39 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...
Затеяли ремонт? Вам сюда ⬇️

Расчет оси на изгиб онлайн

Расчет опорных реакций балки на двух опорах онлайн

Определение опорных реакций

Построение эпюр поперечных сил и моментов

Просмотр хода решения

Описание

Расчет выполняется по следующей методике:

1. Заменяем распределенную нагрузку ее равнодействующей, которая является сосредоточенной силой. Для равномерно распределенной нагрузки равнодействующая равна произведению интенсивности нагрузки q на длину участка L, на котором она действует: Fq = q*L.

2. Обозначаем опоры. Общепринято их обозначать буквами А и В. Простая балка имеет одну шарнирно-неподвижную и одну шарнирно-подвижную опоры.

3. Освобождаемся от опор и заменяем их действие на балку реакциями.
Реакции опор при такой нагрузке будут только вертикальными.

4. Составляем уравнения равновесия вида:
MA = 0; MB = 0,
Моментом силы относительно точки называется произведение этой силы на плечо — кратчайшее расстояние от этой точки приложения силы (в общем случае — до линии действия силы).

5. Выполним проверку решения. Для этого составим уравнение равновесия: Y = 0,
Если оно удовлетворено, то реакции найдены правильно, а если нет, но в решении допущена ошибка.

6. Строим эпюру поперечных сил Qx. Для этого определяем значения поперечных сил в характерных точках. Напомним, что поперечная сила в сечении равна сумме проекций всех сил, расположенных только слева или только справа от рассматриваемого сечения, на ось, перпендикулярную оси элемента. Силу, расположенную слева от рассматриваемого сечения и направленную вверх, считают положительной (со знаком «плюс»), а направленную вниз — отрицательной (со знаком «минус»). Для правой части балки — наоборот.
В сечениях, соответствующих точкам приложения сосредоточенных сил, в том числе в точках приложения опорных реакций, необходимо определить два значения поперечной силы: чуть левее рассматриваемой точки и чуть правее ее. Поперечные силы в этих сечениях обозначаются соответственно Qлев и Qправ.
Найденные значения поперечных сил в характерных точках откладываются в некотором масштабе от нулевой линии. Эти значения соединяются прямыми линиями по следующим правилам:
а) если к участку балки нет распределенной нагрузки, то под этим участком значения поперечных сил соединяются прямой линией, параллельной нулевой линии;
б) если на участке балки приложена распределенная нагрузка, то под этим участком значения поперечных сил соединяются прямой, наклонной к нулевой линии. Она может пересекать или не пересекать нулевую линию.
Соединив все значения поперечных сил по указанным правилам, получим график изменения поперечных сил по длине балки. Такой график называется эпюрой Qx.

7. Строим эпюру изгибающих моментов Мx. Для этого определяем изгибающие моменты в характерных сечениях. Напомним, что изгибающий момент в рассматриваемом сечении равен сумме моментов всех сил (распределенных, сосредоточенных, в том числе и опорных реакций, а также внешних сосредоточенных моментов), расположенных только слева или только справа от этого сечения. Если любое из перечисленных силовых воздействий стремится повернуть левую часть балки по часовой стрелке, то оно считается положительным (со знаком «плюс»), если против — отрицательным (со знаком «минус»), а для правой части наоборот.
В сечениях, соответствующих точкам приложения сосредоточенных моментов, необходимо определить два значения изгибающего момента: чуть левее рассматриваемой точки и чуть правее ее. Изгибающие моменты в этих точках обозначаются соответственно Млев и Мправ. В точках приложения сил определяется одно значение изгибающего момента.
Полученные значения откладываются в некотором масштабе от нулевой линии. Эти значения соединяются в соответствии со следующими правилами:
а) если на участке балки нет распределенной нагрузки, то под этим участком балки два соседних значения изгибающих моментов соединяются прямой линией;
б) если к участку балки приложена распределенная нагрузка, то под этим участком значения изгибающих моментов для двух соседних точек соединяются по параболе.

Расчет оси на изгиб онлайн

Действия
Построение
Элементы

Характеристики для новых стержней

Модуль упругости E:

Момент инерции I:

Площадь сечения F:

    Связь с землей: угол:

Выберите нужный формат чертежа:

* используя форматы А1, А2, А3, А4 к чертежу применяется один из стандартных масштабов, таким образом, чтобы он поместился на листе.

** выгружаются только схемы имеющие решение.

*** для открытия полученного файла рекомендуется использовать A9CAD (скачать).

Введите код доступа, затем нажмите ОК.

Купить код в он-лайн магазине (цена 40 руб.)

* код действителен в течение суток после первого использования (количество схем не ограничивается)

Предлагаем произвести ориентировочный расчет балок на прогиб и изгиб из круглого, квадратного, шестигранного и прямоугольного проката калькулятором.

Перед произведением расчетов настоятельно рекомендуем ознакомиться с расположенной ниже инструкцией

Онлайн калькулятор определения прогиба/изгиба балок

Выберите форму поперечного сечения проката

Определение опорных реакций

Построение эпюр поперечных сил и моментов

Просмотр хода решения

Описание

Расчет выполняется по следующей методике:

1. Заменяем распределенную нагрузку ее равнодействующей, которая является сосредоточенной силой. Для равномерно распределенной нагрузки равнодействующая равна произведению интенсивности нагрузки q на длину участка L, на котором она действует: Fq = q*L.

2. Обозначаем опоры. Общепринято их обозначать буквами А и В. Простая балка имеет одну шарнирно-неподвижную и одну шарнирно-подвижную опоры.

3. Освобождаемся от опор и заменяем их действие на балку реакциями.
Реакции опор при такой нагрузке будут только вертикальными.

4. Составляем уравнения равновесия вида:
MA = 0; MB = 0,
Моментом силы относительно точки называется произведение этой силы на плечо — кратчайшее расстояние от этой точки приложения силы (в общем случае — до линии действия силы).

5. Выполним проверку решения. Для этого составим уравнение равновесия: Y = 0,
Если оно удовлетворено, то реакции найдены правильно, а если нет, но в решении допущена ошибка.

6. Строим эпюру поперечных сил Qx. Для этого определяем значения поперечных сил в характерных точках. Напомним, что поперечная сила в сечении равна сумме проекций всех сил, расположенных только слева или только справа от рассматриваемого сечения, на ось, перпендикулярную оси элемента. Силу, расположенную слева от рассматриваемого сечения и направленную вверх, считают положительной (со знаком «плюс»), а направленную вниз — отрицательной (со знаком «минус»). Для правой части балки — наоборот.
В сечениях, соответствующих точкам приложения сосредоточенных сил, в том числе в точках приложения опорных реакций, необходимо определить два значения поперечной силы: чуть левее рассматриваемой точки и чуть правее ее. Поперечные силы в этих сечениях обозначаются соответственно Qлев и Qправ.
Найденные значения поперечных сил в характерных точках откладываются в некотором масштабе от нулевой линии. Эти значения соединяются прямыми линиями по следующим правилам:
а) если к участку балки нет распределенной нагрузки, то под этим участком значения поперечных сил соединяются прямой линией, параллельной нулевой линии;
б) если на участке балки приложена распределенная нагрузка, то под этим участком значения поперечных сил соединяются прямой, наклонной к нулевой линии. Она может пересекать или не пересекать нулевую линию.
Соединив все значения поперечных сил по указанным правилам, получим график изменения поперечных сил по длине балки. Такой график называется эпюрой Qx.

Читать еще:  Провод пунп расшифровка и применение

7. Строим эпюру изгибающих моментов Мx. Для этого определяем изгибающие моменты в характерных сечениях. Напомним, что изгибающий момент в рассматриваемом сечении равен сумме моментов всех сил (распределенных, сосредоточенных, в том числе и опорных реакций, а также внешних сосредоточенных моментов), расположенных только слева или только справа от этого сечения. Если любое из перечисленных силовых воздействий стремится повернуть левую часть балки по часовой стрелке, то оно считается положительным (со знаком «плюс»), если против — отрицательным (со знаком «минус»), а для правой части наоборот.
В сечениях, соответствующих точкам приложения сосредоточенных моментов, необходимо определить два значения изгибающего момента: чуть левее рассматриваемой точки и чуть правее ее. Изгибающие моменты в этих точках обозначаются соответственно Млев и Мправ. В точках приложения сил определяется одно значение изгибающего момента.
Полученные значения откладываются в некотором масштабе от нулевой линии. Эти значения соединяются в соответствии со следующими правилами:
а) если на участке балки нет распределенной нагрузки, то под этим участком балки два соседних значения изгибающих моментов соединяются прямой линией;
б) если к участку балки приложена распределенная нагрузка, то под этим участком значения изгибающих моментов для двух соседних точек соединяются по параболе.

Расчет деревянных балок перекрытия – Калькулятор онлайн

Онлайн-калькулятор для расчета балки на прогиб/изгиб и прочность. Расчет деревянных балок перекрытия на прогиб. Подбор сечения балки.

Цельная деревянная балка

Клееная балка из досок

Клееная балка из шпона LVL Ultralam

Бревно отёсанное на 2 канта (лафет)

Балка – это элемент строительных несущих конструкций, который широко используется для возведения межэтажных перекрытий. Перекрытия, в свою очередь, предназначены для разделения по высоте смежных помещений, а также принятия статических и динамических нагрузок от находящихся на нем предметов интерьера, оборудования, людей и т.д.

В большинстве случаев, для частного домостроения используются деревянные балки из цельного бруса, отесанного бревна, клееных досок или шпона. Эти материалы, при правильном подборе параметров, способны обеспечить необходимую прочность и жесткость основания, что является залогом долговечности постройки.

Мы предлагаем вам выполнить онлайн расчет балки перекрытия на прочность и изгиб, подобрать её сечение и определить шаг между балками. Также вы получите набор персональных чертежей и 3D-модель для лучшего восприятия возводимой конструкции. Программа учитывает СНиП II-25-80 (СП 64.13330.2011) и другие справочные источники.

Точный и грамотный расчет деревянных балок в сервисе KALK.PRO, позволяет узнать все необходимые параметры для сооружения крепкого перекрытия. Все вычисления бесплатны, есть возможность сохранения рассчитанных данных в формате PDF, плюс доступны схемы и 3D-модель.

Инструкция к калькулятору

Наш сервис предоставляет на выбор два вида расчета однопролетных балок перекрытия. В первом случае, вам предлагается рассчитать сечение балки при известном шаге между ними, во втором случае, вы можете узнать рекомендуемое значение шага между балками при выбранных характеристиках сечения. Разберем работу калькулятора на примере, когда ваша задача заключается в нахождении сечения балки.

Для расчета вам понадобится знать ряд обязательных начальных параметров. В первую очередь это характеристики самой балки:

  • ширина сечения (толщина), мм;
  • длина пролета балки (на изображении BLN), м;
  • вид древесины (сосна, ель, лиственница…);
  • класс древесины (1/К26, 2/К24, 3/К16);
  • пропитка (есть, нет).

В случае, если вы не знаете толщину предполагаемой балки, в первом блоке следует выбрать пункт «Известно соотношение высоты сечения балки к её ширине — h/b» и указать значение 1,4. Эта наиболее оптимальная величина, которая получена эмпирическим методом и указывается во многих справочниках.

Затем нужно указать условия, в которых будет эксплуатироваться перекрытие:

  • температурный режим ( 50 °C);
  • влажностный режим;
  • присутствуют постоянные повышенные нагрузки или нет.

После этого, сконфигурируйте конструкцию и заполните поля калькулятора:

  • длина стены дома по внутренней стороне, м;
  • шаг между балками, см;
  • полная длина балки (на изображении BFL), м;
  • нагрузка на балку, кг/м 2 ;
  • предельный прогиб в долях пролета.

При необходимости впишите стоимость одного кубометра древесины, для того чтобы узнать общую стоимость всех пиломатериалов.

Также, обратим внимание, что обычно шаг балки не делают меньше 0,3 м, так как это нецелесообразно с экономической точки зрения и больше 1,2 м, так как возможен прогиб чернового пола со всеми вытекающими последствиями.

Когда вы нажмете кнопку «Рассчитать», сервис произведет расчет балки онлайн и выведет на экране рекомендуемые значения сечения подобранной балки.

Кроме того, в блоке «Результаты расчета» вы сможете узнать:

  • параметры балки при расчете на прочность;
  • параметры балки при расчете на прогиб;
  • максимальный прогиб балки, см.

Квалифицированный расчет перекрытия по деревянным балкам — залог долговечности сооружения и безопасность для вашей семьи.

Расчет балок перекрытия

Самостоятельный расчет деревянной балки перекрытия – это долгое и нудное занятие, которое обязывает вас знать основы инженерных дисциплин и сопромата. Без определенных навыков и знаний, вручную подобрать материал, рассчитать необходимое сечение или шаг балки – не просто тяжело, а порой и невозможно. Тем не менее, мы попытаемся вам рассказать об основных характеристиках, которые нужны для вычислений и по какому алгоритму работает наш калькулятор.

Читать еще:  К каким органическим соединениям относятся каучуки

Виды балок

В настоящее время, деревянные балки, используемые для изготовления перекрытий, можно разделить на два принципиально разных вида:

Исходя из названия становится понятно, что в первом случае, это будет цельный кусок древесины определенного типа сечения (чаще всего это брус на 2 или 4 канта), во втором случае, это клееная балка из досок или шпона LVL.

Несмотря на низкую стоимость, по ряду объективных причин, деревянные балки из цельной древесины в последнее время используются все реже. Качественные показатели этого материала значительно уступают клееному дереву: низкий модуль упругости способствует появлению больших прогибов в середине пролета (особенно это становится заметно при расстоянии между несущими стенами более 4 метров), при высыхании на балках появляются продольные трещины, которые приводят к уменьшению момента инерции прогиба, отсутствие пропитки подвергает древесину воздействиям вредителей и гниения.

Благодаря современным технологиям, клееные балки не имеют подобных недостатков. Их структура однородна и волокна ориентированы по всем направлениям – повышается общая прочность и модуль упругости материала, он получает защиту от растрескивания, а специальная пропитка обеспечивает повышенный уровень пожаробезопасности и устойчивости к влаге. Эти балки разрешено использовать при проемах в 6-9 м и можно рассматривать, как полноценный аналог железному перекрытию.

Расчет оси на изгиб онлайн

Для расчета балок первым делом необходимо определить усилия, возникающие в конструкциях. В данном разделе показано, как находить усилия, опорные реакции, прогибы и углы поворота в различных изгибаемых конструкциях. Для самых распространенных из них вы можете воспользоваться онлайн расчетом. Для редких — приведены все формулы определения необходимых значений.

Онлайн расчет балки на двух опорах (калькулятор).

Приведен расчет на момент, прогиб и опорные реакции от сосредоточенной и распределнной силы.

Синие ячейки — ввод данных. (Белые ячейки — ввод координаты для определения промежуточного итога).

Зеленые ячейки — расчетные, промежуточный итог.

Оранжевые ячейки — максимальные значения.

>>> Перейти к расчету балки на двух опорах >> Перейти к расчету консольной балки

Расчет однопролетной балки на двух шарнирных опорах.

Рис.1 Расчет балки на двух шарнирных опорах при одной сосредоточенной нагрузке

Рис.2 Расчет балки на двух шарнирных опорах при двух сосредоточенных нагрузках

Рис.3 Расчет балки на двух шарнирных опорах при одной равномерно-распределенной нагрузке

Рис4. Расчет балки на двух шарнирных опорах при одной неравномерно-распределенной нагрузке

Рис5. Расчет балки на двух шарнирных опорах при действии изгибающего момента

Расчет балок с жестким защемлением на двух опорах

Рис6. Расчет балки с жестким защемлением на опорах при одной сосредоточенной нагрузке

Рис7. Расчет балки с жестким защемлением на опорах при двух сосредоточенных нагрузках

Рис8. Расчет балки с жестким защемлением на опорах при одной равномерно-распределенной нагрузке

Рис9. Расчет балки с жестким защемлением на опорах при одной неравномерно-распределенной нагрузке

Рис10.Расчет балки с жестким защемлением на опорах при действии изгибающего момента

Расчет консольных балок

Рис11. Расчет однопролетной балки с жестким защемлением на одной опоре при одной сосредоточенной нагрузке

Рис12. Расчет однопролетной балки с жестким защемлением на одной опоре при одной равномерно-распределенной нагрузке

Рис13. Расчет однопролетной балки с жестким защемлением на одной опоре при одной неравномерно-распределенной нагрузке

Рис14. Расчет однопролетной балки с жестким защемлением на одной опоре при действии изгибающего момента

Расчет двухпролетных балок

Рис15. Расчет двухпролетной балки с шарнирными опорами при одной сосредоточенной нагрузке

Рис16. Расчет двухпролетной балки с шарнирными опорами при одной равномерно-распределенной нагрузке

Рис17. Расчет двухпролетной балки с шарнирными опорами при одной неравномерно-распределенной нагрузке

Пример расчет балки на изгиб

Для заданной балки двутаврового сечения ( = 210 МПа, Е = 2 х 10 5 МПа) и нагрузок требуется;

1. Построить эпюры поперечных сил и изгибающих моментов;

2. Определить нормальные и касательные напряжения в сечениях с наибольшим моментом и поперечной силой на расстоянии h/4 от нейтральной оси;

3. Определить прогиб конца балки точки В.

При построении эпюр Q и М необходимо соблюдать правило зна­ков. Положительное направление сил показано на схеме.

1. Определяем опорные реакции

2. Методом сечений определяем ординаты поперечной силы в характерных сечениях. Для этого балку разбиваем на два участка. Границы участков — места изменения нагрузки. Построение эпюры на­чинаем с правого свободного конца балки.

Максимум изгибавшего момента находится в сечении, где поперечная сила равна нулю. Положение этого сечения определяем из условия:

3. Методом сечений определяем изгибающие моменты в характерных сечениях и строим эпюру моментов. Экстремум в т. х = 2 м.

Наиболее нагруженным сечением в балке является сечение А у заделки, где Мmax = 120 кН м, Qmах = — 80 кН.

4. Из условий прочности по нормальным напряжениям определяем требуемый момент сопротивления сечения.

По сортаменту ГОСТ 8509-72 принимаем двутавр № 33.

Максимальные напряжения в опасном сечении будут равны

5. Определяем нормальное напряжение в точке Е сечения на расстоянии h/4 = 8,25 см от нейтральной оси (рис. 4.9.).

Для определения касательного напряжения в точке Е вычислим статический момент отсеченной выше точки Е площади относительно центральной оси Х.

6. Определяем прогиб балки в точке В, используя универсаль­ное уравнение прогибов

Для заданной консольной балки граничные условия будут: угол поворота сечения А ; прогиб сечения А

188.64.169.166 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Читать еще:  Как проверить конденсатор переменного тока

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Расчет осей на статическую прочность

Как указывалось выше, оси не испытывают кручения, поэтому их рас­считывают только на изгиб.

8.12.Последовательность проектировочного расчета.

По конструкции узла (рис. 8.8, а) составляют расчетную схему (рис. 8.8, б), определяют силы, действующие на ось, строят эпюры изгибающих мо­ментов; диаметр оси определяют по формуле

(8.2)

где Ми — максимальный изгибающий момент; [σ]и — допускаемое напря­жение изгиба.

Во вращающихся осях напряжение изгиба изменяется по симметрично­му циклу: для них принимают , в неподвижных . Для вращающихся осей из Ст5 [σ]и = 50 ÷ 80 МПа, для невра- вдающихся [σ]и = 100 ÷ 160 МПа (меньшие значения рекомендуется прини­мать при наличии концентраторов напряжений).

Рис. 8.8.Расчетная схема оси: а — конструкция; б — расчетная схема; в — эпюра изгибающих моментов

Полученное значение диаметра оси d округляют до ближайшего боль­шего стандартного размера:

16, 17, 18, 19; 20; 21; 22; 23; 24;

25; 26; 28; 30; 32; 34; 36; 38; 40;

42; 45; 48; 50; 52; 55; 60; 63; 65;

70; 75; 80; 85; 90; 95; 100.

Если ось в расчетном сечении имеет шпоночную канавку, то ее диа­метр увеличивают на 10 %.

8.13.Проверочный расчет осей на статическую прочность.

Этот расчет производят по формуле

(8.3)

где а„ — расчетное напряжение изгиба в опасном сечении оси.

Испытывают ли оси деформацию кручения?

§ 4. Приближенный расчет валов на прочность

При этом методе расчета различие характера циклов изменения нор­мальных и касательных напряжений и их влияние на прочность не учиты­вают.

В зависимости от действия нагрузок возможны два случая приближен­ного расчета валов на прочность: расчет только на кручение и расчет на со­вместное действие кручения и изгиба.

Приближенный расчет выполняют как проектировочный, на основе которого ориентировочно устанавливают диаметры характерных сечений вала (методика изложена в шаге 8.14 или 8.15) с последующим уточнением коэффициентов запаса прочности по выносливости (уточненный расчет см. § 5).

8.14.Расчет валов на кручение.

При этом расчете обычно определяют диаметр выходного конца вала или диаметр вала под подшипником (под опорой), который испытывает только кручение.

Исходя из условия прочности (8.1) выполняют проектировочный рас­чет

(8.4)

и проверочный расчет

(8.5)

где d — расчетный диаметр вала; Мк — крутящий момент вопасном сече­нии вала; τк и [τ]к — расчетное и допускаемое напряжения кручения в опасном сечении вала (для сталей 45 и Ст5 [τ]к = 25 ÷ 35 МПа).

Назовите участки вала, которые рассчитывают по формуле(8.4).

8.15.Расчет валов на совместное действие кручения и изгиба.

Участок вала между опорами (под шестерней, колесом и т. п.) рассчи­тывают на совместное действие кручения и изгиба по эквивалентному мо­менту Мэкв.

Эквивалентный момент вычисляют обычно по формуле (при расчете по теории максимальных касательных напряжений):

(8.6)

где Ми и Мк — изгибающий и крутящий моменты.

По аналогии с рассмотренными в шагах 8.12—8.14 случаями расчета выполняют:

(8.7)

и проверочный расчет

(8.8)

где σэкв — эквивалентное напряжение для расчетного сечения вала.

Получив расчетным путем размеры, с учетом технологии изготовления проектируют конструктивную форму вала.

Приближенный расчет на совместное действие кручения и изгиба для неответственных конструкций валов можно считать основным. Уточнен­ный расчет на выносливость (см. § 5) можно не производить, если соблю­дается условие

(8.8а)

где σ-1, — предел выносливости материала при изгибе (симметричный цикл); Kd — масштабный коэффициент; Кп — эффективный коэффициент концентрации напряжений в опасном сечении; [s] — допускаемый коэф­фициент запаса прочности по выносливости; Kd, Ka, [s] — устанавливаются в шагах 8.17—8.18.

Когда применяют метод расчета валов, изложенный в шаге 8.15? Чем отличаются расчеты по формулам (8.7), (8.8) и (8.2), (8.3)?

8.16.Порядок приближенного (проектировочного) расчета валов на проч­ность по Мэкв:

1. По чертежу узла составляют расчетную схему (рис. 8.9, а).

2. Определяют действующие на вал силы; если они действуют не в од­ной плоскости, то их необходимо разложить по двум взаимно перпендику­лярным плоскостям. При угле между плоскостями менее 30° все силы мож­но рассматривать как действующие в одной плоскости.

В схеме (см. рис. 8.9, а) Мк — крутящий момент, возникающий в попе­речных сечениях вала; FB и FT силы, действующие на вал в вертикальной и в горизонтальной плоскостях.

Рис.8.9. Расчетная схема валов: а — схема нагружения; б — эпюра изгибающего момента в

вертикальной плоскости; в — эпюра изгибающего момента в горизонтальной плоскости; г —

эпюра крутящего момента; д — эскиз вала

3. Определяют опорные реакции:

в вертикальной плоскости

в горизонтальной плоскости .

4. Изгибающие моменты Ми и их эпюры:

в вертикальной плоскости — в сечении Аи С МИ В = 0;

в сечении В (рис. 8.9, б);

в горизонтальной плоскости — в сечении А и С Миг= 0;

в сечении В (рис. 8.9, в).

5. Суммарный изгибающий момент в сечении В

(8.9)

6. Определяют крутящий момент и строят эпюру (см. рис. 8.9, г):

(8.10)

где Р — мощность, Вт; со — угловая скорость, рад/с.

7. По формуле (8.6) определяют эквивалентный момент, диаметр вала между опорами определяют по формуле

(8.7):

Полученное значение d округляют до ближайшего большего стандарт­ного (см. шаг 8.12).

8. Определяют диаметры под подшипниками don (рис. 8.9, д) и округля­ют до большего стандартного значения.

Как определить диаметр вала don под опорой С для схемы нагрузки вала, показанной на рис. 8.9, а?

studopedia.org — Студопедия.Орг — 2014-2019 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.004 с) .

Ссылка на основную публикацию
Adblock
detector