84 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Принцип действия мостового выпрямителя

Трехфазный мостовой выпрямитель — принцип работы и схемы

Если для маломощных схем постоянного тока применяют однотактные или мостовые однофазные выпрямители, то для питания более мощных нагрузок необходимы порой выпрямители трехфазные.

Трехфазные выпрямители позволяют получать большие величины постоянных токов с малыми уровнями пульсаций выходного напряжения, что сказывается на снижении требований к характеристикам сглаживающего выходного фильтра. Итак, для начала рассмотрим однотактный трехфазный выпрямитель, изображенный на рисунке ниже:

В приведенной на рисунке однотактной схеме к выводам вторичных обмоток трехфазного трансформатора подключены всего три выпрямительных диода. Нагрузка присоединена к цепи между общей точкой, в которой сходятся катоды диодов, и общим выводом трех вторичных обмоток трансформатора.

Давайте теперь рассмотрим временные диаграммы токов и напряжений, имеющих место во вторичных обмотках трансформатора и на одном из диодов трехфазного однотактного выпрямителя:

Некоторым устройствам постоянного тока требуется большее напряжение питания, чем может дать однотактная схема, приведенная выше. Поэтому в некоторых случаях больше подходит схема трехфазного двухтактного выпрямителя. Принципиальная его схема приведена на рисунке ниже. Как мы уже отмечали, требования к фильтру снижаются, вы сможете увидеть это по диаграммам. Данная схема известна как трехфазный мостовой выпрямитель Ларионова:

Взгляните теперь на диаграммы и сравните их с однотактной схемой. Выходное напряжение в мостовой схеме легко представляется в виде суммы напряжений как бы двух однотактных выпрямителей, работающих в противоположных фазах. Напряжение Ud = Ud1+Ud2. Количество фаз на выходе очевидно больше и частота пульсаций сети больше.

В данном конкретном случае — шесть фаз постоянного напряжения вместо трех, которые были в однотактной схеме. Вот почему требования к сглаживающему фильтру снижаются, и в некоторых случаях без него можно полностью обойтись.

Три фазы обмоток вкупе с двумя полупериодами выпрямления дают основную частоту пульсаций равную шестикратной частоте сети (6*50 = 300). Это видно по диаграммам напряжений и токов.

Мостовое включение можно рассмотреть как объединение двух однотактных трехфазных схем с нулевой точкой, причем диоды 1, 3 и 5 — это катодная группа диодов, а диоды 2, 4 и 6 — анодная группа. Два трансформатора будто бы объединены в один. В каждый момент прохождения тока через диоды — в процессе участвуют одновременно два диода — по одному из каждой группы.

Открывается катодный диод, к которому приложен более высокий потенциал относительно анодов противоположной группы диодов, и в анодной группе открывается именно тот из диодов, потенциал к которому приложен более низкий по отношению к катодам диодов катодной группы.

Переход рабочих промежутков времени между диодами происходит в моменты естественной коммутации, диоды работают по порядку. В итоге потенциал общих катодов и общих анодов может быть измерен по верхней и нижней огибающим графиков фазных напряжений (см. диаграммы).

Мгновенные значения выпрямленных напряжений равны разности потенциалов катодной и анодной групп диодов, то есть сумме ординат на диаграмме между огибающими. Выпрямленный ток вторичных обмоток показан на диаграмме для активной нагрузки.

Таким же образом можно получить от трехфазного трансформатора более шести фаз постоянного напряжения: девять, двенадцать, восемнадцать и даже больше. Чем больше фаз (чем больше пар диодов) в выпрямителе, тем меньше уровень выходных пульсаций напряжения. Вот, взгляните на схему с 12 диодами:

Здесь трехфазный трансформатор содержит две трехфазные вторичные обмотки, причем одна из групп объединена в схему «треугольник», вторая — в «звезду». Количества витков в обмотках групп отличаются в 1,73 раза, что позволяет получить со «звезды» и с «треугольника» одинаковые величины напряжения.

В данном случае сдвиг фаз напряжений в этих двух группах вторичных обмоток относительно друг друга получается равен 30°. Поскольку выпрямители включены последовательно, то выходное напряжение суммируется, и на нагрузке частота пульсаций оказывается теперь в 12 раз большей по отношению к сетевой частоте, при этом уровень пульсаций получается меньшим.

Однофазный мостовой выпрямитель

Схема однофазного мостового выпрямителя представлена на рис. 3.5. В данной схеме у трансформатора только одна вторичная обмотка, но в нагрузку поступают два полупериода напряжения вторичной обмотки трансформатора. В нечётные полупериоды ток проходит через диод VD1, нагрузку, диод VD3. В чётные – через диод VD2, нагрузку, диод VD4.

Рис. 3.5. Однофазный мостовой выпрямитель

Временная диаграмма работы однофазного мостового выпрямителя представлена на рис. 3.6. Она практически не отличается от временной диаграммы двухполупериодного выпрямителя, только лишь отмечено прохождение тока через пары диодов VD1, VD3 и VD2, VD4, а также видно, что обратное напряжение на закрытом диоде Ub.max уменьшилось.

Среднее значение выпрямленного напряжения такое же, как в предыдущей схеме:

.

Рис. 3.6. Временная диаграмма работы однофазного мостового выпрямителя

Среднее значение тока диода .

Максимальное обратное напряжение на диоде равно амплитудному значению напряжения вторичной обмотки:

.

Подмагничивания сердечника трансформатора нет, что является существенным преимуществом данной схемы. Подробнее рассмотрим режим работы трансформатора.

Действующее значение тока вторичной обмотки:

.

Действующее значение напряжения вторичной обмотки трансформатора:

.

Расчетная мощность вторичной обмотки трансформатора:

,

Расчетная мощность первичной обмотки:

.

Расчетная (типовая) мощность трансформатора:

.

Коэффициент использования трансформатора по мощности:

.

Для удобства сравнения различных схем выпрямителей составим таблицу основных электрических параметров.

Основные электрические параметры однофазных выпрямителей

Проведённый анализ работы схем выпрямителей не учитывал влияние на выходное напряжение выпрямителя внутреннего сопротивления трансформатора и сопротивления диодов, а также потерь из-за прямого падения напряжения на открытых диодах.

На холостом ходу выпрямителя выходное напряжение будет меньше расчётного на величину прямого падения напряжения на открытых диодах. Для однополупериодной и двухполупериодной схемы последовательно с нагрузкой включён только один диод, а в мостовой схеме – два. Поэтому мостовая схема для малых выходных напряжений не применяется, так как падение напряжения на двух диодах существенно снижает коэффициент полезного действия схемы. Предположим, выходное напряжение выпрямителя равно 3 В. На каждом из диодов мостовой схемы прямое падение напряжения составит около 1 В, итого 2 В. То есть трансформатор должен иметь на вторичной обмотке запас по напряжению в 40% из-за потерь в диодах.

Под нагрузкой выходное напряжение выпрямителя начнёт уменьшаться из-за потерь напряжения на внутреннем сопротивлении трансформатора и диодов. Зависимость выходного напряжения выпрямителя от тока нагрузки называется внешней характеристикой.

Уравнение внешней характеристики:

, (3.14)

где Ud0 – напряжение холостого хода выпрямителя;

ra – активное сопротивление трансформатора;

rпр – прямое динамическое сопротивление диодов;

Как следует из выражения (3.14) внешняя характеристика выпрямителя, работающего на активную нагрузку, представляет собой прямую линию. Примерный вид внешней характеристики представлен на рис. 3.7.

Рис. 3.7. Внешняя характеристика выпрямителя с активной нагрузкой

Контрольные вопросы

1. Для чего применяются выпрямители?

2. Приведите классификацию и перечислите основные параметры выпрямителей.

3. Нарисуйте схему однополупериодного однофазного выпрямителя с активной нагрузкой и его временную диаграмму работы.

4. Нарисуйте схему двухполупериодного однофазного выпрямителя с активной нагрузкой и его временную диаграмму работы.

5. Нарисуйте схему мостового однофазного выпрямителя с активной нагрузкой и его временную диаграмму работы.

188.64.169.166 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Двухполупериодный выпрямитель — однофазные, трехфазные, мостовые

Двухполупериодный выпрямитель более распространен, чем однополупериодный, это связано с многочисленными преимуществами такой схемы. Чтобы объяснить, в чем именно заключается преимущество, следует обратиться к теоретическим основам электротехники.

В первую очередь рассмотрим отличие двухполупериодного выпрямителя от однополупериодного, для этого нужно понять принцип работы каждого из них. Примеры схем с осциллограммами дадут наглядное представление о преимуществах и недостатках этих устройств.

Однополупериодный преобразователь

Ниже приведена типичная схема подобного устройства с минимумом элементов.

Схема: простейший преобразователь

Обозначения:

  • Tr – трансформатор;
  • DV- вентиль (диод);
  • Cf – емкость (играет роль сглаживающего фильтра);
  • Rn – подключенная нагрузка.

Теперь рассмотрим осциллограмму в контрольных точках U1, U2 и Un.

Осциллограмма, снятая в контрольных точках U1, U2 и Un

Пояснение:

  • в контрольной точке U1 отображается диаграмма снятая на входе устройства;
  • U2 – диаграмма перед емкостным сглаживающим фильтром;
  • Un – осциллограмма на нагрузке.

Временная диаграмма наглядно показывает, что после вентиля (диода) выпрямленное напряжение представляется в виде характерных импульсов, состоящих из положительных полупериодов. Когда происходит такой импульс, накапливается заряд емкостного фильтра, который разряжается во время отрицательного полупериода, это позволяет несколько сгладить пульсации.

Недостатки такой схемы очевидны — это низкий КПД, в следствии высокого уровня пульсаций. Но несмотря на это, устройства такого типа находят свое применение в цепях с низким токопотреблением.

Принцип действия двухполупериодной схемы

Рассмотрим два варианта реализации двухполупериодного преобразователя (выпрямителя): балансный и мостовой. Схема первого показана на рисунке ниже.

Простейший неуправляемый балансный преобразователь на двух диодах с использованием трансформатора со средним выводом

Используемые элементы:

  • Tr – трансформатор, у которого имеются две одинаковые вторичные обмотки (или одна с отводом по середине);
  • DV1 и DV2 – вентили (диоды);
  • Cf – емкостной фильтр;
  • Rn – сопротивление нагрузки.

Приведем сразу для наглядности осциллограмму в контрольных точках.

Диаграмма прибора балансного типа

  • U1 – осциллограмма на входе;
  • U2 – график перед емкостным фильтром;
  • Un – диаграмма на выходе устройства.

Данная схема — это два совмещенных однополупериодных преобразователя, то есть на два раздельных источника приходится одна общая нагрузка. Результат работы такого устройства наглядно демонстрирует график U2. Из него видно, что в процессе используются оба полупериода, что и дало название этим преобразователям.

Осциллограмма наглядно демонстрирует преимущества такого устройства, а именно, следующие факты:

  • частота пульсаций на выходе устройства удваивается;
  • уменьшение «провалов» между импульсами допускает использование меньшей фильтрующей емкости;
  • двухтактный преобразователь обладает большим КПД, чем однополупериодный.

Теперь рассмотрим мостовой тип, он изображен на рисунке ниже.

Схема: Пример использования диодного моста

Осциллограмма устройства мостового типа практически не отличается от балансного, поэтому приводить ее нет смысла. Основное преимущество такой схемы – нет необходимости использовать более сложный трансформатор.

Видео: Двухполупериодный выпрямительный мост

Преобразователи, где используется полупроводниковый диодный мост, широко применяются как в электротехнике (например, в аппаратах для сварки, где номинальный ток может доходить до 500 ампер), так и радиоэлектронике, в качестве источника для слаботочных цепей.

Заметим, что помимо полупроводниковых можно использовать и вакуумные диоды – кенотроны (ниже показан пример схемы такого устройства).

Схема: преобразователь на двуханодном кенотроне 6Ц4П

Собственно, представленная схема – это классическая реализация балансного преобразователя двухполупериодного типа. На сегодняшний день вакуумные диоды практически не применяются, их заменили полупроводниковые аналоги.

Как организовать двухполярное питание

Сочетая балансную схему и мостовую, можно получить преобразователь, который будет давать на выходе двухполярное питание с общей (нулевой) точкой. Причем, для одного она будет отрицательной, а для другого – положительной. Такие устройства широко применяются в БП для цифровой радиотехнике.

Схема: пример преобразователя с двухполярным выходом

Как реализовать удвоение напряжения

Ниже представлена схема, позволяющая получить на выходе устройства напряжение, вдвое выше исходного.

Схема с удвоением напряжения

Для такого устройства характерно, что два конденсатора заряжаются в разные полупериоды, а поскольку они расположены последовательно, то, по итогу, на «Rn» суммарное напряжение будет вдвое выше, чем на входе.

В преобразователе с таким умножителем можно применять трансформаторы с меньшим напряжением вторичной обмотки.

Использование операционных усилителей

Как известно, у диодов вольтамперная характеристика нелинейная, создавая однофазный прецизионный (высокоточный) выпрямитель двухполупериодного типа на микросхеме ОУ, можно существенно снизить погрешность. Помимо этого, имеется возможность создать преобразователь, позволяющий стабилизировать ток на нагрузке. Пример схемы такого устройства показан ниже.

Схема: простой стабилизатор на операционном усилителе

На рисунке изображен простейший стабилизатор тока. Используемый в нем ОУ — это управляемый по напряжению источник. Такая реализация позволяет добиться, чтобы ток на выходе преобразователя не зависел от потери напряжения на нагрузке Rн и диодном мосту D1-D4.

Если требуется стабилизация напряжения, схему преобразователя можно незначительно усложнить, добавив в нее стабилитрон. Он подключается параллельно сглаживающей емкости.

Кратко об управляемых преобразователях

Нередко требуется управлять напряжением на выходе преобразователя, не изменяя входное. Для этой цели наиболее оптимальным будет применение управляемых вентилей, пример такой реализации показан ниже.

Простой тиристорный преобразователь (на управляемых вентилях)

Трехфазный выпрямитель

Мы рассматривали различные реализации однофазных двухполупериодных преобразователей, но подобные устройства используются и для трехфазных источников. Ниже, в качестве примера, показано устройство, созданное по схеме Ларионова.

Пример реализации схемы Ларионова Осциллограмма на выходе схемы Ларионова

Как показывает расположенный выше график, реализация мостовой схемы между парами фаз позволяет получить на выходе незначительные пульсации. Благодаря этому фильтрующую емкость можно существенно снизить, или вообще обойтись без нее.

Проектирование

Расчет даже простого двухполупериодного преобразователя является непростой задачей. Существенно упростить ее можно используя специальное программное обеспечение. Мы рекомендуем остановить выбор на программе Electronics Workbench, которая позволяет выполнить схематическое моделирование аналоговых и цифровых электрических устройств.

Смоделировав в этой программе двухполупериодный выпрямитель можно получить наглядное представление о принципе его работы. Встроенные формулы позволяют рассчитать максимальное обратное напряжение для диодов, оптимальную емкость гасящего конденсатора и т.д.

Маломощные выпрямители

Одними из самых распространенных преобразователей тока являются выпрямители переменного тока в пульсирующий (постоянный по направлению движения носителей, но переменный по мгновенной величине) ток. Они имеют очень широкое применение. Условно их можно разделить на маломощные выпрямители (до нескольких сотен ватт и выпрямители большой мощности (киловатты и больше)).

Принцип работы выпрямителя

Структурная схема выпрямителя показана ниже:

Главною его частью является выпрямляющее устройство В, образованное из диодов, объединенных особым образом. Именно здесь и происходит преобразование переменного тока в пульсирующий постоянный. Переменное напряжение подается на выпрямляющее устройство через трансформатор Тр. В некоторых случаях трансформатора может и не быть (если напряжение силовой сети отвечает той, которая необходима для работы выпрямителя). Трансформатор(если он есть) в большинстве также имеет особенности в соединении его обмоток. Пульсирующий ток , как правило не является постоянным по величине в каждое мгновение времени, и когда необходимо иметь более сглаженное его значение, чем полученный после выпрямляющего устройства, применяют фильтры Ф. В случае необходимости выпрямитель дополняют стабилизатором напряжения или тока Ст, который поддерживает их на постоянном уровне, если параметры силовой сети изменяется по разным причинам. Структурную схему завершает нагрузка Н, которая значительно влияет на работу всего устройства и поэтому считается составляющей частью всего преобразователя.

Собственно выпрямителем является та его часть, которая обведена на рисунке выше пунктиром и состоит из трансформатора и выпрямительного устройства.

В этом подразделе рассматриваются выпрямители малой мощности, которые необходимы для обеспечения постоянным напряжением всяких устройств в областях управления, регулирования, усилителях тока, генераторах малой мощности и так далее. Как правило, они питаются от однофазного переменного напряжения 220 или 380 В частотою 50 Гц.

Нулевая схема выпрямления

Рассмотреть принцип действия самого простого выпрямителя однофазного тока целесообразно на так называемой нулевой схеме. Хотя она сейчас встречается относительно редко (о чем речь пойдет далее), знание физических процессов, которые происходят в этой схеме, очень важны для понимания дальнейшего материала.

Нулевая схема выглядит так:

Трансформатор Тр имеет на вторичной стороне две обмотки, соединенные последовательно таким образом, что относительно средней точки а напряжения на свободных концах обмоток в и с одинаковые по величине, но противоположные по фазе. Выпрямительное устройство образовано двумя диодами D1 и D2, которые соединены вместе своими катодами, тогда как каждый анод соединен с соответствующей обмоткой. Нагрузка Zн присоединена между катодами диодов и точкой трансформатора.

Рассмотрим, как возникает пульсирующее напряжение на нагрузке. Сначала будем считать нагрузку чисто активным сопротивлением, Zн=Rн. Когда напряжение в обмотках будет изменяться по синусоидальному закону, то в тот полупериод, когда к аноду диода приложен положительный потенциал, будет проходить прямой ток. Поскольку напряжение на диоде составляет доли вольта, пренебрежем им. Тогда вся положительная полуволна переменного напряжения будет приложена просто к нагрузке Rн. Когда напряжение приложенное минусом к аноду, тока не будет (малым обратным током диода также пренебрежем). Таким образом, до нагрузки будем доходить лишь положительная полуволна переменного напряжения в течении половины периода. Вторая половина периода будет свободна от тока.

Вторичные обмотки соединены противофазно, нагрузка общая для обеих обмоток, таким образом, в то время, когда в одной из них (например в верхней) ток будет проходить, другая будет от него свободна и наоборот.

Поэтому в нагрузке каждый полупериод будет заполнен полуволной переменного напряжения:

И выпрямленное напряжение Ud будет иметь вид одинаковых полуволн, которые повторяются с периодом, вдвое меньшим, чем период переменного напряжения в сети питания (2π радиан). Для обобщения, что будет удобно, далее будем считать, что период изменения выпрямленного напряжения меньше 2π в m раз и равняется 2π/m (в нашем случае m-2). Если нагрузка активное сопротивление Rн, то и ток в нем id , будет повторять кривую напряжения.

Рассмотренная схема будет иметь тот недостаток, что во вторичных обмотках по сравнению с первичной имеют место значительные пульсации тока, потому что эти обмотки работают по очереди. Поскольку они намотаны на один сердечник, магнитный поток в последнем будет переменным, поэтому и в первичной обмотке ток будет переменным, имея как положительную, так и отрицательную полуволны. Как известно из курса электротехники, действующие и средние значения тока или напряжения одинаковые только для постоянного тока. Чем больше пульсации, тем больше будет действующее значение относительно среднего. Поэтому мощности обеих сторон трансформатора не будут одинаковыми. Однако трансформатор один, и объем железа для его сердечника следует выбирать, исходя из какого-то одного значения мощности.

Поэтому условно ввели понятие типовой мощности трансформатора, которая равняется среднему мощностей обеих сторон:

Выпрямительный мост или схема Гретца

Указанный недостаток можно исправить, используя выпрямляющее устройство в виде так называемого моста (схема Гретца):

В этом случае первые полупериоды будут работать, например, диоды D2 и D4, а вторые полупериода — D1 и D3. На нагрузке каждый раз будет полная полуволна вторичного напряжения:

Мостовая схема кроме того имеет менее сложный, более легкий и дешевый трансформатор. Как мы увидим далее, у нее есть еще несколько преимуществ.

Интересно, что эта схема появилась исторически раньше нулевой однако распространения не получила, потому что имела во-первых четыре диода вместо двух. Однако главным было не их количество, а то что при работе каждые полупериода ток проходит через два последовательно соединенных диода, на которые падает двойное напряжение. На то время полупроводниковых диодов еще не было, а вакуумные или ртутные имели значительное падение напряжения при прохождении прямого тока, что существенно понижало коэффициент полезного действия. Оказалось, что более сложный трансформатор нулевой схемы, но с одним диодом в кругу выпрямления тока экономично выгоднее, чем мостовая схема с удвоенным числом диодов и двойным расходом энергии на них. И только появление относительно дешевых полупроводниковых диодов с очень маленьким падением прямого напряжения позволило повернуться к мостовым схемам, которая сейчас практически вытеснила нулевую ( в этом при желании можно усмотреть проявление одного из диалектических законов – развитие по спирали).

Основные соотношения для выпрямителя

Выведем некоторые важные формулы, которые описывают процессы, существующие в этой схеме. Будем считать, что заданными величинами являются средние значения напряжения на нагрузку Ud и среднее значение тока в нем Id.

Среднее значение выпрямленного напряжения

Запомним это выражение на дальнейшее. В нашем случае m=2 и . Поскольку Ud считаем заданным, то

Амплитудное значение вторичного напряжения

Из предыдущего выражения имеем:

Коэффициент трансформации трансформатора

Этот коэффициент определяет отношения питающей сети к напряжению на обмотке вторичной стороны:

Действующее значение тока вторичной обмотки

Ток вторичной обмотки в то же время есть током в нагрузке. Поскольку нагрузка чисто активная и ток в ней повторяет по форме пульсирующее напряжение, то между его средним значением и его действующим значением существует такая же зависимость, что и для напряжений, то есть

Действующее значение тока первичной обмотки

Ток в первичной обмотке повторяет с учетом n ток вторичной обмотки :

Мощность трансформатора

Мощности первичной и вторичной сторон трансформатора в этой схеме одинаковые, поэтому:

Пульсация выпрямленного напряжения

Пульсирующее напряжение состоит из среднего значения Ud и бесконечного количества гармоничных составляющих, амплитуды которых можно определить по формулам Фурье. Если начало координат выбрать так как на рисунке, то в гармоничном составе будут присутствовать только косинусные гармоники (т.к. кривая симметрична относительна оси координат). Амплитуда k-ой гармоники определяется по формуле:

Где: l – полупериод π/m;

Наибольшую амплитуду будет иметь первая гармоника U(1)m, поэтому определим только ее, предположив, что k=1:

Заменив получим:

Отношение первой гармоники к среднему значению называют коэффициентом пульсаций:

Запомним эту формулу на будущее, а сейчас отметим, что в нашем случае при m – 2, q – 2/3. Это большие пульсации – амплитуда первой гармоники составляет 67% от среднего значения выпрямленного напряжения.

Средний ток диодов

Как мы уже видели диоды работают по очереди – каждый из них проводит в среднем половину общего тока , который есть в нагрузке. Поэтому каждый из диодов должен быть рассчитан на ток Iв = Id/2

Наибольшее обратное напряжение на диоде

В то время когда диод B1 проводит его можно считать замкнутым, и тогда к диоду B2 будет приложено в обратном направлении напряжение вторичной обмотки. Поэтому каждый из диодов должен быть рассчитан на ее амплитудное значение:

Принцип действия и схема трехфазного мостового выпрямителя

Пользователям силовых цепей 380 Вольт в домашнем хозяйстве нужен пассивный (неуправляемый) трехфазный выпрямитель. Знание некоторых особенностей электронного устройства и существующих схем выпрямления окажется очень полезным. Это поможет владельцу силового оборудования эксплуатировать его более грамотно и рационально в течение длительного времени.

Описание выпрямителей

Основное отличие устройств от своих однофазных аналогов проявляется в следующем:

  • первые устанавливаются в линиях 220 Вольт и служат для получения постоянных токов незначительной величины (до 50-ти Ампер);
  • трехфазные выпрямители используются в цепях, где рабочие (выпрямленные) токи существенно превышают этот показатель и достигают нескольких сотен Ампер.
  • в сравнении с однофазными образцами эти приборы имеют более сложное устройство.

Известны схемы выпрямления трехфазного напряжения, позволяющие получить на выходе минимальный уровень пульсаций.

В электротехнике они называются «трехфазные мостовые выпрямители», так как по способу открывания диодов, управляемых полярностью напряжения, они напоминают мост через реку с односторонним движением. Только направление потока электронов в них чередуется с частотой 50 Гц, недоступной для проезда машин поочередно в каждую из сторон.

Принцип действия

Принцип работы любого преобразователя синусоидального напряжения основан на выпрямительных свойствах особого полупроводникового элемента – германиевого или кремниевого диода. При протекании через него переменного тока положительная полуволна свободно «проходит» через рабочий электронный переход, смещенный в прямом направлении. При воздействии отрицательной полуволны электроны встречают препятствие в виде потенциального барьера, так что ток через переход течь не может.

В простейших схемах включения используется неполный цикл обработки переменных уровней, так как вторая полуволна безвозвратно теряется. Это заметно снижает преобразуемую мощность. Для сохранения полезной составляющей были разработаны 2-хполупериодные схемы выпрямления, в которых количество диодов увеличено до двух.

«Цепь полного цикла» может содержать 4 выпрямительных элемента, но такая схема относится к категории мостовых.

Однополупериодный многофазный выпрямитель

Сначала удобнее рассмотреть несложные в изготовлении трехфазные однополупериодные выпрямители, применяемые в простых и недорогих преобразовательных схемах. При их построении в каждую из фаз устанавливается по одному мощному диоду, обслуживающему только данную ветку.

Всего в однополупериодном образце выпрямительного прибора используется три полупроводниковых диода с подключенными к ним нагрузками. После изучения эпюр напряжений и токов, получаемых на выходе электрической цепочки, можно сделать следующие выводы:

  • эффективность (КПД) действия такого устройства очень низка;
  • полезная мощность теряется при обработке отрицательных полуволн всех трех фаз;
  • при использовании таких приборов получить нужные нагрузочные характеристики очень сложно.

Все эти недостатки однополупериодных схем вынудили разработчиков усложнить их, применив принцип двойного параллельного преобразования.

Двухполупериодный выпрямитель

Некоторые образцы силового оборудования работают только при большой величине выпрямленного тока, протекающего в нагрузке. Ее неспособны обеспечить однополупериодные выпрямители, что объясняется значительными потерями в них. Для повышения нагрузочной способности в цепях трехфазного тока все чаще применяются двухполупериодные выпрямительные приборы, содержащие по два диода на каждую из фаз.

Классическое включение в этом случае выполнено по схеме Ларионова, в честь которого названо и само выпрямительное устройство.

Анализ рабочих диаграмм такого выпрямителя наглядно свидетельствует о его бесспорных достоинствах. При работе этих схем используются как положительные, так и отрицательные полуволны, что поднимает КПД всего преобразователя. Объясняется это тем, что трехфазная структура схемы совместно с двухполупериодным выпрямлением обеспечивают шестикратное увеличение частоты пульсаций. За счет этого амплитуда сигнала на выходе после сглаживающих конденсаторов заметно возрастает (в сравнении с однополупериодным выпрямителем), а отдаваемая в нагрузку мощность повышается.

Мостовые устройства

Еще больше повысить эффективность преобразования переменного напряжения в постоянное позволяет «трехфазная мостовая схема выпрямления». Этот способ включения удобнее представить в виде совокупности двух однополупериодных схем с нулевой точкой, в которых нечетные диоды образуют катодную группу, а четные – их анодное объединение. В трехфазной мостовой схеме две ветки обработки полуволн различной полярности фактически объединены в единую систему.

Принцип действия трехфазного мостового выпрямителя проще всего представить так:

  • при действии на его входе переменного потенциала для каждой полуволны открытыми оказываются два диода из четырех, включенных как бы зеркально;
  • в первом случае выпрямляется положительная полуволна входного напряжения, а во втором – отрицательная;
  • в результате на выходе такой перекрестной схемы на одном полюсе моста всегда действует плюс, а на другом – минус.

Как в трехфазных выпрямительных мостах, так и в двухполупериодных схемах на диодных переходах теряется часть входного напряжения (на каждом диоде – не более 0,6 Вольта).

Общая потеря за один такт (положительный и отрицательный) в трехфазном мосте составит таким образом 1,2 Вольта. Разработчики выпрямительного оборудования всегда учитывают эти потери и для получения требуемой мощности на выходе заранее закладывают чуть завышенные входные параметры.

Диаграммы или эпюры напряжения мостовых схем – лучшее подтверждение тому, что этот способ включения диодов в выпрямительную цепь обеспечивает максимум передачи энергии. При этом небольшие потери напряжения на переходах чаще всего удается компенсировать за счет лучшей фильтрации во вторичных цепях.

Особенности трехфазного моста и варианты его построения

Мостовые схемы трехфазных выпрямителей имеют варианты исполнений, позволяющие улучшить параметры устройства. Усовершенствовать их удается за счет введения дополнительных вентильных элементов. В них устанавливают по 6, 9 или даже 12 выпрямительных диодов, включенных по схеме «звезда» или «треугольник».

Чем больше фаз (или пар диодов) используется в схеме выпрямителя, тем ниже уровень пульсаций выходного напряжения.

В качестве примера рассмотрим устройство с 12 выпрямительными диодами. Одна из групп в количестве 6-ти штук включается в этом случае по схеме «звезда» с общей нулевой точкой, а вторая – в треугольник (без земли). С учетом того, что выпрямители соединены последовательно, потенциалы на выходе системы суммируются, а частота пульсаций в нагрузке оказывается в 12 раз большей сетевого значения (50 Герц). После фильтрации поступающее к потребителю напряжение характеризуется более высоким качеством.

Сравнение однофазных и трехфазных устройств

При сравнении трехфазных схем выпрямления со однофазными аналогами важно отметить следующие моменты:

  • первые используются только в силовых сетях 380 Вольт, а вторую разновидность допускается устанавливать и в однофазные и в трехфазные цепи (по одному на каждую из фаз);
  • выпрямители 380 Вольт позволяют преобразовывать большую мощность и развивать значительные токи в нагрузке;
  • с другой стороны самостоятельно сделать трехфазный выпрямитель несколько труднее, поскольку он состоит из большего числа комплектующих изделий.

Понять суть работы трехфазного выпрямителя совсем несложно. Для этого потребуется ознакомиться с основами работы вентильных устройств и проанализировать электрическую схему их включения. Знание принципа действия выпрямительных приборов поможет пользователю эффективнее использовать его в повседневной работе.

Однофазный мостовой выпрямитель, принцип работы, описание

Рассматриваемый выпрямитель (рис. 4.21) широко используется в самых различных устройствах сравнительно малой мощности (до сотен ватт и, иногда, единиц киловатт).

Опишем работу выпрямителя для двух характерных видов нагрузки: активной (рис. 4.21, а) и активноиндуктивной (рис. 4.21, б).

Работа выпрямителя на активную нагрузку при нулевом угле управления.
Для рассматриваемого выпрямителя углом управления называют угол а сдвига по фазе между началом каждой положительной полуволны напряжения питания ивх и со ответствующим моментом включения тиристоров Т, и Т4, а также равный ему угол сдвига между началом каждой отрицательной полуволны напряжения ивх и соответствующим моментом включения тиристоров Т2 и Т3 (тиристоры включаются парами).

При а = О электрические процессы в управляемом выпрямителе совпадают с процессами в рассмотренном выше неуправляемом выпрямителе. Естественно, остаются прежними и математические выражения, характеризующие выпрямитель.

Работа выпрямителя на активную нагрузку при угле управления я/2 рад (90 эл. град.) (рис. 4.22).

Анализ процессов в выпрямителе при ненулевом угле управления а усложняется, так как на некоторых отрезках оси абсцисс (и на некоторых отрезках времени) все тиристоры схемы выключены и приходится решать задачу распределения на них напряжения ивх. При этом два тиристора находятся под прямым, а другие два — под обратным напряжением.

Предполагаем (это общепринято), что эквивалентные сопротивления всех выключенных тиристоров одинаковы и не зависят от полярности напряжения. В этом случае напряжение на каждой паре тиристоров, один из которых находится под прямым, а второй — под обратным напряжением, делится поровну <�это легко понять, если мысленно заменить все четыре выключенные тиристоры резисторами с одинаковыми сопротивлениями). Именно так временные диаграммы изображены на отрезках оси абсцисс 0…Я/2, л. (3/2)я, и т. д.

При w*t=п/2 включаются тиристоры Т3 и Т4. При этом на тиристорах Т2 и Т3 скачкообразно возрастает в два раза обратное напряжение.

Аналогично после включения тиристоров Т2 и Т4 увеличивается обратное напряжение на тиристорах Т1 и Т4. Тиристоры Т2 и Т3 выключаются при соonst = 2п.

Анализ схемы с включенными тиристорами несложен.

Как и прерыватель переменного тока, при а О выпрямитель потребляет из питающей сети ток с формой, сильно отличающейся от синусоидальной.

Регулировочная характеристика управляемого выпрямителя — это зависимость среднего значения Ucp выпрямленного напряжения от угла управления. Регулировочной характеристикой называют и график этой зависимости.

Регулировочная характеристика выпрямителя, работающего на активную нагрузку, имеет вид

Изобразим соответствующий график (рис. 4.23, сплошная линия).Работа выпрямителя на активноиндуктивную нагрузку при нулевом угле управления (рис. 4.24).

Предполагаем (как общепринято), что индуктивность нагрузки LH очень велика, так что ток нагрузки ieblx практически постоянный. Это допущение можно использовать, если постоянная времени нагрузки хн значительно больше периода напряжения сети.

Работа выпрямителя на активноиндуктивную нагрузку при угле управления я/4 рад (45 эл. град.) (рис. 4.25).

При принятом условии о существенном влиянии индуктивности одна пара тиристоров в каждый момент времени открыта (электродвижущая сила самоиндукции препятствует выключению некоторой пары тиристоров до включения следующей пары). Это упрощает анализ схемы.

Временная диаграмма входного тока iex смещена относительно диаграммы напряжения ивх и, следовательно, основная гармоника входного тока отстаёт по фазе от напряжения питания.

Из изложенного следует, что в рассматриваемом режиме выпрямитель загружает питающую сеть реактивной мощностью и это, безусловно, является отрицательным фактором.

Регулировочная характеристика выпрямителя, работающего на активноиндуктивную нагрузку, определяется выражением,так как среднее значение напряжения на идеальной катушке индуктивности равно нулю (иначе ее ток возрастал бы до бесконечности). Мощность Рн, потребляемая резистором RH активноиндуктивной нагрузки, вычисляется по формуле (тах как ток ieblx — постоянный, его действующее и среднее значения совпадают).

0 0 голоса
Рейтинг статьи
Ссылка на основную публикацию
Яндекс.Метрика