатель сопротивления до минимума.

И последний вопрос темы – как пользоваться вольтметром, изготовленным самостоятельно. Итак, в вашем приборе два щупа. Один подключается к нулевому контуру, второй к фазе. Так же можно проверить напряжение через розетку, предварительно определив, к какому гнезду запитан ноль, а к какому фаза. Или соединяете параллельно прибор к измеряемому участку. Стрелка измерительного блока покажет величину напряжения в сети. Вот так пользуются этим самодельным измерительным прибором.

1 комментарий

Выпрямитель – преобразователь электрической энергии; механическое, электровакуумное, полупроводниковое или другое устройство, предназначенное для преобразования входного электрического тока переменного направления в ток постоянного направления, в частном случае – в постоянный выходной электрический ток.

Схема. Вольтметр переменного напряжения

Автор: Radioelectronika-Ru · Опубликовано 14.12.2017 · Обновлено 20.03.2018

Предлагаемый вольтметр предна­значен для измерения переменного напряжения синусоидальной формы частотой от 1 Гц до 800 кГц. Интервал измеряемого напряжения — 0…3 В (или 0…30 В с внешним делителем напряже­ния 1:10). Результат измерения отобра­жается на четырехразрядном свето­диодном индикаторе. Точность измере­ния определяется параметрами встро­енных в микроконтроллер АЦП и источ­ника образцового напряжения и равна 2 мВ (для интервала 0…3 В).

Питается вольтметр от источника стабилизированного напряжения 5 В и потребляет ток 40…65 мА в зависимо­сти от примененного индикатора и яркости его свечения. Ток, потребляе­мый от встроенного преобразователя полярности, не превышает 5 мА.

В состав устройства (см. схему на рис. 1) входят преобразователь переменного напряжения в постоянное, бу­ферный усилитель постоянного напря­жения, цифровой вольтметр и преобра­зователь полярности питающего напря­жения. Преобразователь переменного напряжения в постоянное собран на компараторе DA1, генераторе импуль­сов на элементах DD1.1—DD1.4 и пере­ключательном транзисторе VT1. Рас­смотрим его работу подробнее. Пред­положим, что на входе устройства сиг­нала нет. Тогда напряжение на инверти­рующем входе компаратора DA1 равно нулю, а на неинвертирующем опреде­ляется делителем напряжения R19R22 и при указанных на схеме номиналах равно около -80 мВ. На выходе компа­ратора в этом случае присутствует низ­кий уровень, который разрешает работу генератора импульсов.

Особенность генератора в том, что при каждом спаде напряжения на выходе компаратора DA1 на выходе генера­тора (вывод 8 элемента DD1.2) форми­руется один импульс. Если к моменту его спада выходное состояние компа­ратора не изменится, сформируется следующий импульс и т. д. Длитель­ность импульсов зависит от номиналов элементов R16, С5 и равна примерно 0,5 мкс.

При низком уровне напряжения на выходе элемента DD1.2 открывается транзистор VT1. Номиналы резисторов R17, R18 и R20 подобраны так, чтобы через открытый транзистор протекал ток 10 мА, который заряжает конденса­торы С8 и С11. За время действия каж­дого импульса эти конденсаторы заря­жаются на доли милливольта. В устано­вившемся режиме напряжение на них возрастет от -80 мВ до нуля, частота следования импульсов генератора уменьшится и импульсы коллекторного тока транзистора VT1 будут компенси­ровать только медленную разрядку кон­денсатора С11 через резистор R22. Таким образом, благодаря небольшому начальному отрицательному смеще­нию, даже в отсутствие входного сигна­ла, преобразователь работает в нор­мальном режиме.

При подаче входного переменного напряжения из-за изменения частоты следования импульсов генератора на­пряжение на конденсаторе С11 изменя­ется в соответствии с амплитудой входного сигнала. ФНЧ R21C12 сглаживает выходное напряжение преобразовате­ля. Следует отметить, что фактически преобразуется только положительная полуволна входного напряжения, по­этому если оно несимметрично относи­тельно нуля, возникнет дополнительная погрешность.

Буферный усилитель с коэффициен­том передачи 1,2 собран на ОУ DA3. Подключенный к его выходу диод VD1 защищает входы микроконтроллера от напряжения минусовой полярности. С выхода ОУ DA3 через резистивные де­лители напряжения R1R2R3 и R4R5 по­стоянное напряжение поступает на ли­нии РСО и РС1 микроконтроллера DD2, которые сконфигурированы как входы АЦП. Конденсаторы С1 и С2 дополни­тельно подавляют помехи и наводки.

Собственно цифровой вольтметр собран на микроконтроллере DD2, в котором использованы встроенный 10-разрядный АЦП и внутренний источник образцового напряжения 1,1 В. Про­грамма для микроконтроллера написана с использованием среды BASCOM-AVR и допускает применение трех- или четы­рехразрядных цифровых све­тодиодных индикаторов с об­щим анодом или общим като­дом и позволяет отображать действующее (для синусои­дального сигнала) или ампли­тудное значение напряжения входного сигнала, а также изменять яркость свечения индикатора.

Логический уровень сигна­ла на линии РСЗ задает тип примененного индикатора — с общим анодом (низкий) или с общим катодом (высокий), а на линии РС4 — число его раз­рядов, четыре — для низкого и три — для высокого. Про­грамма в начале работы один раз считывает уровни сигна­лов на этих линиях и настраи­вает микроконтроллер на работу с соответствующим индикатором. Для четырех­разрядного индикатора ре­зультат измерения отобража­ется в виде Х.ХХХ (В), для трехразрядного — XXX (мВ) до 1 В и Х.ХХ (В), если напряжение более 1 В. При применении трехразряд­ного индикатора выводы его разрядов подключают как выводы трех старших разрядов четырехразрядного на рис. 1. Уровень сигнала на линии РС2 уп­равляет умножением результата изме­рений на 10, что необходимо при при­менении внешнего делителя напряжения 1:10. При низком уровне результат не умножается Сигнал на линии РВ6 управляет яркостью свечения индика­тора, при высоком уровне она снижает­ся. Изменение яркости происходит в результате изменения соотношения между временем свечения и временем гашения индикатора внутри каждого цикла измерения. При заданных в про­грамме константах яркость изменяется примерно вдвое. Действующее значе­ние входного напряжения отображает­ся при подаче на линию РВ7 высокого уровня и амплитудное — низкого. Уров­ни сигналов на линиях РС2, РВ6 и РВ7 программа анализирует в каждом цик­ле измерения, и поэтому они могут быть изменены в любой момент, для чего удобно применять переключатели. Продолжительность одного цикла измерения равна 1.1 с. За это время АЦП выполняет около 1100 отсчетов, из них выбирается максимальный и умно­жается, если необходимо, на нужный ко­эффициент. Для постоянного измеряе­мого напряжения достаточно было бы одного измерения на весь цикл, а для переменного с частотой менее 500 Гц напряжение на конденсаторах С8. С11 заметно изменяется в течение цикла. Поэтому 1100 измерений с интервалом 1 мс позволяют зафиксировать макси­мальное за период значение.

Преобразователь полярности пита­ющего напряжения собран на микро­схеме DA2 по стандартной схеме. Его выходное напряжение -5 В питает ком­паратор DA1 и ОУ DA3. Разъем ХР2 предназначен для внутриаппаратного программирования микроконтроллера.

В вольтметре применены посто­янные резисторы С2-23, МЛТ, подстроечные — фирмы Bourns серии 3296, оксидные конденсаторы — им­портные, остальные — К10-17. Микро­схему 74АСОО можно заменить на КР555ЛАЗ, транзистор КТ361Г — на любой из серии КТ3107. Диод 1N5818 заменим любым германиевым или дио­дом Шотки с допустимым прямым то­ком не менее 50 мА. Замена для микро­схемы ICL7660 автору неизвестна, но преобразователь полярности напряже­ния +5/-S В можно собрать по одной из опубликованных в журнале “Радио” схем. Кроме того, преобразователь можно исключить совсем, применив двухполярный стабилизированный ис­точник питания.

Читать еще:  Схема и расчет конденсаторного запуска электродвигателя

Особо следует остановиться на вы­боре компаратора, поскольку от него зависит диапазон рабочих частот. Вы­бор компаратора LM319 (аналоги КА319, LT319) обусловлен двумя крите­риями — необходимым быстродейст­вием и доступностью. Компараторы LM306, LM361, LM710 более быстро­действующие, но приобрести их оказа­лось труднее, к тому же они дороже. Более доступны LM311 (отечественный аналог КР554САЗ) и LM393. При уста­новке в устройство компаратора LM311, как и следовало ожидать, частотный диапазон сузился до 250 кГц.

Резистор R6 имеет сравнительно небольшое сопротивление, поскольку устройство было примене­но как встроенный вольт­метр в генераторе НЧ. При использовании прибора в автономном измерителе его сопротивление можно увеличить, но погрешность измерения возрастет из-за сравнительно большого входного тока компаратора DA1.

Схема делителя напря­жения 1:10 показана на рис. 2. Здесь функции ре­зистора R2 в делителе выполняет резистор R6 (см. рис. 1). Налаживают делитель напряжения в определенной последова­тельности. На его вход по­дают прямоугольные им­пульсы с частотой не­сколько килогерц, ампли­тудой 2…3 В (такой калиб­ровочный сигнал имеется во многих осциллографах), а к выходу (к выводу 5 DA1) подключают вход осциллографа. Подстройкой конденсатора С1 доби­ваются прямоугольной формы импуль­сов. Осциллограф следует применить с входным делителем напряжения 1:10.

Все детали, кроме индикатора, смонтированы на макетной монтажной плате размерами 100×70 мм с приме­нением проводного монтажа. Внешний вид одного из вариантов устройства показан на рис. 3. Для удобства под­ключения цифрового индикатора при­менен разъем (на схеме не показан). При монтаже общий провод входной вилки ХР1 и соответствующие выводы конденсаторов С8, СЮ, С11 и С13 сле­дует соединить с общим проводом в одном месте проводами минимальной длины. Элементы VT1, R20, С8, СЮ, С11 и С13 и компаратор DA1 должны быть размещены максимально компактно, конденсаторы СЗ, С6 — как можно ближе к выводам компаратора DA1, а С4, С14, С15 — к выводам мик­роконтроллера DD2.

Для налаживания вход устройства замыкают, общий вывод щупа осцил­лографа присоединяют к плюсовому выводу конденсатора С13, а сигналь­ный — к эмиттеру транзистора VT1. На экране должен появиться импульс отрицательной полярности амплитудой около 0,6 В и длительностью 0,5 мкс. Если из-за малой частоты следования импульсов их будет трудно наблюдать, то временно параллельно конденсато­ру С11 подключают резистор сопротив­лением 0,1…1 кОм. Напряжение на конденсаторе С12 контролируют высокоомным вольтметром, оно должно быть близко к нулю (плюс-минус не­сколько милливольт). Напряжение на выходе ОУ DA3 (которое не должно пре­вышать нескольких милливольт) рези­стором R27 устанавливают равным нулю.

Требуемый режим работы микро­контроллера устанавливают подачей требуемых уровней на линии РВ6, РВ7, РС2—РС4, для чего их соединяют с об­щим проводом или с линией питания +5 В через резисторы сопротивлением 20…30 кОм. Ко входу устройства под­ключают образцовый вольтметр и пода­ют постоянное напряжение 0,95… 1 В. Подстрочным резистором R4 уравни­вают показания обоих вольтметров. За­тем напряжение повышают до 2,95…3 В и резистором R1 вновь уравнивают по­казания.

Подборкой резисторов R8—R15 можно установить желаемую яркость свечения индикатора. Сначала подби­рают требуемый номинал только одно­го из них, а затем устанавливают ос­тальные. При подборке следует пом­нить, что максимальный выходной ток , порта примененного микроконтролле­ра не должен превышать 40 мА, а об­щий потребляемый ток — 200 мА.

Я. ОСТРОУХОВ, г. Сургут
“Радио” №2 2011г.

Простой модульный вольтметр переменного напряжения на PIC16F676

↑ Принципиальная схема вольтметра для измерения переменного напряжения

Реализовано прямое измерение переменного напряжения с последующим вычислением его значения и вывода на индикатор. Измеряемое напряжение поступает на входной делитель, выполненный на R3, R4, R5 и через разделительный конденсатор C4 поступает на вход АЦП микроконтроллера.

Резисторы R6 и R7 создают на входе АЦП напряжение 2,5 вольта (половина питания). Конденсатор C5, относительно малой ёмкости, шунтирует вход АЦП и способствует уменьшению ошибки измерения. Микроконтроллер организует работу индикатора в динамическом режиме по прерываниям от таймера.

↑ Конструкция и детали

Вариант с доп. питанием + 7…15 В. Пределы измерения 0 – 250 Вольт.

Вольтметр собран на плате из одностороннего фольгированного стеклотекстолита. Индикатор применён с общим катодом.
Резисторы R6 и R7 могут иметь величину 47 – 100 ком. Их необходимо подобрать с одинаковыми номиналами или взять с 1% допуском. От их равенства номиналов зависит линейность показаний в верхней части шкалы.
Номинал резисторов R8 – R12 выбирается в зависимости от требуемой яркости свечения и светоотдачи индикатора. При этом возможно придётся увеличить ёмкость конденсатора C1 для получения большего значения тока для питания индикатора.
При использовании индикатора с малой светоотдачей желательно вместо микросхемы U1 (78L05) применить более мощную 7805 для того чтобы избежать перегрева.

↑ Настройка

Настройка вольтметра особенностей не имеет. Перед настройкой желательно выждать 10 – 15 минут после включения. Необходимо установить правильные показания с помощью резисторов R5 (точно) и R3 (грубо, если потребуется).

↑ Программа

Программа написана на языке СИ (mikroC PRO for PIC) и снабжена комментариями. В программе применено прямое измерение переменного напряжения микроконтроллером, что позволило упростить схему и повысить точность измерения малых напряжений.
Микропроцессор применён PIC16F676. Тактовая частота внутреннего генератора 4 МГц.

Работа программы: в течение некоторого отрезка времени производится многократное прямое измерение напряжения без привязки к фазе и при этом определяются минимальное и максимальное значения напряжений. Разность их значений будет равна размаху измеряемого напряжения, которое и выводится на индикатор.

↑ Возможные применения вольтметра

• Измерение регулируемого напряжения, снимаемого с ЛАТРа (пределы измерения 0 – 250 Вольт )

• Измерение напряжения внутри какого-либо устройства, если есть внутренний источник питания с напряжением 8 – 15 Вольт (пределы измерения 0 – 250 Вольт). Используется вариант платы без блока питания. Я применил этот вариант в ШИМ регуляторе переменного напряжения.

↑ Файлы

Здравствуй, читатель! Меня зовут Игорь, мне 45, я сибиряк и заядлый электронщик-любитель. Я придумал, создал и содержу этот замечательный сайт с 2006 года.
Уже более 10 лет наш журнал существует только на мои средства.


Спасибо за внимание!
Игорь Котов, главный редактор журнала «Датагор»

Здравствуй, читатель! Меня зовут Игорь, мне 45, я сибиряк и заядлый электронщик-любитель. Я придумал, создал и содержу этот замечательный сайт с 2006 года.
Уже более 10 лет наш журнал существует только на мои средства.


Спасибо за внимание!
Игорь Котов, главный редактор журнала «Датагор»

Здравствуй, читатель! Меня зовут Игорь, мне 45, я сибиряк и заядлый электронщик-любитель. Я придумал, создал и содержу этот замечательный сайт с 2006 года.
Уже более 10 лет наш журнал существует только на мои средства.


Спасибо за внимание!
Игорь Котов, главный редактор журнала «Датагор»

↑ Дополнения

Спасибо за внимание!
Иван Внуковский, г. Днепропетровск, Украина

Электронные вольтметры переменного тока

Такие вольтметры состоят из преобразователя переменного напряжения в постоянное, усилителя и магнитоэлектрического измерительного механизма. Возможны две обобщенные структурные схемы вольтметров переменного тока (рис. 4.17), различающиеся своими характеристиками. В вольтметрах по схеме рис.4.17,а измеряемое напряжение их сначала преобразуется в постоянное напряжение, которое затем подается на УПТ и ИМ, являющиеся, по существу, вольтметром постоянного тока. Преобразователь Пр представляет собой мало­инерционное нелинейное звено, поэтому вольтметры с такой структурой могут работать в широком частотном диапазоне (от десятков герц до 10 3 МГц).

Читать еще:  Условные обозначения в электрических схемах автомобилей

Рис.4.17. Структурные схемы вольтметров переменного тока

В вольтметрах, выполненных по схеме рис.4.17, б, благодаря пред­варительному усилению удается повысить чувствительность. Однако создание усилителей переменного тока с большим коэффициентом усиления, работающих в широком диапазоне частот,— достаточно трудная техническая задача. Поэтому такие вольтметры имеют относительно низкий частотный диапазон (1 — 10 МГц); верхний предел измерений при максимальной чувствительности составляет десятки или сотни микровольт.

В зависимости от вида преобразователя переменного напряжения в постоянное отклонения указателя измерительного механизма вольтметров могут быть пропорциональны амплитудному (пиковому), среднему (средневыпрямленному) или действующему значениям измеряемого напряжения.

Вольтметры амплитудного значения имеют преобразователи амплитудных значений (пиковые детекторы) с открытым (рис. 4.18, а) или закрытым (рис. 4.19, а) входами, где ивх и ивых — входное и выходное напряжения преобразователя.

Рис. 4.18. Схема (а) и временные диаграммы сигналов (б и в) преобразователя амплитудных значений (пикового детектора)

с открытым входом

В амплитудных преобразователях с открытым входом конденсатор заряжается практически до максимального ихmах положительного (при данном включении диода) значения входного напряжения (см. рис. 4.18, б). Пульсации напряжения uвых на конденсаторе объясняются его подзарядом при открытом диоде и разрядом через резистор R при закрытом диоде.

Среднее значение выходного напряжения иср » ихтах и, следовательно, угол отклонения указателя измерительного механизма

(4.29)

где ky — коэффициент преобразования вольтметра.

Особенностью амплитудных преобразователей с открытым входом является то, что они пропускают постоянную составляющую входного сигнала (положительную для показанного включения диода)

При ивх= Uo + Um sin ωt среднее значение выходного напряжения иСР ≈ Uо + Um. Следовательно,

(4.30)

Очевидно, при UBX 2 . В качестве такого преобразователя используют термопреобразователи, квадратирующие устройства с кусочно-линейной аппроксимацией параболы, электронные лампы и другие. При этом если вольтметр действующего значения выполнен по структурным схемам, изображенным на рис.4.17, то независимо от формы кривой измеряемого напряжения отклонение указателя измерительного механизма пропорционально квадрату действующего значения измеряемого напряжения:

(4.36)

188.64.169.166 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Вольтметр-измеряем напряжение. Назначение, принцип работы, типы.

Вольтметр – это прибор, назначение которого измерять электродвижущую силу (ЕДС) на определенном участке электрической цепи, или проще – прибор для измерениянапряжения (разность электрических потенциалов). Этот прибор всегда подключается параллельно элементу питания или нагрузке. Измеренное значение вольтметр показывает в Вольтах.

Если говорить об идеальном вольтметре, то он должен обладать бесконечным внутренним сопротивлением, чтобы точно измерять напряжение и не оказывать побочного воздействия на цепь. Именно поэтому в приборах высокого класса стараются сделать максимально возможным внутреннее сопротивление, от которого зависит точность измерения и помехи, создаваемые вольтметром в электрической цепи.

Рисунок — Формулы измерения напряжения

Если говорить о способе монтажа, то вольтметры подразделяют на три основные группы:

Как становится ясно из названия, стационарные приборы используются там, где необходим постоянный контроль, щитовые – в распределительных щитках и на приборных панелях, а переносные – в компактных приборах, которые можно использовать в любом месте.

Рисунок — Схема подключения вольтметра

Посмотрите видео о подключении вольтметра:

По назначению все вольтметры делятся

Вольтметры переменного тока, как и постоянного используются для измерений в сетях с соответствующим типом тока, а вот селективные – могут отделять гармоническую составляющую сложного сигнала, и определять среднеквадратическое значение напряжения.

Импульсный вольтметр обычно используют для измерений амплитуды постоянных импульсных сигналов, а также они способны точно определить амплитуду одиночного импульса.

Фазочувствительные приборы могут измерять изменения составляющих комплексных напряжений, благодаря чему становится возможным точное исследование амплитудно-фазовой характеристики усилителей, и прочих подобных схем.

По принципу действия различают электронные (цифровые или аналоговые), и электромеханические вольтметры (электромагнитные, термоэлектрические, а также магнитоэлектрические, электродинамические и электростатические).

Все электромеханические приборы, за исключением термоэлектрических, по сути, являются обычным измерительным механизмом с показывающим устройством. Во всех них для расширения пределов измерений применяются дополнительные сопротивления.

Приборы данной категории, не смотря на довольно высокое внутреннее сопротивление, имеют относительно большую погрешность, что делает невозможным их использование в ходе экспериментов и исследований, где требуется повышенная точность данных.

Термоэлектрический вольтметр использует для замеров электродвижущую силу одной или нескольких термопар, которые греются из-за тока входящего сигнала. Они более точны и компактны, в сравнении с электромеханическими измерителями напряжения.

Электронные вольтметры в свою очередь подразделяются на цифровые и аналоговые.

Цифровой вольтметр преобразует постоянное значение напряжения в цифровой сигнал, который и выводится на табло прибора. Делается это при помощи аналого-цифрового преобразователя.

В аналоговых вольтметрах помимо магнитоэлектрического измерителя и дополнительных резисторов в обязательном порядке присутствует измерительный усилитель, позволяющий в несколько раз повысить внутреннее сопротивление прибора, и соответственно – улучшить точность показаний.

Рассмотрим несколько вольтметров разных производителей

1. В3-57 — микровольтметр

Измерительное устройство модели В3-57 — вольтметр-преобразователь среднеквадратич. показаний. Разработан для замеров среднеквадратич. значения напряжений произвольной формы и их линейного преобразован. в напряжение постоян. тока. Шкала прибора промаркирована в среднеквадратич. значениях напряжения и децибелах (от 0 дБ и до 0,775 В). Используется при контроле и наладке разнообразных радиотелетехнических устройств и средств связи, вычислении частотных характеристик широкополосных аппаратов, обследованиях шумовых устойчивых сигналов и т. д.

— Пределы замеров напряжений 10 мкВ — 300 В с граничными зонами: 0,03-0,1-0,3-1-3-10-30-100-300мВ 1-3-10-30-100-300В

— Границы частот 5 Гц — 5 МГц

— Допустимая погрешность, %: ±1 (30-300 мВ), ±1,5 (1-10 мВ), ±2,5 (0,1-0,3 мВ и 1-300 В), ±4 (0,03 мВ)

— Входное сопротивл.5 МОм ±20%

— Входная емкость: 27пФ (0,03-300 мВ) и 12 пФ (1-300 В)

— Напряжение на выходе линейного преобразоват. 1 В

— Сопротивление на выходе линейного преобразоват. 1 кОм ±10%

— Предельный коэфф. амплитуды сигнала 6*(Uk/Ux)

2.Вольтметры переменного напряжения АКИП-2401

— Измерение ср.квадратического значения переменного напряжения

— Диапазон частот: 5 Гц…5 МГц

— Диапазон измерения напряжения: 50 мкВ…300 В (6 пределов)

— Два измерительных ВЧ входа: Кан1 / Кан2

— Максимальное разрешение: 0,0001 мВ

— Отображение уровня входного сигнала в дБн, дБм, Uпик

— Автоматический или ручной выбор пределов измерений, удержание результата (Hold)

3. Вольтметр В7-40/1

Высококачественный цифровой универсальный прибор, предназначенный для измерения постоянного и переменного напряжений, силы токов и сопротивления постоянному току. вольтметр В7-40/1 применяется при производстве радиоаппаратуры и электрорадиоэлементов, при научных и экспериментальных исследованиях, в лабораторных и цеховых условиях. Встроенный в вольтметр В7-40/1 интерфейс IEEE 488 позволяет успешно использовать его в составе автоматизированных информационно — измерительных систем.

Вольтметр В7-40/1 соответствует жестким условия эксплуатации.

— Точность измерения по постоянному току вольтметра В7-40/1 — 0,05 %

— Максимальная разрешающая способность В7-40/1 — 1 мкВ; 10 мкА; 1 мОм

— Диапазоны 0,2; 20; 200; 1000 (2000) В

— Разрешение 1, 10, 100 мкВ; 1; 10 мВ

— Основная погрешность измерения ±(0,04 %+ 5 ед. мл. р)

— на диапазоне 0,2 В не менее 1 ГОм

— на диапазоне 2 В не менее 2 ГОм

— на диапазонах 200….1000 В, не менее 10 МОм

Ещё одно видео о способе подключения вольтметра:

Ссылка на основную публикацию
Adblock
detector