Регулятор мощности на кт117
Транзисторы КТ117.
Транзисторы КТ117
КТ117 представляет из себя специальный полупроводниковый прибор, так называемый — однопереходный транзистор.
КТ117 предназначен для работы в генераторах, в качестве переключателя малой мощности. Коллектора у однопереходного транзистора нет, а есть эмиттер и две базы — 1 и 2.
Схема эквивалентная однопереходному транзистору КТ117 выглядит вот так:
А схема звукового генератора собранная на КТ117 может выглядеть вот таким образом:
Схема получается гораздо проще, поскольку один КТ117 заменяет здесь два обычных биполярных транзистора.
Параметры однопереходного транзистора.
Максимальный ток эмиттера — у КТ117А, КТ117Б, КТ117В, КТ117Г — 30мА.
Напряжение между базами — у всех КТ117 — 30в.
Напряжение между базой 2 и эмиттером — у всех КТ117 — 30в.
Максимальная рассеиваемая мощность — у всех КТ117 — 300мВт.
Межбазовое сопротивление:
У КТ117А,Б — от 4 до 9 кОм.
У КТ117В,Г — от 8 до 12 кОм.
Максимальная рабочая частота — у всех КТ117 — 200кГц.
Коэффициент передачи — отношение напряжения включения к напряжению между базами: У КТ117А — от 0,5 до 0,7
У КТ117Б — от0,65 до 0,9
У КТ117В — от 0,5 до 0,7
У КТ117Г — от 0,65 до 0,9
Корпус транзистора пластиковый или металло-стекляный. Маркировка буквенно — цифровая.
Принцип работы однопереходного транзистора.
Итак, любой однопереходный транзистор содержит в себе один p-n переход, что и вобщем то и так понятно — из его названия. Если переход один, откуда у него тогда три электрода, и как он вообще работает? На кристалле полупроводника однородной проводимости, на некотором расстоянии друг от друга имеются омические контакты — База1(Б1) и База2(Б2). Между ними находится область p-n перехода — контакт с полупроводником противоположной проводимости, омический контакт которого является — эмиттером.
Обычно, принцип действия однопереходного транзистора рассматривают с помощью несложной эквивалентной схемы.
R1 и R2 здесь — сопротивления между выводами Б1 и Б2, а V1 — эмиттерный p-n переход. Согласно данной схемы через R1 и R2 будет течь ток,причем падение напряжения на R1 будет смещать диод в обратном направлении. Таким образом, диод будет закрыт, пока на эмиттер не будет подано прямое напряжение превышающее величину падения напряжения на R1. Как только такое напряжение подано, диод открывается и начинает пропускать ток в прямом направлении. При этом сопротивление R1 еще более уменьшается — снижается напряжение падения. Происходит лавинообразный процесс открывания транзистора.
Схема тиристорного регулятора на однопереходном транзисторе.
На рисунке ниже — схема тиристорного регулятора, с лампой накаливания в виде нагрузки.
R1 — 100 КОм — переменный, мощностью 0,5 Вт, любого типа.
Резисторы R2 — 3 КОм, R3 — 1 КОм, R4 — 100 Ом, R5 — 30 КОм — МЛТ.
VD1 — стабилитрон Д814В
VD2 — КД105Б
VD3 — КД202Р
VS1 — КУ202Н
Конденсатор С1 — 0,1МФ 400В., любого типа.
Транзистор VT1 — КТ117А
Плавкий предохранитель 0.5 — 1.5 Ампер(в зависимости от мощности лампы.)
Использование каких — либо материалов этой страницы, допускается при наличии ссылки на сайт «Электрика это просто».
9. Однопереходный транзистор.
Помимо биполярных и полевых транзисторов существует так называемый однопереходный транзистор (ОПТ), представляющий собой кристалл полупроводника, в котором создан p-n переход, называемый инжектором:
Этим переходом кристалл полупроводника разделяется как бы на две области базы. Поэтому однопереходный транзистор имеет и другое широко распространённое название — двухбазовый диод. Принцип действия транзистора основан на изменении объёмного сопротивления полупроводника базы при инжекции. В отличии от биполярных и полевых транзисторов однопереходный транзистор представляет собой прибор с отрицательным сопротивлением. Это означает, что в определённых условиях входное напряжение или сигнал могут уменьшаться даже при возрастании выходного тока через нагрузку. Когда однопереходный транзистор находится во включённом состоянии, выключить его можно только разомкнув цепь, либо сняв входное напряжение.
Участок между базами образован кремниевой пластиной n-типа и имеет линейную вольтамперную характеристику, т.е. ток через этот участок прямо пропорционален приложенному межбазовому напряжению. При отсутствии напряжения на эмиттере (относительно Б1) за счёт проходящего I2 в базе 1 внутри кристалла создаётся падение напряжения Uвн, запирающее p-n переход, При подаче на вход небольшого напряжения Uвх= Uвн переход смещается в прямом направлении и начинается инжекция носителей заряда (дырок) в базы, приводящая к снижению их сопротивления. При этом уменьшается падение напряжения Uвн, что приводит к лавинообразному отпиранию перехода — участок II на вольт-амперной характеристике:
Участок III, справа от минимума, где эмиттерный ток ограничивается только сопротивлением насыщения, называется областью насыщения. При уменьшении эмиттерного напряжения до Uвх 0.7 — коэффициент нейтрализации. Откуда Re=(0.1. 0.2)Rн.
Иногда с целью повышения термостабильности напряжения Umax, в цепь базы 2 вводят резистор R1. Резистор R2 вводят при необходимости снятия сигнала с базы 1. Его номинал рассчитывают исходя из межбазового тока и заданной амплитуды снимаемого сигнала. Обычно номинал этого резистора не превышает 100 Ом и только в отдельных случаях достигает 3кОм. Для типового однопереходного транзистора (КТ117А, Б) сопротивление Rе лежит в пределах 4. 9 кОм, а рабочее напряжение находится в пределах 10. 30 В. С помощью резисторов R1, R2 в некоторых пределах можно регулировать порог срабатывания однопереходного транзистора.
Рассмотрим простейший генератор пилообразного напряжения:
Как правило, для получения низкого сопротивления в качестве буферного каскада применяют эмиттерный повторитель. Предположим, что статический коэффициент передачи тока транзистора VT2 h21э=50, R2=1кОм. Тогда Rн=(h21э+1)R2 =(50+1)*1=51кОм. Отсюда R1=(0.1. 0.2)Rн=5.1. 10кОм. Поскольку напряжение Uemin=2B, a Uэб=0.6B
При реализации эмиттерного повторителя на p-n-p транзисторе можно добиться некоторого улучшения рабочих характеристик, т.к. сопротивление нагрузки включается параллельно резистору R1, следовательно исключается опасность прекращения генерации из-за никого значения статистического коэффициента передачи тока транзистора или сопротивления в эмиттере. Более того, коллекторный ток утечки биполярного транзистора вычитается из эмиттерного тока утечки однопереходного транзистора, чем достигается частичная термостабилизация.
Простейший способ линеаризации пилообразного напряжения:
Применение дополнительного источника повышенного напряжения позволяет существенно увеличить номинал токозадающего резистора, что эквивалентно заряду от генератора тока. Недостаток этого способа — необходимость применения дополнительного источника.
Линеаризация с помощью конденсаторной «вольтдобавки» (следящей обратной связи):
Введение резистора R1 позволяет использовать базу 2 для синхронизации выходного напряжения.
Возможный вариант стабилизации зарядного тока со следящей обратной связью с помощью стабилитрона:
Введение дополнительного источника отрицательного напряжения постоянного тока также способствует линеаризации.
Другой способ линеаризации с помощью ГСТ:
Применение интегратора позволяет получить напряжение пилы от вогнутой до выпуклой формы:
Желаемой формы добиваются подбором резистора R3.
Возможный вариант мультивибратора:
Для получения сигнала типа «меандер» необходимо выполнить условия: R2=2R1. Работает мультивибратор следующим образом. При зарядке конденсатора транзистор VT2 открыт током заряда. Время заряда определяет постоянная времени R1C1. При включении однопереходного транзистора базоэмиттерный переход VT2 за счёт напряжения на конденсаторе смещается в обратном направлении и транзистор VT2 закрывается.
Разновидность однопереходного транзистора — программируемый однопереходный транзистор (ПОПТ) — четырёхслойный прибор, структура которого аналогична структуре тиристора за исключением того, что используется анодное управление в отличие от катодного управления у тиристора. ОПТ и ПОПТ обладают аналогичными характеристиками, однако напряжение включения ПОПТ программируется и может задаваться с помощью внешнего делителя напряжения. В отличии от ОПТ, ПОПТ более быстродействующий и чувствительный прибор. Исходя из эквивалентной схемы
можно сделать вывод, что программируемый однопереходный транзистор представляет собой выключаемый тиристор с анодным управлением. При подаче на управляющий электрод (эмиттер) более отрицательного относительно анода (база 2) напряжения ПОПТ переходит из режима отсечки во включённое состояние. Для обеспечения функционирования ПОПТ в режиме однопереходного транзистора требуется на управляющем электроде ПОПТ поддерживать внешнее опорное напряжение, которое по существу совпадает с точкой максимума. Поскольку опорное напряжение определяется параметрами внешнего делителя, его можно сделать переменным. Эта особенность и является главным отличием обычного однопереходного транзистора от программируемого однопереходного транзистора.
Пожалуй, наибольшее применение однопереходные транзисторы нашли в различных регуляторах мощности. рассмотрим несколько практических схем применения.
Фазоимпульсный регулятор мощности паяльника (до 100Вт):
работает следующим образом. Положительная полуволна питающего напряжения проходит в нагрузку практически без ослабления через диод VD2. Релаксационный генератор питается пульсирующим напряжением (в течении отрицательной полуволны), ограниченным стабилитроном VD1 на уровне 24В. С появлением каждой отрицательной полуволны конденсатор С1 начинает заряжаться через цепь R2, R4. Скорость зарядки можно регулировать переменным резистором R2. Как только напряжение на конденсаторе достигнет порога открывания транзистора VT1, на управляющий электрод тиристора VS1 поступает положительный импульс и тиристор открывается до конца полупериода. Таким образом, изменением постоянной времени фазосдвигающей цепи R2C1 осуществляется регулирование мощности, отдаваемой в нагрузку.
Простой светорегулятор на эквиваленте ПОПТ:
Постоянная времени цепи R4C1 выбрана равной примерно 10мс.
Применение реле времени на однопереходном транзисторе в автомате — ограничителе включения света:
Такой автомат может использоваться, например в общих коридорах с целью экономии электроэнергии. Необходимое время включённого состояния устанавливается подстроечным резистором R3. После заряда конденсатора до напряжения включения однопереходного транзистора, т.е. после его включения, конденсатор С1 на короткое время создаёт на аноде тиристора VS1 отрицательное напряжение и тем самым выключает его.
Простой автоматический регулятор освещённости:
может найти применение на рабочих местах, где высоки требования к постоянству освещённости.
Все рассмотренные схемы, помимо создаваемых ими помех, имеют один существенный недостаток. Так как через диоды моста течёт ток нагрузки, их необходимо выбирать соответствующей мощности или устанавливать на радиаторы, что ухудшает массогабаритные показатели.
Применение подобных регуляторов для регулирования числа оборотов двигателя имеет некоторые особенности.
Во-первых, коллекторные двигатели требуют расширения управляющего импульса до конца полупериода во избежание нестабильности работы из-за выключения тиристора или симистора при искрении щёток, т.е. при разрыве цепи. Во-вторых, для стабилизации числа оборотов независимо от нагрузки необходимо введение обратной связи по току или по напряжению, т.к. с увеличением нагрузки на валу падают обороты двигателя, уменьшается комплексное сопротивление нагрузки и соответственно увеличивается непроизводительное потребление тока.
Пример стабилизированного регулятора реверсивного двигателя:
Подбором резистора R1 (обратная связь по напряжению) добиваются минимальной зависимости числа оборотов двигателя от изменения нагрузки.
Применение импульсного трансформатора позволяет разгрузить диодный мост и тем самым улучшить массогабаритные показатели регулятора. Стабилизированный регулятор числа оборотов двигателя:
В данном регуляторе применена обратная связь по току с помощью резистора R7. В качестве импульсного трансформатора можно применить МИТ-4 или выполнить его на магнитопроводе типоразмера К16х10х4.5 из феррита М2000НМ. Обмотки содержат по 100 витков провода ПЭЛШО 0.12. Возможный вариант замены МИТ-4 двумя оптопарами показан на этом рисунке:
Регулятор мощности нагрузки до 1кВт:
Импульсный трансформатор тот же, что и в предыдущей схеме. Замена симистора двумя тиристорами показана на рисунке:
Все три обмотки импульсного трансформатора Т1 содержат по 100 витков. При этом мощность нагрузки можно увеличить до 2кВт.
В заключении необходимо отметить, что все рассмотренные регуляторы мощности имеют один существенный недостаток — создают большие импульсные радиопомехи как в сети, так и в окружающем пространстве, т.к. выключение симистора или тиристора происходит по окончании полупериода, а их включение, за счёт фазового регулирования, в пределах полупериода. Интенсивность радиопомех зависит от амплитуды мгновенного напряжения, при котором открывается тиристор, мощности нагрузки, длины соединительных проводников и ряда других причин. Отсюда следует, что максимальные помехи возникают на среднем участке регулировочной характеристики.
Друзья, приветствую вас! Сегодня я хочу рассказать о самой распространенной самоделки радиолюбителей. Речь пойдет о тиристорном регуляторе мощности. Благодаря способности тиристора мгновенно открываться и закрываться, его с успехом применяют в различных самоделках. При этом он обладает низким тепловыделением. Схема тиристорного регулятора мощности достаточно известна, но она имеет отличительную особенность от подобных схем. Схема построена таким образом, что при первоначальном включении устройства в сеть отсутствует скачок тока через тиристор, благодаря чему через нагрузку не протекает опасный ток.
Ранее я рассказывал о регуляторе температуры для паяльника, в котором в качестве регулирующего устройства используется тиристор. Данный регулятор может управлять нагрузкой мощностью 2 киловатта. Если силовые диоды и тиристор заменить на более мощные аналоги, то нагрузку можно увеличить в несколько раз. И можно будет использовать этот регулятор мощности для электрического тэна. Я же использую данную самоделку для пылесоса.
Схема регулятора мощности на тиристоре
Сама схема проста до безобразия. Я думаю, что не стоит объяснять принцип её работы:
Детали устройства:
- Диоды; КД 202Р, четыре выпрямительных диода на ток не меньше 5 ампер
- Тиристор; КУ 202Н, или другой с током не меньше 10 ампер
- Транзистор; КТ 117Б
- Резистор переменный; 10 Ком, один
- Резистор подстроечный; 1 Ком, один
- Резисторы постоянные; 39 Ком, мощностью два ватта, два штуки
- Стабилитрон: Д 814Д, один
- Резисторы постоянные; 1,5 Ком, 300 Ом, 100 Ком
- Конденсаторы; 0,047 Мк, 0,47 Мк
- Предохранитель; 10 А, один
Тиристорный регулятор мощности своими руками
Готовое устройство, собранное по этой схеме выглядит вот так:
Так как деталей в схеме используется не очень много, можно применить навесной монтаж. Я же использовал печатный:
Регулятор мощности собранный по этой схеме очень надежен. Сначала этот тиристорный регулятор использовался для вытяжного вентилятора. Эту схему я реализовал около 10 лет назад. Первоначально я не использовал радиаторы охлаждения, так как ток потребления вентилятора очень мал. Затем я стал использовать эту электронную самоделку для пылесоса мощностью 1600 ватт. Без радиаторов силовые детали нагревались значительно, рано или поздно они вышли бы из строя. Но и без радиаторов это устройство проработало целых 10 лет. Пока не пробило тиристор. Первоначально я использовал тиристор марки ТС-10:
Теперь я решил поставить теплоотводы. Не забываем нанести тонкий слой теплопроводящей пасты КПТ-8 на тиристор и 4 диода:
Если у вас не окажется однопереходного транзистора КТ117Б:
то его можно заменить двумя биполярными собранными по схеме:
Сам я такую замену не производил, но должно получиться.
По данной схеме в нагрузку поступает постоянный ток. Это не критично, если нагрузка активная. Например: лампы накаливания, нагревательные тэны, паяльник, пылесос, электродрель и другие устройства, имеющие коллектор и щетки. Если же вы планируете, данный регулятор использовать для реактивной нагрузки, например электродвигателя вентилятора, то нагрузку стоит включить перед диодным мостом, как это показано на схеме:
Резистором R7 регулируют мощность на нагрузке:
а резистором R4 устанавливают границы интервала регулирования:
При таком положении движка резистора на лампочку приходит 80 вольт:
Обычно тиристор не открывается из-за малости напряжение на нём и скоротечности процесса, а если и откроется, то будет закрыт при первом же переходе напряжения сети через 0. Таким образом, использование однопереходного транзистора решает задачу принудительной разрядки накопительного конденсатора, в конце каждого полупериода питающей сети.
Собранное устройство я поместил в старый ненужный корпус от трансляционного радио. Переменный резистор R7 я установил на штатное место. Осталось поставить на него ручку и проградуировать шкалу напряжения:
Корпус слегка великоват, но зато тиристор и диоды охлаждаются просто великолепно:
С боку устройства я поместил розетку, чтобы можно было подключить вилку от любой нагрузки. Для подключения собранного устройство к электросети я использовал шнур от старого утюга:
Как я говорил ранее, этот тиристорный регулятор мощности очень надёжен. Я им пользуюсь уже не один год. Схема очень проста, её сможет повторить даже начинающий радиолюбитель.
Регулятор мощности на симисторе и тиристоре
Практически в любом радиоэлектронном устройстве в большинстве случаев присутствует регулировка по мощности. За примерами далеко ходить не надо: это электроплиты, кипятильники, паяльные станции, различные регуляторы вращения двигателей в устройствах.
Способов, по которым можно собрать регулятор напряжения своими руками 220 В, в Сети полно. В большинстве случаев это схемы на симисторах или тиристорах. Тиристор, в отличие от симистора, более распространённый радиоэлемент, и схемы на его основе встречаются гораздо чаще. Разберём разные варианты исполнения, основанные на обоих полупроводниковых элементах.
Регулятор мощности на симисторе
Симистор, по большому счету, — это частный случай тиристора, пропускающий ток в обе стороны, при условии, что он выше тока удержания. Один из его недостатков — это плохая работа на высоких частотах. Поэтому его часто используют в низкочастотных сетях. Для построения регулятора мощности на основе обычной сети 220 В, 50 Гц он вполне подходит.
Регулятор напряжения на симисторе используется в обычных бытовых приборах, где нужна регулировка. Схема регулятора мощности на симисторе выглядит следующим образом.
- Пр. 1 — предохранитель (выбирается в зависимости от требуемой мощности).
- R3 — токоограничительный резистор — служит для того чтобы при нулевом сопротивлении потенциометра остальные элементы не выгорели.
- R2 — потенциометр, подстроечный резистор, которым и осуществляется регулировка.
- C1 — основной конденсатор, заряд которого до определённого уровня отпирает динистор, вместе с R2 и R3 образует RC-цепь
- VD3 — динистор, открытие которого управляет симистором.
- VD4 — симистор — главный элемент, производящий коммутацию и, соответственно, регулировку.
Основная работа возложена на динистор и симистор. Сетевое напряжение подаётся на RC-цепочку, в которой установлен потенциометр, им в итоге и регулируется мощность. Производя регулировку сопротивления, мы меняем время зарядки конденсатора и тем самым порог включения динистора, который, в свою очередь, включает симистор. Демпферная RC-цепь, подключённая параллельно симистору, служит для сглаживания помех на выходе, а также при реактивной нагрузке (двигатель или индуктивность) предохраняет симистор от скачков высокого обратного напряжения.
Симистор включается, когда ток, проходящий через динистор, превышает ток удержания (справочный параметр). Отключается, соответственно, когда ток становится меньше тока удержания. Проводимость в обе стороны позволяет настроить более плавную регулировку, чем это возможно, например, на одном тиристоре, при этом используется минимум элементов.
Осциллограмма регулировки мощности представлена ниже. Из неё видно, что после включения симистора оставшаяся полуволна поступает на нагрузку и при достижении 0, когда ток удержания уменьшается до такой степени, что симистор отключается. Во втором «отрицательном» полупериоде происходит тот же процесс, т. к. симистор обладает проводимостью в обе стороны.
Напряжение на тиристоре
Для начала разберёмся, чем отличается тиристор от симистора. Тиристор содержит в себе 3 p-n перехода, а симистор — 5 p-n переходов. Не углубляясь в детали, если говорить простым языком, симистор обладает проводимостью в обоих направлениях, а тиристор — только в одном. Графические обозначения элементов показаны на рисунке. Из графики это хорошо видно.
Принцип работы абсолютно такой же. На чём и построена регулировка по мощности в любой схеме. Рассмотрим несколько схем регулятора на тиристорах. Первая простейшая схема, которая в основе повторяет схему на симисторе, описанную выше. Вторая и третья — с применением логики, схемы, которые более качественно гасят помехи, создаваемые в сети переключением тиристоров.
Простая схема
Простая схема фазового регулирования на тиристоре представлена ниже.
Единственное её отличие от схемы на симисторе — это то, что регулировка происходит только положительной полуволны сетевого напряжения. Времязадающая RC-цепь путём регулирования величины сопротивления потенциометра регулирует величину отпирания, тем самым задавая выходную мощность, поступающую на нагрузку. На осциллограмме это выглядит следующим образом.
Из осциллограммы видно, что регулировка мощности идёт путём ограничения напряжения поступающего на нагрузку. Образно говоря, регулировка заключается в ограничении поступления сетевого напряжения на выход. Регулируя время заряда конденсатора путём изменения переменного сопротивления (потенциометра). Чем выше сопротивление, тем дольше происходит заряд конденсатора и тем меньше мощности будет передано на нагрузку. Физика процесса подробно описана в предыдущей схеме. В этом случае она ничем особым не отличается.
С генератором на основе логики
Второй вариант более сложный. В связи с тем, что процессы коммутации на тиристорах вызывают большие помехи в сети, это плохо влияет на элементы, установленные на нагрузке. Особенно если на нагрузке находится сложный прибор с тонкими настройками и большим количеством микросхем.
Такая реализация тиристорного регулятора мощности своими руками подойдёт для активных нагрузок, например, паяльник или любые устройства нагрева. На входе стоит выпрямительный мост, поэтому обе волны сетевого напряжения будут положительными. Обратите внимание, что при такой схеме для питания микросхем понадобиться дополнительный источник постоянного напряжения +9 В. Осциллограмма из-за наличия выпрямительного моста будет выглядеть следующим образом.
Обе полуволны теперь будут положительными из-за влияния выпрямительного моста. Если для реактивных нагрузок (двигатели и другие индуктивные нагрузки) наличие разно полярных сигналов предпочтительно, то для активных — положительное значение мощности крайне важно. Отключение тиристора происходит также при приближении полуволны к нулю ток удержания подаёт до определённого значения и тиристор запирается.
На основе транзистора КТ117
Наличие дополнительного источника постоянного напряжение может вызвать затруднения, если его нет, и вовсе придётся городить дополнительную схему. Если дополнительного источника у вас нет, то можно воспользоваться следующей схемой, в ней генератор сигналов на управляющий вывод тиристора собран на обычном транзисторе. Есть схемы на основе генераторов, построенных на комплементарных парах, но они более сложные, и здесь мы их рассматривать не будем.
В данной схеме генератор построен на двухбазовом транзисторе КТ117, который при таком применении будет генерировать управляющие импульсы с периодичностью, задаваемой подстроечным резистором R6. На схеме ещё реализована система индикации на базе светодиода HL1.
- VD1-VD4 — диодный мост, выпрямляющий обе полуволны и позволяющий выполнять более плавную регулировку мощности.
- EL1 — лампа накаливания — представлена вроде нагрузки, но может быть любой другой прибор.
- FU1 — предохранитель, в этом случае стоит на 10 А.
- R3, R4 — токоограничительные резисторы — нужны, чтобы не сжечь схему управления.
- VD5, VD6 — стабилитроны — выполняют роль стабилизации напряжения определённого уровня на эмиттере транзистора.
- VT1 — транзистор КТ117 — установлен должен быть именно с таким расположение базы №1 и базы №2, иначе схема будет не работоспособна.
- R6 — подстроечный резистор, определяющий момент, когда поступает импульс на управляющий вывод тиристора.
- VS1 — тиристор — элемент, обеспечивающий коммутацию.
- С2 — времязадающий конденсатор, определяющий период появления управляющего сигнала.
Остальные элементы играют незначительную роль и в основном служат для токоограничения и сглаживания импульсов. HL1 обеспечивает индикацию и сигнализирует только о том, что прибор подключён к сети и находится под напряжением.
Регулятор мощности на кт117
РЕГУЛИРОВКА МОЩНОСТИ
Чаще всего регуляторы мощности устройств делают на тринисторах, используя его в качестве выходного мощного ключа. Но тринистор в цепи переменного тока неудобен тем, что требует питания через выпрямительный мост, который при большой мощности нагрузки должен быть установлен на радиатор. В этом плане для ключевого элемента более удобен симистор. Основное отличие симистора — это возможность коммутации не только постоянного, но и переменного тока, который может протекать в любом направлении — как от анода к катоду, так и в противоположную сторону.
Для справки: симисторы при положительном напряжении на аноде могут включаться импульсами любой полярности, подаваемыми на управляющий электрод относительно катода, а при отрицательном напряжении на аноде — импульсами только отрицательной полярности. Управление симистором постоянным током требует большой мощности, а при импульсном управлении необходим формирователь, обеспечивающий короткие импульсы в момент прохождения сетевого напряжения через ноль, что снижает уровень помех по сравнению с регуляторами, в которых использован фазоимпульсный метод регулирования.
Устройство регулировки мощности содержит симистор, узел временной (фазовой) задержки, компенсирующую цепь и источник питания. Компенсирующая цепочка R8 C2 к напряжению стабилитрона VD3 добавляет величину напряжения, пропорциональную питающему напряжению. Эта сумма является межбазовым напряжением однопереходного транзистора КТ117. Уменьшение питающего напряжения снижает напряжение питания транзистора и вызывает уменьшение временной задержки. От известной схемы симисторного регулятора мощности на BT136-600 и динисторе DB-3, эта отличается стабилизацией управляющих импульсов и соответственно большей точностью и неизменностью выходного напряжения.
При наладке устройства регулировки мощности, надо включить его в сеть с нагрузкой через автотрансформатор , а параллельно нагрузке установить вольтметр. Меняя напряжение переменным резистором R8 на входе регулятора, добиваемся минимального напряжения на нагрузке. Трансформатор выполнен на сердечнике Ш5х6, первичная обмотка 40 витков, вторичная 50 витков ПЭЛ-0,2 – 0.3. В своём варианте устройства регулировки мощности поставил трансформатор на ферритовом кольце К20х10х6 с двумя одинаковыми обмотками по 40 витков – всё отлично заработало. Для визуального контроля напряжения (мощности) на нагрузке, поставил небольшой вольтметр переменного тока собранный из индикатора уровня записи бобинного советского магнитофона. Подключаем его естественно параллельно нагрузке. Светодиоды красного свечения показывают, что устройство регулировки мощности включено в сеть и выполняют подсветку шкалы.
К данному регулятору можно подключать активную нагрузку мощностью до двух киловат — электроплиты, электрочайники, электрокамины, утюги и т. д., а при замене симистора на более мощный, например ТС132-50, до 10 кВт. Реальный пример использования: у соседа постоянно выбивают пробки автоматы на 16 А при эксплуатации электрочайника Тефаль 2 кВт. Замена их невозможна, так как проживает он не в своей квартире. Проблему решило данное устройство для регулировки, установленное на 80% мощности.
Полезные доработки: при работе с индуктивной нагрузкой, параллельно симистору регулятора мощности надо включить RC цепочку для ограничения скорости нарастания анодного напряжения. Любой симисторный регулятор является источником радиопомех, поэтому регулятор мощности желательно снабдить фильтром радиопомех. Фильтр радиопомех LC представляет собой обычный Г-фильтр с катушкой и конденсатором. В качестве дросселя L используется катушка из 100 витков провода, намотанного на ферритовый стержень диаметром 8 мм и длиной 50 мм. Диаметр провода 1 мм соответствует максимальной мощности нагрузки примерно 700 Вт. Предохранитель на номинальный ток нагрузки защищает симистор от короткого замыкания в нагрузке. При настройке соблюдайте меры безопасности, так как все элементы устройства для регулировки мощности гальванически связаны с сетью 220 В.
Как сделать регулятор мощности на симисторе своими руками: варианты схем
Для управления некоторыми видами бытовых приборов (например, электроинструментом или пылесосом) применяют регулятор мощности на основе симистора. Подробно о принципе работы этого полупроводникового элемента можно узнать из материалов, размещенных на нашем сайте. В данной публикации мы рассмотрим ряд вопросов, связанных с симисторными схемами управления мощностью нагрузки. Как всегда, начнем с теории.
Принцип работы регулятора на симисторе
Напомним, что симистором принято называть модификацию тиристора, играющего роль полупроводникового ключа с нелинейной характеристикой. Его основное отличие от базового прибора заключается в двухсторонней проводимости при переходе в «открытый» режим работы, при подаче тока на управляющий электрод. Благодаря этому свойству симисторы не зависят от полярности напряжения, что позволяет их эффективно использовать в цепях с переменным напряжением.
Помимо приобретенной особенности, данные приборы обладают важным свойством базового элемента – возможностью сохранения проводимости при отключении управляющего электрода. При этом «закрытие» полупроводникового ключа происходит в момент отсутствия разности потенциалов между основными выводами прибора. То есть тогда, когда переменное напряжение переходит точку нуля.
Дополнительным бонусом от такого перехода в «закрытое» состояние является уменьшение числа помех на этой фазе работы. Обратим внимание, что не создающий помех регулятор может быть создан под управлением транзисторов.
Благодаря перечисленным выше свойствам, можно управлять мощностью нагрузки путем фазового управления. То есть, симистор открывается каждый полупериод и закрывается при переходе через ноль. Время задержки включения «открытого» режима как бы отрезает часть полупериода, в результате форма выходного сигнала будет пилообразной.
Форма сигнала на выходе регулятора мощности: А – 100%, В – 50%, С – 25%
При этом амплитуда сигнала будет оставаться прежней, именно поэтому такие устройства неправильно называть регуляторами напряжения.
Варианты схем регулятора
Приведем несколько примеров схем, позволяющих управлять мощностью нагрузки при помощи симистора, начнем с самой простой.
Рисунок 2. Схема простого регулятора мощности на симисторе с питанием от 220 В
Обозначения:
- Резисторы: R1- 470 кОм , R2 – 10 кОм,
- Конденсатор С1 – 0,1 мкФ х 400 В.
- Диоды: D1 – 1N4007, D2 – любой индикаторный светодиод 2,10-2,40 V 20 мА.
- Динистор DN1 – DB3.
- Симистор DN2 – КУ208Г, можно установить более мощный аналог BTA16 600.
При помощи динистора DN1 происходит замыкание цепи D1-C1-DN1, что переводит DN2 в «открытое» положение, в котором он остается до точки нуля (завершение полупериода). Момент открытия определяется временем накопления на конденсаторе порогового заряда, необходимого для переключения DN1 и DN2. Управляет скоростью заряда С1 цепочка R1-R2, от суммарного сопротивления которой зависит момент «открытия» симистора. Соответственно, управление мощностью нагрузки происходит посредством переменного резистора R1.
Несмотря на простоту схемы, она довольно эффективна и может быть использована в качестве диммера для осветительных приборов с нитью накала или регулятора мощности паяльника.
К сожалению, приведенная схема не имеет обратной связи, следовательно, она не подходит в качестве стабилизированного регулятора оборотов коллекторного электродвигателя.
Схема регулятора с обратной связью
Обратная связь необходима для стабилизации оборотов электродвигателя, которые могут изменяться под воздействием нагрузки. Сделать это можно двумя способами:
- Установить таходатчик, измеряющий число оборотов. Такой вариант позволяет производить точную регулировку, но при этом увеличивается стоимость реализации решения.
- Отслеживать изменения напряжения на электромоторе и, в зависимости от этого, увеличивать или уменьшать «открытый» режим полупроводникового ключа.
Последний вариант значительно проще в реализации, но требует небольшой настройки под мощность используемой электромашины. Ниже приведена схема такого устройства.
Регулятор мощности с обратной связью
Обозначения:
- Резисторы: R1 – 18 кОм (2 Вт); R2 — 330 кОм; R3 – 180 Ом; R4 и R5– 3,3 кОм; R6 – необходимо подбирать, как это делается будет описано ниже; R7 – 7,5 кОм; R8 – 220 кОм; R9 – 47 кОм; R10 — 100 кОм; R11 – 180 кОм; R12 – 100 кОм; R13 – 22 кОм.
- Конденсаторы: С1 — 22 мкФ х 50 В; С2 — 15 нФ; С3 – 4,7 мкФ х 50 В; С4 – 150 нФ; С5 — 100 нФ; С6 – 1 мкФ х 50 В..
- Диоды D1 – 1N4007; D2 – любой индикаторный светодиод на 20 мА.
- Симистор Т1 – BTA24-800.
- Микросхема – U2010B.
Данная схема обеспечивает плавный запуск электрической установки и обеспечивает ее защиту от перегрузки. Допускается три режима работы (выставляются переключателем S1):
- А – При перегрузке включается светодиод D2, сигнализирующий о перегрузке, после чего двигатель снижает обороты до минимальных. Для выхода из режима необходимо отключить и включить прибор.
- В — При перегрузке включается светодиод D2, мотор переводится на работу с минимальными оборотами. Для выхода из режима необходимо снять нагрузку с электродвигателя.
- С – Режим индикации перегрузки.
Настройка схемы сводится к подбору сопротивления R6, оно вычисляется, в зависимости от мощности, электромотора по следующей формуле: . Например, если нам необходимо управлять двигателем мощностью 1500 Вт, то расчет будет следующим: 0,25/ (1500 / 240) = 0,04 Ом.
Для изготовления данного сопротивления лучше всего использовать нихромовую проволоку диаметром 0,80 или1,0 мм. Ниже представлена таблица, позволяющая подобрать сопротивление R6 и R11, в зависимости от мощности двигателя.
Таблица для подбора номиналов сопротивлений в зависимости от мощности двигателя
Приведенное устройство может эксплуатироваться в качестве регулятора оборотов двигателей электроинструментов, пылесосов и другого бытового оборудования.
Регулятор для индуктивной нагрузки
Тех, кто попытается управлять индуктивной нагрузкой (например, трансформатором сварочного аппарата) при помощи выше указанных схем, ждет разочарование. Устройства не будут работать, при этом вполне возможен выход из строя симисторов. Это связано с фазовым сдвигом, из-за чего за время короткого импульса полупроводниковый ключ не успевает перейти в «открытый» режим.
Существует два варианта решения проблемы:
- Подача на управляющий электрод серии однотипных импульсов.
- Подавать на управляющий электрод постоянный сигнал, пока не будет проход через ноль.
Первый вариант наиболее оптимален. Приведем схему, где используется такое решение.
Схема регулятора мощности для индуктивной нагрузки
Как видно из следующего рисунка, где продемонстрированы осциллограммы основных сигналов регулятора мощности, для открытия симистора используется пакет импульсов.
Осциллограммы входного (А), управляющего (В) и выходного сигнала (С) регулятора мощности
Данное устройство делает возможным использование регуляторов на полупроводниковых ключах для управления индукционной нагрузкой.
Простой регулятор мощности на симисторе своими руками
В завершении статьи приведем пример простейшего регулятора мощности. В принципе, можно собрать любую из приведенных выше схем (наиболее упрощенный вариант был приведен на рисунке 2). Для этого прибора даже не обязательно делать печатную плату, устройство может быть собрано навесным монтажом. Пример такой реализации показан на рисунке ниже.
Самодельный регулятор мощности
Использовать данный регулятор можно в качестве диммера, а также управлять с его помощью мощными электронагревательными устройствами. Рекомендуем подобрать схему, в которой для управления используется полупроводниковый ключ с соответствующими току нагрузки характеристиками.