94 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...
Затеяли ремонт? Вам сюда ⬇️

В чем измеряется сопротивление резистора

В чем измеряется сопротивление резистора

Электри́ческое сопротивле́ние — физическая величина, характеризующая свойство проводника препятствовать прохождению электрического тока и равная отношению напряжения на концах проводника к силе тока, протекающего по нему [1] .

Сопротивление для цепей переменного тока и для переменных электромагнитных полей описывается понятиями импеданса и волнового сопротивления. Сопротивлением (резистором) также называют радиодеталь, предназначенную для введения в электрические цепи активного сопротивления.

Сопротивление (часто обозначается буквой R или r ) считается, в определённых пределах, постоянной величиной для данного проводника; её можно рассчитать как

R = U I , ,>

R — сопротивление, Ом; U — разность электрических потенциалов (напряжение) на концах проводника, В; I — сила тока, протекающего между концами проводника под действием разности потенциалов, А.

Содержание

История [ править | править код ]

В 1826 г. Георг Ом экспериментальным путем открыл основной закон электрической цепи, научился вычислять сопротивление металлических проводников и вывел закон Ома. Таким образом, в первом периоде развития электротехники (1800 –1831 годы) были созданы предпосылки для ее развития, для последующих применений электрического тока.

Само понятие «сопротивление» появилось задолго до изысканий Георга Ома. Впервые этот термин применил и употребил русский ученый Василий Владимирович Петров. Он установил количественную зависимость силы тока от площади поперечного сечения проводника: он утверждал, что при использовании более толстой проволоки происходит «более сильное действие… и весьма скорое течение гальвани-вольтовской жидкости». Кроме того, Петров четко указал на то, что при увеличении сечения проводника (при употреблении одной и той же гальванической батареи) сила тока в нем возрастает. [2]

Единицы и размерности [ править | править код ]

Размерность электрического сопротивления в Международной системе величин: dim R = L 2 MT −3 I −2 . В Международной системе единиц (СИ), основанной на Международной системе величин, единицей сопротивления является ом (русское обозначение: Ом; международное: Ω). В системе СГС как таковой единица сопротивления не имеет специального названия, однако в её расширениях (СГСЭ, СГСМ и гауссова система единиц) используются [3] :

  • статом (в СГСЭ и гауссовой системе, 1 statΩ = (10 9 c −2 ) с/см = 898 755 178 736,818 Ом (точно) ≈ 8,98755·10 11 Ом, равен сопротивлению проводника, через который под напряжением 1 статвольт течёт ток 1 статампер );
  • абом (в СГСМ, 1 abΩ = 1·10 −9 Ом = 1 наноом, равен сопротивлению проводника, через который под напряжением 1 абвольт течёт ток 1 абампер ).

Размерность сопротивления в СГСЭ и гауссовой системе равна TL −1 (то есть совпадает с размерностью обратной скорости, с/см), в СГСМ — LT −1 (то есть совпадает с размерностью скорости, см/с) [4] .

Обратной величиной по отношению к сопротивлению является электропроводность, единицей измерения которой в системе СИ служит сименс (1 См = 1 Ом −1 ), в системе СГСЭ (и гауссовой) статсименс и в СГСМ — абсименс [5] .

Физика явления [ править | править код ]

Высокая электропроводность металлов связана с тем, что в них имеется большое количество носителей тока — электронов проводимости, образующихся из валентных электронов атомов металла, которые не принадлежат определённому атому. Электрический ток в металле возникает под действием внешнего электрического поля, которое вызывает упорядоченное движение электронов. Движущиеся под действием поля электроны рассеиваются на неоднородностях ионной решётки (на примесях, дефектах решётки, а также нарушениях периодической структуры, связанной с тепловыми колебаниями ионов). При этом электроны теряют импульс, а энергия их движения преобразуются во внутреннюю энергию кристаллической решётки, что и приводит к нагреванию проводника при прохождении по нему электрического тока.

В других средах (полупроводниках, диэлектриках, электролитах, неполярных жидкостях, газах и т. д.) в зависимости от природы носителей заряда физическая причина сопротивления может быть иной. Линейная зависимость, выраженная законом Ома, соблюдается не во всех случаях.

Сопротивление проводника при прочих равных условиях зависит от его геометрии и от удельного электрического сопротивления материала, из которого он состоит.

Сопротивление однородного проводника постоянного сечения зависит от свойств вещества проводника, его длины, сечения и вычисляется по формуле:

R = ρ ⋅ l S , >,>

где ρ — удельное сопротивление вещества проводника, Ом·м, l — длина проводника, м, а S — площадь сечения, м².

Сопротивление однородного проводника также зависит от температуры.

Удельное сопротивление — скалярная физическая величина, численно равная сопротивлению однородного цилиндрического проводника единичной длины и единичной площади сечения.

Сопротивление металлов снижается при понижении температуры; при температурах порядка нескольких кельвинов сопротивление большинства металлов и сплавов стремится или становится равным нулю (эффект сверхпроводимости). Напротив, сопротивление полупроводников и изоляторов при снижении температуры (в некотором диапазоне) растёт. Сопротивление также меняется по мере увеличения тока/напряжения, протекающего через проводник/полупроводник.

Зависимость сопротивления от материала, длины и площади поперечного сечения проводника [ править | править код ]

В металле подвижными носителями зарядов являются свободные электроны. Можно считать, что при своем хаотическом движении они ведут себя подобно молекулам газа. Поэтому в классической физике свободные электроны в металлах называют электронным газом и в первом приближении считают, что к нему применимы законы, установленные для идеального газа.

Плотность электронного газа и строение кристаллической решетки зависят от рода металла. Поэтому сопротивление проводника должно зависеть от рода его вещества. Кроме того, оно должно еще зависеть от длины проводника, площади его поперечного сечения и от температуры.

Влияние сечения проводника на его сопротивление объясняется тем, что при уменьшении сечения поток электронов в проводнике при одной и той же силе тока становится более плотным, поэтому и взаимодействие электронов с частицами вещества в проводнике становится сильнее.

R = ρ ⋅ l S , >,>

видно, что сопротивление проводника прямо пропорционально его длине и обратно пропорционально площади его поперечного сечения. Величину ρ, характеризующую зависимость сопротивления проводника от материала, из которого он сделан, и от внешних условий, называют удельным сопротивлением вещества. Удельное сопротивление различных веществ при расчетах берут из таблиц.

Величину, обратную удельному сопротивлению, называют удельной проводимостью вещества и обозначают σ.

Сопротивление тела человека [ править | править код ]

  • Для расчёта опасной величины силы тока, протекающего через человека при попадании его под электрическое напряжение частотой 50 Гц, сопротивление тела человека условно принимается равным 1 кОм [6] . Эта величина имеет малое отношение к реальному сопротивлению человеческого тела. В реальности сопротивление человека не является омическим, так как эта величина, во-первых, нелинейна по отношению к приложенному напряжению, во-вторых меняется во времени, в третьих, гораздо меньше у человека, который волнуется и, следовательно, потеет и т. д.
  • Серьёзные поражения тканей человека наблюдаются обычно при прохождении тока силой около 100 мА. Совершенно безопасным считается ток силой до 1 мА. Удельное сопротивление тела человека зависит от состояния кожных покровов. Сухая кожа обладает удельным сопротивлением порядка 10000 Ом·м, поэтому опасные токи могут быть достигнуты только при значительном напряжении. Однако при наличии сырости сопротивление тела человека резко снижается и безопасным может считаться напряжение только ниже 12 В. Удельное сопротивление крови 1 Ом·м при 50 Гц [7] .

Метрологические аспекты [ править | править код ]

Приборы для измерения сопротивления [ править | править код ]

  • Омметр
  • Измерительный мост
  • Амперметр и вольтметр (сопротивление находится по формуле)

Средства воспроизведения сопротивления [ править | править код ]

  • Магазин сопротивлений — набор резисторов
  • Катушки электрического сопротивления

Государственный эталон сопротивления [ править | править код ]

  • ГЭТ 14-91 Государственный первичный эталон единицы электрического сопротивления. Институт-хранитель: ВНИИМ.
Читать еще:  Что значит булатная сталь

Статическое и динамическое сопротивление [ править | править код ]

В теории нелинейных цепей используются понятия статического и динамического сопротивлений. Статическим сопротивлением нелинейного элемента электрической цепи в заданной точке его ВАХ называют отношение напряжения на элементе к току в нем. Динамическим сопротивлением нелинейного элемента электрической цепи в заданной точке его ВАХ называют отношение бесконечно малого приращения напряжения к соответствующему приращению тока.

Резисторы — это электронные приборы, оказывающие сопротивление электрическому току.

Резисторы являются наиболее распространенными элементами радиоэлектронной аппаратуры и применяют для регулирования тока в электрических цепях.

Сопротивление резистора — его основная характеристика. Основной единицей электрического сопротивления является ом (Ом). На практике используются также производные единицы — килоом (кОм), мегаом (МОм), гигаом (ГОм), которые связаны с основной единицей следующими соотношениями:
1 кОм = 1000 Ом,
1 МОм = 1000 кОм,
1 ГОм = 1000 МОм.

Резисторы могут быть постоянными, то есть обладать неизменным сопротивлением, и переменными, то есть такими, сопротивление которых в процессе работы можно изменять в определенных пределах. Резисторы выпускаются с определенными значениями сопротивлений в широком ассортименте от единиц Ом до десятков МОм.

Резисторы постоянного сопротивления

На принципиальных схемах рядом с условным обозначением резистора проставляют значение его сопротивления. Сопротивление менее килоома записывают как число без единиц измерения; сопротивления от одного килоома и выше, но менее одного мегаома, выражают в килоомах и рядом с цифрой ставят букву «к»; сопротивления от одного мегаома и выше записывают как число, добавляя рядом букву «М». Например, 10 М (10 мегом), 5,1 К (5,1 килоом); 470 (470 Ом); К68 (680 Ом).

Значение сопротивления обычно указано на поверхности резисторов. Для маркировки малогабаритных резисторов используют буквенно-цифровой код или цветовой код, состоящий из цветных полосок.

При использовании буквенно-цифрового кода сопротивления резисторов обозначают цифрами с указанием единицы измерения. Принято обозначать буквами: R — ом, К — килоом, М -мегаом.

Сопротивление резистора.

Сопротивление резистора определяет способность резистора оказывать сопротивление электрическому току в цепи. Если резистор представляет собой значительное препятствие для тока, то говорят, что он имеет большое сопротивление. Если воздействие на ток незначительно, то сопротивление считают малым. Часто понятия резистора и сопротивления путают. Путаницы можно избежать, если уяснить себе, что резистор – это пассивный элемент цепи, который можно потрогать руками, а сопротивление – характеристика резистора, которую можно измерить или определить по маркировке.

Резисторы могут быть постоянными и переменными. Первые обладают фиксированным значением сопротивления, сопротивление переменных резисторов можно менять.

Сопротивление резистора в цепи.

Чтобы лучше представить себе работу резистора в цепи, обратимся к водопроводной аналогии. Поток воды между двумя произвольно выбранными сечениями трубы зависит как от разности давлений в этих сечениях, так и от характеристик самой трубы. Разность давлений создается силой тяжести или насосом. Если разность давлений постоянна, то поток будет зависеть в основном от двух параметров: от внутреннего диаметра трубы и от ее длины. Может быть так, что при большом диаметре внутренности трубы забиты ржавчиной, и она оказывает большое сопротивление потоку.

Примерно то же происходит с потоком электронов при движении между узлами кристаллической решетки. В зависимости от того, как расположены атомы внутри материала проводника, какие размеры имеет сам проводник, электроны под воздействием поля в одних случаях легче, в других с большими трудностями перемещаются от точки к точке. Количественно поток воды можно измерить в литрах за секунду, величину электрического тока (потока электронов) в проводнике измеряют в амперах. Увеличение сопротивления будет наблюдаться при увеличении длины проводника и при уменьшении его сечения. Единица измерения величины сопротивления проводников — 1 Ом.

Сопротивление в резисторе очень сильно зависит от материала, из которого изготовлены проводники. Сравним медь и сплав нихром. Если удельное сопротивление меди составляет 0,0175 Ом*мм², то сопротивление нихрома – 1,1 Ом*мм², то есть в 60 раз больше. Практически это значит, что если на концах одинаковых по геометрии проводов из меди и нихрома обеспечить разность потенциалов в 1 вольт, то ток в медном образце будет в 60 раз больше, чем в нихромовом.

Чаще всего постоянный резистор представляет собой сравнительно компактный элемент цилиндрической формы с двумя выводами. К выводам подсоединены концы намотанного или осажденного на корпус проводника.

Кроме сопротивления резистор характеризуется еще рассеиваемой мощностью. Это очень важная характеристика. Известно, что при прохождении тока через проводник выделяется тепло. Если площадь, через которую оно рассеивается, будет недостаточна, то резистор через некоторое время перегорит. Рассеивание происходит путем нагрева воздуха, либо другой среды, которая окружает резистор, и через излучение. Рассеиваемая мощность – это такая мощность, которая может выделяться на резисторе в виде тепла в течение продолжительного времени без его разрушения.

Еще одна характеристика – точность сопротивления резистора. Изготовить даже два абсолютно одинаковых резистора практически невозможно по ряду причин. Но можно изготавливать большие партии резисторов, сопротивление которых не будет выходить за заданные пределы. Поэтому постоянные резисторы характеризуются еще определенной точностью, которую указывают в процентах. Эта величина задает тот интервал значений, за которую величина сопротивления выходить не должна. Очень точные резисторы стоят очень дорого, менее точные – дешевле.

Не может быть любой и сама величина сопротивления резистора. Было бы неразумно требовать от промышленности, чтобы изготавливались и 100 Ом и 100,05 Ом. Возможные значения сопротивлений образуют так называемые ряды и обозначаются: E3, E6, E12, E24… Чем больше номер ряда, тем больше значений в нем предусмотрено для величин сопротивлений резисторов. Сравним:

— ряд E6: 1, 1.5, 2.2 Ом

— ряд E12: 1, 1.2, 1.5, 1.8, 2.2 Ом

Видим, что в ряд E12 включены промежуточные номиналы `1.2 и 1.8, которых не найти в E6. Существуют также ряды E48, E96. Самый большой выбор представлен рядом E192.

Очень просто изображаются постоянные резисторы на электрических схемах: прямоугольник с двумя выводами. Если в схеме нужно указать мощность рассеивания резистора, то используют следующие условные обозначения:

— две наклонные черточки – 0,125 Вт;

— одна наклонная черточка – 0,250 Вт;

— одна вертикальная – 1 Вт;

— две вертикальных – 2 Вт.

Маркировка сопротивления резисторов.

Типичный пример резистора 1k0, маркированного четырьмя цветовыми кольцами. Значение резистора всегда кодируется в Омах.

Слева направо: Коричневый (1), Чёрный (0), Красный (множитель *100), Серебристый (допуск 10%).
Записываем: 10*100. Считаем: 10 * 100 = 1000 Ом. = 1 кОм.

Универсальная таблица цветовых кодов резисторов, конденсаторов, индуктивностей.

Электрическое сопротивление. Определение, единицы измерения, удельное, полное, активное, реактивное.

Электрическое сопротивление — электротехническая величина, которая характеризует свойство материала препятствовать протеканию электрического тока. В зависимости от вида материала, сопротивление может стремиться к нулю — быть минимальным (мили/микро омы — проводники, металлы), или быть очень большим (гига омы — изоляция, диэлектрики). Величина обратная электрическому сопротивлению — это проводимость.

Единица измерения электрического сопротивления — Ом. Обозначается буквой R. Зависимость сопротивления от тока и напряжения в замкнутой цепи определяется законом Ома.

Омметр — прибор для прямого измерения сопротивления цепи. В зависимости от диапазона измеряемой величины, подразделяются на гигаомметры (для больших сопротивление — при измерении изоляции), и на микро/милиомметры (для маленьких сопротивлений — при измерении переходных сопротивлений контактов, обмоток двигателей и др.).

Читать еще:  Как нарезать внутреннюю резьбу метчиком видео

Существует большое разнообразие омметров по конструктиву разных производителей, от электромеханических до микроэлектронных. Стоит отметить, что классический омметр измеряет активную часть сопротивления (так называемые омики).

Любое сопротивление (металл или полупроводник) в цепи переменного токаимеет активную и реактивную составляющую. Сумма активного и реактивного сопротивления составляют полное сопротивление цепи переменного тока и вычисляется по формуле:

где, Z — полное сопротивление цепи переменного тока;

R — активное сопротивление цепи переменного тока;

Xc — емкостное реактивное сопротивление цепи переменного тока;

( С- емкость, w — угловая скорость переменного тока)

Xl — индуктивное реактивное сопротивление цепи переменного тока;

( L- индуктивность, w — угловая скорость переменного тока).

Активное сопротивление— это часть полного сопротивления электрической цепи, энергия которого полностью преобразуется в другие виды энергии (механическую, химическую, тепловую). Отличительным свойством активной составляющей — полное потребление всей электроэнергии (в сеть обратно в сеть энергия не возвращается), а реактивное сопротивление возвращает часть энергии обратно в сеть (отрицательное свойство реактивной составляющей).

Физический смысл активного сопротивления

Каждая среда, где проходят электрические заряды, создаёт на их пути препятствия (считается, что это узлы кристаллической решётки), в которые они как-бы ударяются и теряют свою энергию, которая выделяется в виде тепла.

Таким образом, происходит падение напряжения (потеря электрической энергии), часть которого теряется из-за внутреннего сопротивления проводящей среды.

Численную величину, характеризующую способность материала препятствовать прохождению зарядов и называют сопротивлением. Измеряется оно в Омах (Ом) и является обратно пропорциональной электропроводности величиной.

Разные элементы периодической системы Менделеева имеют различные удельные электрические сопротивления (р), например, наименьшим уд. сопротивлением обладают серебро (0,016 Ом*мм2/м), медь (0,0175 Ом*мм2/м), золото (0,023) и алюминий (0,029). Именно они применяются в промышленности в качестве основных материалов, на которых строится вся электротехника и энергетика. Диэлектрики, напротив, обладают высоким уд. сопротивлением и используются для изоляции.

Сопротивление проводящей среды может значительно изменяться в зависимости от сечения, температуры, величины и частоты тока. К тому же, разные среды обладают различными носителями зарядов (свободные электроны в металлах, ионы в электролитах, «дырки» в полупроводниках), которые являются определяющими факторами сопротивления.

Физический смысл реактивного сопротивления

В катушках и конденсаторах при подаче напряжения происходит накопление энергии в виде магнитных и электрических полей, что требует некоторого времени.

Магнитные поля в сетях переменного тока изменяются вслед за меняющимся направлением движения зарядов, при этом оказывая дополнительное сопротивление.

Кроме того, возникает устойчивый сдвиг фаз напряжения и силы тока, а это приводит к дополнительным потерям электроэнергии.

Удельное сопротивление

Как узнать сопротивление материала, если по нему не течет ток и у нас нет омметра? Для это существует специальная величина —удельное электрическое сопротивление материалов

(это табличные значения, которые определены опытным путем для большинства металлов). С помощью этого значения и физических величин материала, мы можем вычислить сопротивление по формуле:

где,p— удельное сопротивление (единицы измерения ом*м/мм 2 );

Резистор и сопротивление

Каталог

Показать каталог

Резистор и сопротивление

Теория

КОМПОНЕНТЫ
ARDUINO
ИНТЕРФЕЙСЫ ПЕРЕДАЧИ ДАННЫХ

1 кОм = 1000 Ом,
1 МОм = 1000 кОм,
1 ГОм = 1000 МОм

Последовательное соединение резисторов

Это справедливо и для большего количества соединённых последовательно резисторов:

Цепь из последовательно соединённых резисторов будет всегда иметь сопротивление большее, чем у любого резистора из этой цепи.

При последовательном соединении резисторов изменение сопротивления любого резистора из этой цепи влечёт за собой как изменение сопротивления всей цепи так и изменение силы тока в этой цепи.

Мощность при последовательном соединении

R = 200 + 100 + 51 + 39 = 390 Ом

Учитывая напряжение в цепи, равное 100 В, по закону Ома сила тока будет составлять

I = U/R = 100 В/390 Ом = 0,256 A

На основании полученных данных можно рассчитать мощность резисторов при последовательном соединении по следующей формуле:

P = I 2 x R = 0,256 2 x 390 = 25,55 Вт

Таким же образом можно рассчитать мощность каждого отдельно взятого резистора:

P1 = I 2 x R1 = 0,256 2 x 200 = 13,11 Вт;
P2 = I 2 x R2 = 0,256 2 x 100 = 6,55 Вт;
P3 = I 2 x R3 = 0,256 2 x 51 = 3,34 Вт;
P4 = I 2 x R4 = 0,256 2 x 39 = 2,55 Вт.

Если сложить полученные мощности, то общая Р составит:

Робщ = 13,11 + 6,55 + 3,34 + 2,55 = 25,55 Вт

Параллельное соединение резисторов

Расчет параллельного сопротивления двух параллельно соединённых резисторов R1 и R2 производится по следующей формуле:

Параллельное соединение трёх и более резисторов требует более сложной формулы для вычисления общего сопротивления:

Сопротивление параллельно соединённых резисторов будет всегда меньше, чем у любого из этих резисторов.

Параллельное соединение резисторов часто используют в случаях, когда необходимо сопротивление с большей мощностью. Для этого, как правило, используют резисторы с одинаковой мощностью и одинаковым сопротивлением. Общая мощность, в таком случае, вычисляется умножением мощности одного резистора на количество параллельно соединённых резисторов.

Мощность при параллельном соединении

1/R = 1/200 + 1/100 + 1/51 + 1/39 ≈ 0,06024 Ом
R = 1 / 0,06024 ≈ 16,6 Ом

Используя значение напряжения 100 В, по закону Ома рассчитывается сила тока

I = U/R = 100 В x 0,06024 Ом = 6,024 A

Зная силу тока, мощность резисторов, соединенных параллельно, определяется следующим образом

P = I 2 x R = 6,024 2 x 16,6 = 602,3 Вт

Расчет силы тока для каждого резистора выполняется по формулам:

На примере этих сопротивлений прослеживается закономерность, что с уменьшением сопротивления, сила тока увеличивается.

Существует еще одна формула, позволяющая рассчитать мощность при параллельном подключении резисторов:

P1 = U 2 /R1 = 100 2 /200 = 50 Вт;
P2 = U 2 /R2 = 100 2 /100 = 100 Вт;
P3 = U 2 2/R3 = 100 2 /51 = 195,9 Вт;
P4 = U 2 2/R4 = 100 2 /39 = 256,4 Вт

Если сложить полученные мощности, то общая Р составит:

Робщ = 50 + 100 + 195,9 + 256,4 = 602,3 Вт

Что такое резистор и для чего он предназначен

Пожалуй, самым используемым элементом в электронике является резистор или как его еще именуют по-простому – сопротивление. Если вы посмотрите на абсолютно любую схему, вы найдете не одно сопротивление. А как работает резистор и из чего он состоит, об этом и поговорим в данной статье.

Содержание

Определение и обозначение по ГОСТу

Как работает резистор

Определение и обозначение по ГОСТу

Итак, для начала давайте дадим определение нашему с вами элементу. Резистор (от латинского «resisto») дословно переводится как «сопротивляюсь». Даже из названия становится ясна основная задача данного элемента – оказывать сопротивление протекающему через элемент электрическому току.

Сопротивление относится к классу пассивных элементов, то есть оно способно лишь ограничивать проходящий ток и напряжение. Условное обозначение согласно ГОСТ 2.728-74 представлено на рисунке ниже:

Существующие разновидности

Классификация резисторов осуществляется сразу по нескольким параметрам, так, например, по способу монтажа различают следующие модификации:

1. Выводные . Это классический и распространенный вариант используется для монтажа сквозь печатную плату. Такое исполнение резисторов до сих пор используется в простых схемах, где использование SMD компонентов нецелесообразно или невозможно.

2. SMD . У данных сопротивлений нет привычных «ножек». Такие элементы созданы для монтажа автоматизированными системами, что значительно ускоряет и упрощает производство.

По технологии изготовления резисторы бывают следующие:

1. Проволочные . В данных резисторах в роли резистивного элемента выступает намотанная на сердечник проволока и для того, чтобы снизить паразитную индуктивность, используется бифилярная намотка. В таких сопротивлениях используется проволока с низким удельным сопротивлением и температурным коэффициентом.

Читать еще:  Как узнать какой провод фаза

2. Металлопленочные и композитные . В данных элементах в роли резистивных элементов выступают пленки из специализированных сплавов.

В основном используются следующие материалы

Причем SMD элементы или чип — резисторы выпускаются тонкопленочными или толстопленочными и в роли резистивного материала применяется

Конструктивно резисторы различаются на :

1. Постоянные . Величина сопротивления в таком сопротивлении задана при производстве и не изменяется.

2. Переменные . Это так называемые подстроечные резисторы и потенциометры. У таких изделий присутствует орган управления, с помощью которого можно изменять сопротивление.

3. Нелинейные . У таких сопротивлений элемент изменяется в зависимости от воздействующих на изделие факторов, например, под воздействием температуры, света, напряжения и т.д.

Так же существуют резисторы специального назначения: высокоомные, высокочастотные, прецизионные (изделия с крайне высоким классом точности).

Как работает резистор

Как вы поняли основная цель резистора — это ограничение проходящего через него электрического тока. И в этом случае работает закон Ома:

Для простоты понимания принципа работы резистора давайте представим себе самый обычный гибкий водяной шланг, через который течет вода под напором, а теперь положите на шланг кирпич. Так как диаметр трубы изменился, из шланга вытекает меньшее количество воды. Так и с током: проходя через резистор, его величина уменьшается.

Итак, через резистор проходит ток и происходит падение напряжения. Из этого можно сделать вывод, что часть мощности, прошедшей через сопротивление, было преобразовано в тепловую энергию. Мощность можно рассчитать по следующей формуле:

Именно потому что происходит рассеивание мощности на резисторе очень важно правильно выбирать такие сопротивления, которые будут стабильно работать при длительном нахождении изделия под нагрузкой.

Примечание. Резисторы выбираются с запасом по мощности в 20% -30 %.

Главные характеристики

Главными характеристиками абсолютно любого резистора являются следующие три величины:

2. Максимальная рассеиваемая мощность.

3. Класс точности или допуск. От данного параметра зависит насколько реальные параметры изделия могут отличаться от заявленных паспортных данных.

Область применения

Итак, вы уже знаете, что резистор выполняет функцию ограничения тока в цепи. Самым простым примером такого ограничения является схема подключения обычного светодиода. Причем величина ограничивающего сопротивления в этом случае вычисляется по формуле:

Так же резистор может выступать в роли делителя напряжения. Выходное напряжение рассчитывается по следующей формуле:

Еще с помощью резистора можно задать ток транзистору, что по факту является таким же ограничителем:

Заключение

Это лишь малая толика информации о казалось бы таком простом и одновременно сложном элементе как резистор. Если Вы хотите узнать больше, то всегда можете подписаться на канал или найти интересующую вас информацию в специализированной литературе.

My-chip.info — Дневник начинающего телемастера

Учимся ремонтировать кинескопные, LED и ЖК телевизоры вместе.

Все о резисторах. Определение, типы резисторов и их номинал

17.09.2015 Lega95 0 Комментариев

Привет. Сегодня статья будет посвящена такому радиоэлементу как резистор, или как было принято называть его ранее сопротивление.

Основной задачей резисторов является создание сопротивления электрическому току. Для более наглядной визуализации, давайте представим электрический ток, как воду, которая течет по трубе. В конце этой трубы установлен кран, который полностью откручен, и он просто пропускает через себя водный поток. Стоит нам немного начать закрывать кран, как мы сразу увидим, что поток стает слабее вплоть до того момента, когда течь воды полностью остановится.

По такому принципу и работают резисторы, только вместо трубы у нас электрический проводник, вместо воды ток, а вместо крана наш резистор. Чем больше номинал резистора, тем больше он делает сопротивление электрическому току. Сопротивление резистора измеряется такой единицей измерения как Ом.

Так как в схемах могут использоваться очень большие резисторы, номинал которых может составлять порядка 1000 -1000000 Ом, то для облегчения вычислений используют производные единицы, такие как кОм, мОм и гОм.

Для большего понимания этих единиц измерения, привожу следующую расшифровку:

1кОм = 1000 Ом;

1 мОм = 1000 кОм;

1гОм = 1000 мОм;

На практике все очень просто. Если нам попался резистор с надписью 1,8 кОм, то проведя не сложные вычисления, увидим, что номинал в Омах будет соответствовать 1800 Ом.

По принципу работы, резисторы делятся на постоянные и переменные.

Из самих названий можно догадаться, что постоянные резисторы в процессе работы никогда не меняют своего номинала. Переменные же резисторы, могут менять свой номинал в процессе работы, и используются для выполнения какой-то настройки. Примером для использования переменных резисторов может быть ручки управления громкостью, тембром на магнитофонах.

Постоянные резисторы

Поговорим более детально о постоянных резисторах. На практике, обозначение номинала резисторов наносится на корпусе. Это может быть буквенно–цифровой код или обозначение цветными полосками (цветовая маркировка резисторов). Как узнать номинал резистора по цветовой маркировке, можем узнать из этой статьи.

Что касается буквенно-цифрового обозначения, то его принято обозначать такими способами:

  1. Буква R – означает, что номинал резистора будет измеряться в Омах. Очень важным является позиция этой буквы. Если на резисторе надпить типа 12R то номинал резистора будет 12Ом. Если же буква будет в начале R12, то сопротивление будет 0,12Ом. Также возможно обозначение типа 12R1, что будет означать 12,1 Ом.
  2. Буква K – означает, что номинал резистора будет измеряться в кОмах. Действуют теже правила что и для предыдущего примера. 12K= 12кОм,K12 = 0,12 кОм и 12К1 = 12,1кОм.
  3. Буква М– означает, что номинал резистора будет измеряться в мОмах. 12М= 12мОм, М12 = 0,12 мОм и 12М1 = 12,1мОм.

Так же на корпусе резистора обозначают такую величину как отклонение от номинала. При массовом производстве сопротивлений, в виду не совершенства технологий производства, сопротивления могут иметь некоторые отклонения от заявленного номинала. Это возможное отклонение обозначается на корпусе резистора в виде ±0,7% или ±5%. Цифры могут быть разные, в зависимости от метода производства.

Мощность резисторов

В процессе работы, при больших нагрузках резистор выделяет тепло. Если в схему, где идут большие нагрузки поставить резистор маленькой мощности, то он быстро разогреется и сгорит. Чем больше по размерам резистор, тем больше его мощность. На рисунке ниже видно обозначение мощности резисторов на схемах.

Обозначение мощности резисторов на схеме

Резисторы разной мощности

Переменные резисторы

Как говорилось ранее, переменные резисторы используются для плавной регулировки силы тока и напряжения в пределах номинала резистора. Переменные резисторы бывают построечные и регулировочные. С помощью регулировочных резисторов проводятся постоянные пользовательские регулировки аппаратуры (регулировка звука, яркости тембра и др.), а построечные используются для настройки аппаратуры в режиме наладки во время сборки техники. Для регулировочных резисторов приемлемо наличия удобной ручки, построечные же обычно регулируются отверткой.

Если на переменном резисторе написано что он имеет номинал 10кОм, то это означает, что он производит регулировку в пределах от до 10 кОм. В среднем положении ручки его номинал будет приблизительно около 5 кОм, в крайнем или 0 или 10 кОм.

Если Вам необходимо рассчитать номинал своего резистора, то советуем Вам воспользоватся нашим онлайн калькулятором цветовой маркировки резисторов.

Ссылка на основную публикацию
Adblock
detector