429 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...
Затеяли ремонт? Вам сюда ⬇️

Подключение реверса однофазного двигателя 220в

Реверс однофазного двигателя

Однофазным называется такой асинхронный двигатель, на статоре которого имеется лишь одна рабочая обмотка, напрямую питаемая от единственной фазы сети. Есть в однофазном двигателе и вспомогательная (пусковая) обмотка, которая используется только в момент старта двигателя, для того чтобы придать ротору начальный импульс, фактически пусковая обмотка включается с целью вывести ротор из положения равновесия, иначе бы он не сдвинулся с места без посторонней помощи, и его пришлось бы сталкивать как-то иначе.

Как и в любом двигателе, в однофазном тоже имеются ротор, который вращается, и статор, который неподвижен, а служит лишь для создания изменяющегося во времени магнитного поля. Рабочая и пусковая обмотки расположены на статоре друг относительно друга под прямым углом, причем рабочая обмотка занимает вдвое больше пазов, чем пусковая.

Можно сказать, что в момент пуска такой двигатель работает как двухфазный, а после — переходит в однофазный рабочий режим. Ротор однофазного асинхронного двигателя по конструкции самый обычный — короткозамкнутый (типа «беличья клетка») или цилиндрический (полый).

Что получилось бы, если б пусковой обмотки на статоре вообще не было, или она была бы, но не использовалась. В этом случае, при включении двигателя в сеть, в рабочей обмотке появилось бы пульсирующее магнитное поле, и ротор бы попал в условия пронизывающего его изменяющегося магнитного потока.

Но если ротор изначально неподвижен, а мы внезапно подали переменный ток лишь в рабочую обмотку, то ротор с места не сдвинется, потому что суммарный вращательный момент (против часовой стрелки и по часовой стрелке) будет равен нулю, несмотря на индуцируемые в роторе ЭДС, и нет причин для вращения, ведь возникающие силы Ампера друг друга точно компенсируют.

Но совсем другое дело, если ротор подтолкнуть, — тогда он продолжит вращение в том же направлении, что и стартовый толчок, ведь теперь не только по закону электромагнитной индукции в роторе наведутся ЭДС и возникнут соответствующие токи, которые по закону Ампера станут от магнитного поля отталкиваться, но и (поскольку ротор уже имеет вращение) результирующий момент по направлению толчка окажется большим, чем момент против направления толчка. В итоге получим продолжение вращения ротора.

Чтобы пусковая обмотка смогла ротор в начальный момент толкнуть, она должна быть не просто смещена в пространстве относительно рабочей обмотки, но еще и ток в ней должен быть сдвинут по фазе относительно тока рабочей обмотки, тогда совместное действие двух этих обмоток статора окажется эквивалентно не просто пульсирующему магнитному полю, но уже вращающемуся магнитному полю. А это — как раз то, что необходимо для разгона ротора в момент пуска однофазного двигателя.

Для смещения по фазе тока в пусковой обмотке, как правило применяют необходимой емкости конденсатор, включенный последовательно с пусковой обмоткой, и создающий сдвиг фаз в 90 градусов. Это стандартное решение для двигателя с расщепленной фазой.

Как только двигатель включается в сеть, оператор нажимает на кнопку выключателя, который подает питание к цепи пусковой обмотки, и как только обороты достигнут необходимого значения соответствующего номиналу при данной частоте сети, кнопку отпускают.

Для получения реверса однофазного двигателя с конденсаторным пуском, достаточно обеспечить условие, когда пусковой толчок будет подаваться в другом направлении, чем подавался изначально. Это достигается путем изменения относительного порядка чередования фаз в рабочей и пусковой обмотках.

Для обеспечения данных условия, необходимо переключить рабочую или пусковую обмотку, то есть поменять «полярность» подключения ее выводов к сети либо к сети и к конденсатору. Это несложно реализовать, поскольку на однофазном двигателе есть клеммник, на который выведены каждый из концов как пусковой, так и рабочей обмоток. Рабочая обмотка имеет меньшее активное сопротивление, чем пусковая, поэтому ее несложно найти при помощи мультиметра. Лучшее решение — разместить выводы пусковой обмотки на двухполюсный переключатель без фиксации.

Устройство и подключение однофазных электродвигателей 220В

Однофазные электродвигатели 220В широко используются в разнообразных бытовых и промышленных устройствах: холодильниках, стиральных машинах, насосах, дрелях, заточных и подобных им обрабатывающих станках. Их технические характеристики несколько уступают свойствам трехфазных двигателей. Существует два наиболее распространенных типа однофазных электродвигателей для сети переменного тока промышленной частоты:

Первые более просты по своему устройству, но обладают рядом недостатков, главные из которых – трудности с изменением направления и частоты вращения ротора.

Далее рассмотрены однофазные асинхронные электродвигатели и коллекторные двигатели переменного тока.

Однофазные асинхронные электродвигатели

Устройство и принцип действия

Мощность такого однофазного двигателя 220В может в зависимости от конструкции находиться в пределах от 5 Вт до 10 кВт. Его ротор – это обычно короткозамкнутая обмотка («беличья клетка») – медные или алюминиевые стержни, замкнутые с торцов.

Такой однофазный двигатель, как правило, имеет две смещенные на 90° друг относительно друга обмотки. Рабочая (главная) при этом занимает большую часть пазов статора, а пусковая (вспомогательная) – оставшуюся. И однофазным его называют потому, что у него лишь одна рабочая обмотка.

Переменный ток, протекающий по главной обмотке, создает периодически меняющееся магнитное поле. Его можно считать состоящим из двух круговых с одинаковой амплитудой, вращающихся навстречу друг другу.

По закону электромагнитной индукции в замкнутых витках ротора меняющийся магнитный поток создает индукционный ток, взаимодействующий с порождающим его полем. Если ротор неподвижен, моменты действующих на него сил одинаковы, вследствие чего ротор остается неподвижным.

Если же ротор начать вращать, то равенство моментов этих сил нарушится, поскольку скольжение его витков относительно вращающихся магнитных полей станет разным. Как следствие – сила Ампера, действующая на витки ротора со стороны прямого магнитного поля, будет значительно больше, чем со стороны обратного.

Индукционный ток в витках ротора может возникать лишь при пересечении ими силовых линий магнитного поля. А для этого они должны вращаться со скоростью, чуть меньшей, чем частота вращения поля (при одной паре полюсов – 3000 об/мин). Отсюда и название, которое получили такие электродвигатели, асинхронные.

При увеличении механической нагрузки скорость вращения уменьшается, возрастает величина индукционного тока в витках ротора. Как следствие – возрастают и механическая мощность двигателя, и мощность потребляемого им переменного тока.

Схема запуска и подключения

Понятно, что раскручивать вручную ротор при каждом запуске электродвигателя неудобно. Для создания первоначального пускового момента и используется пусковая обмотка. Поскольку она составляет с рабочей обмоткой прямой угол, для создания вращающегося магнитного поля ток в ней должен быть сдвинут по фазе относительно тока в рабочей обмотке тоже на 90°.

Добиться этого можно включением в цепь ее питания фазосмещающего элемента. Резистор или дроссель обеспечить фазовый сдвиг в 90° не могут, поэтому в большинстве ситуаций логично использование конденсатора в качестве фазосмещающего элемента. В этом случае однофазный электродвигатель обладает наилучшими пусковыми свойствами.

Когда фазовращающий элемент является конденсатором, однофазные электродвигатели конструктивно могут быть такими:

  • с пусковым конденсатором (рис. а);
  • с пусковым и рабочим (рис. б);
  • только с рабочим конденсатором (рис. в).

Первый (наиболее распространенный) вариант предусматривает подключение пусковой обмотки с конденсатором ненадолго на время пуска, после чего они отключаются. Реализовать его можно с помощью реле времени, а то и просто за счет замыкания цепи во время нажатия пусковой кнопки. Эта схема запуска характеризуется сравнительно небольшим пусковым током, но в номинальном режиме характеристики невысоки. Причина в том, что поле статора является эллиптическим (в направлении полюсов оно сильнее, чем в перпендикулярном).

Схема с рабочим, постоянно включенным конденсатором лучше работает в номинальном режиме, но имеет посредственные пусковые характеристики. Вариант с пусковым и рабочим конденсатором является промежуточным между двумя описанными выше. Расчет значений их емкостей сравнительно прост: у рабочего 0,75 мкФ на 1 кВт мощности, у пускового – в 2,5 раза больше.

Коллекторный двигатель переменного тока

Рассмотрим коллекторный двигатель переменного тока. Универсальные коллекторные электродвигатели могут питаться от источников как переменного, так и постоянного тока. Они часто используются в электроинструментах, швейных и стиральных машинах, мясорубках – там, где нужен реверс, регулировка частоты вращения ротора или его вращение с частотой более 3000 об/мин.

Обмотки статора и ротора коллекторного электродвигателя соединяются последовательно. К обмоткам ротора ток подводится через щетки, соприкасающиеся с пластинами коллектора, к которым подсоединяются концы обмоток ротора.

Реверс однофазного двигателя с коллектором осуществляется за счет изменения полярности включения в сеть обмоток статора или ротора, а скорость вращения можно регулировать, изменяя величину тока в обмотках.

Основные недостатки такого двигателя:

  • высокая стоимость;
  • сложность устройства, практическая невозможность самостоятельно осуществить его ремонт;
  • значительный уровень шума, трудное управление, создание радиопомех.

Остается добавить, что при использовании устройств, содержащих однофазный электродвигатель, следует самое пристальное внимание уделить выбору его типа, схеме подключения, тому, как правильно осуществить расчет элементов.

Реверсивное подключение однофазного асинхронного двигателя своими руками

Перед выбором схемы подключения однофазного асинхронного двигателя важно определить, сделать ли реверс. Если для полноценной работы вам часто нужно будет менять направление вращения ротора, то целесообразно организовать реверсирование с использованием кнопочного поста. Если одностороннего вращения вам будет достаточно, то подойдет самая простая схема без возможности переключения. Но что делать, если после подсоединения по ней вы решили, что направление нужно все же поменять?

Постановка задачи

Предположим, что у уже подсоединенного с использованием пускозарядной емкости асинхронного однофазного двигателя изначально вращение вала направлено по часовой стрелке, как на картинке ниже.

Уточним важные моменты:

  • Точкой А отмечено начало пусковой обмотки, а точкой В – ее окончание. К начальной клемме A подсоединен провод коричневого, а к конечной – зеленого цвета.
  • Точкой С помечено начало рабочей обмотки, а точкой D – ее окончание. К начальному контакту подсоединен провод красного, а к конечному – синего цвета.
  • Направление вращения ротора обозначено с помощью стрелок.
Читать еще:  Термошайба для поликарбоната фото

Ставим перед собой задачу – сделать реверс однофазного двигателя без вскрытия его корпуса так, чтобы ротор начал вращаться в другую сторону (в данном примере против движения стрелки часов). Ее можно решить тремя способами. Рассмотрим их подробнее.

Вариант 1: переподключение рабочей намотки

Чтобы изменить направление вращения двигателя, можно только поменять местами начало и конец рабочей (постоянной включенной) обмотки, как это показано на рисунке. Можно подумать, что для этого придется вскрывать корпус, доставать намотку и переворачивать ее. Этого делать не нужно, потому что достаточно поработать с контактами снаружи:

  1. Из корпуса должны выходить четыре провода. 2 из них соответствуют началам рабочей и пусковой намоток, а 2 – их концам. Определите, какая пара принадлежит только рабочей обмотке.
  2. Вы увидите, что к этой паре подсоединены две линии: фаза и ноль. При отключенном двигателе произведите реверс путем перекидывания фазы с начального контакта намотки на конечный, а нуля – с конечного на начальный. Или наоборот.

В результате получаем схему, где точки С и D меняются между собой местами. Теперь ротор асинхронного двигателя будет вращаться в другую сторону.

Вариант 2: переподключение пусковой намотки

Второй способ организовать реверс асинхронного мотора 220 Вольт – поменять местами начало и конец пусковой обмотки. Делается это по аналогии с первым вариантом:

  1. Из четырех проводов, выходящих из коробки мотора, выясните, какие из них соответствуют отводкам пусковой намотки.
  2. Изначально конец В пусковой обмотки соединялся с началом С рабочей, а начало А подключалось к пускозарядному конденсатору. Сделать реверс однофазного двигателя можно, подключив емкость к выводу В, а начало С с началом А.

После описанных выше действий получаем схему, как на рисунке выше: точки А и В поменялись местами, значит ротор стал обращаться в противоположную сторону.

Вариант 3: смена пусковой обмотки на рабочую, и наоборот

Организовать реверс однофазного мотора 220В теми способами, что описаны выше, можно только при условии, что из корпуса выходят отводки от обеих обмоток со всеми началами и концами: А, В, С и D. Но часто встречаются моторы, в которых производитель намеренно оставил снаружи только 3 контакта. Этим он обезопасил устройство от различных «самоделок». Но все же выход есть.

На рисунке выше изображена схема такого, «проблемного», мотора. У него выходят из корпуса только три провода. Они помечены коричневым, синим и фиолетовым цветами. Зеленая и красная линии, соответствующие концу В пусковой и началу С рабочей намотки, соединены между собой внутри. Доступ к ним без разборки двигателя мы получить не сможем. Поэтому изменить вращение ротора одним из первых двух вариантов не представляется возможным.

В этом случае поступают так:

  1. Снимают конденсатор с начального вывода А;
  2. Подсоединяют его к конечному выводу D;
  3. От проводов А и D, а также фазы, пускают отводки (можно сделать реверс с использованием ключа).

Посмотрите на рисунок выше. Теперь, если подключить фазу к отводку D, то ротор вращается в одну сторону. Если же фазный провод перекинуть на ветку A, то можно изменить направление вращения в противоположную сторону. Реверс можно осуществлять, вручную разъединяя и соединяя провода. Облегчить работу поможет использование ключа.

Важно! Последний вариант реверсивной схемы подключения асинхронного однофазного мотора неправильный. Его можно использовать, только если соблюдаются условия:

  • Длина пусковой и рабочей намоток одинакова;
  • Площадь их поперечного сечения соответствует друг другу;
  • Эти провода изготовлены из одного и того же материала.

Все эти величины влияют на сопротивление. Оно у обмоток должно быть постоянным. Если вдруг длина или толщина проводов отличаются друг от друга, то после того, как вы организуете реверс, окажется, что сопротивление рабочей намотки станет таким же, как было раньше у пусковой, и наоборот. Это может стать и причиной того, что мотор не сможет запуститься.

Внимание! Даже если длина, толщина и материал обмоток совпадают, работа при измененном направлении вращения ротора не должна быть продолжительной. Это чревато перегревом и выходом из строя двигателя. КПД при этом тоже оставляет желать лучшего.

Осуществить реверс асинхронного мотора 220В просто, если концы обмоток отводятся из корпуса наружу. Сложнее его организовать, когда выводов всего три. Рассмотренный нами третий способ реверсирования подходит только для кратковременного включения двигателя в сеть. Если работа с обратным вращением обещает быть продолжительной, то мы рекомендуем вскрыть коробку для переключения методами, описанными в 1 и 2 варианте: так безопасно для агрегата, и сохраняется КПД.

Подключение реверса однофазного двигателя 220в

Реверс однофазного конденсаторного двигателя с пультом ДУ

Цифровая схема реверса однофазного асинхронного двигателя на микроконтроллере PIC12F629

Это несложное цифровое устройство было разработано для управления однофазным асинхронным электродвигателем типа 6АЕ80 номинальной мощностью 1100 Вт. Одним из условий было наличие проводного пульта дистанционного управления с кабелем длиной 5 — 6 метров, небольшой вес пульта и низковольтное управление (для электробезопасности оператора). Устройство можно использовать с любым однофазным асинхронным электродвигателем, но следует учитывать мощность мотора. Для более мощных двигателей, возможно, потребуется применение в схеме электромагнитных реле, способных коммутировать больший ток.

Видим что такое устройство по размерам сопоставимо с размерами самого электродвигателя.

Я решил разработать небольшое по габаритам устройство с цифровым управлением на недорогом 8-пиновом микроконтроллере PIC12F629.

Применение микроконтроллера позволило реализовать управление двигателем всего двумя кнопками (вместо обычных трех кнопок в реверсе на пускателях). При этом оператору не нужно думать об остановке двигателя перед сменой направления вращения — об этом заботится программа, «зашитая» в микроконтроллер.

На фотографии — мой пульт управления двигателем. С блоком контроллера пульт соединяется мягким качественным кабелем длиной 6 метров (При необходимости длину кабеля можно увеличить). Применен микрофонный кабель с двумя жилами и экраном. Кабель имеет диаметр 6 мм (по изоляции) Такой кабель применяется ы звукотехнике для подключения микрофонов. В принципе можно использовать любой трехжильный провод. Я применил микрофонный, так как он качественный, стойкий к изгибам и обрывам, так как рассчитан на использование в «экстремальных» условиях живых концертов.

Пульт управления имеет две кнопки. Зеленая кнопка — вращение вперед, красная кнопка — реверс, то есть вращение в обратную сторону (следует учесть, что направления вращения — условные).

Если двигатель остановлен, то нажатие на любую из кнопок запускает двигатель в соответствующем направлении. Если во время вращения мотора нажать на любую из кнопок, то происходит выключение двигателя.

На корпусе пульта управления есть кольцо, предназначенное для того, чтобы пульт можно было повесить на стену или на шею оператора (желание заказчика). Двигатель используется с редуктором, в станке для гибки труб.

Корпуса пульта управления и самого контроллера разработаны в программе 3D моделирование SolidWorks и напечатаны на 3D принтере.

Корпус кнопочного пульта (слева) и контроллера (справа), распечатанные на 3D принтере.

Контроллер управления, закреплённый на пластиковой крышке распределительной коробки двигателя 6АЕ80.

Изменение направления вращения однофазного асинхронного двигателя .

Существует несколько разновидностей асинхронных однофазных электродвигателей. В этой статье идет речь о двигателях с конденсаторным пуском. такой электродвигатель имеет две обмотки — рабочую (Р.О.) и пусковую (П.О.). рабочая обмотка включается в сеть 220 вольт напрямую, а пусковая — через специальн6ый пусковой конденсатор. Конденсатор позволяет создать сдвиг фаз переменного тока в пусковой обмотке относительно тока в рабочей обмотке.

Следует иметь в виду, что изменение направления вращения такого двигателя возможно только в момент его старта. При этом якорь двигателя должен быть неподвижен. Если переключить обмотку и подать питание на мотор, не дождавшись остановки вращения его якоря, то двигатель запустится в том же направлении, в котором он вращался до этого, не зависимо от включения обмотки.

Принципиальная схема контроллера управления двигателем

Печатная плата разведена в программе DipTrace, поэтому принципиальная схема нарисована также в схемном редакторе DipTrace. Для того, чтобы увеличить схему, кликните на ней мышкой:

В данной схеме всем рулит микроконтроллер PIC12F629. Это небольшая микросхема в 8-выводном корпусе. Микроконтроллер настроен для работы от внутреннего (встроенного) генератора частотой 4 МГц, поэтому дополнительный кварцевый резонатор здесь не нужен. Для управления двигателем используются два порта микроконтроллера. Порт GP4 (вывод 3) управляет электромагнитным реле (К1) включения и выключения питания двигателя. Направление вращения переключает реле (К2), управляемое портом GP5 (вывод 2) микроконтроллера. Микроконтроллер управляет обмотками реле через ключи на сравнительно мощных транзисторах Q1 и Q2. Эти транзисторы необходимы, так как выходной порт микроконтроллера не может обеспечить ток, достаточный для включения электромагнитного реле. Катушки электромагнитных реле включены в коллекторные цепи транзисторов Q1 и Q2. Диоды, вколоченные параллельно катушкам реле катодом к плюсу питания и анодом к коллектору транзистора, защищают переходы транзисторов от индукционных бросков напряжения, возникающего в обмотках в момент срабатывания реле.

Для отслеживания нажатий на кнопки управления задействованы порты микроконтроллера GP0 и GP1 (выводы 7 и 6). Эти выводы настроены как входы и подтянуты к источнику питания +5В через резисторы R5 и R6 сопротивлением 1 кОм. Сами кнопки на схеме не показаны, так как схема рисовалась для разводки печатной платы, а кнопок на печатной плате нет, они устанавливаются в пульт ДУ. Кнопки подключаются к контактам платы BTN_FWD (кнопка ВПЕРЕД), BTN_REV (кнопка НАЗАД) и к контакту GND (земля):

Схема пульта дистанционного управления

На корпусе контроллера установлены три светодиода, которых нет на схеме и печатной плате. Дело в том, что установить светодиоды я решил уже когда собрал контроллер. первый, синий светодиод светится когда включено питание (+5В) контроллера. Второй светодиод, красный, светится когда срабатывает реле, коммутирующее направление вращения (K2). Третий светодиод, зеленый, светится когда двигатель включен, то есть на него подано питание 220В.

Читать еще:  Ноль и фаза в электрике что это

Если вы хотите установить светодиоды, схема их включения показана ниже. Также, при желании вы сможете модифицировать печатную плату контроллера, все файлы вы найдете в конце этой статьи. Мне дорабатывать плату было лень и я просто допаял три резистора навесным монтажом а сами светодиоды закрепил в отверстиях на корпусе контроллера при помощи небольшого количества цианоакрилата (суперклей).

Питание контроллера .

В качестве источника питания этого контроллера я использовал обычный импульсный адаптер для смартфона с выходным напряжением 5 В. Для работы контроллера достаточно, чтобы адаптер обеспечивал выходной ток в районе 500 — 600 мА. Мой адаптер оказался рассчитанным на 2 А. Единственная доработка адаптера — это замена micro USB разъема на обычный штекер питания, вот такой (папа):

такой разъем более надежен и практичен чем micro USB. На корпусе контроллера я установил ответную часть — гнездо «мама»

Можно купить готовый адаптер на 5 В с таким штекером. У нас в магазинах радиотоваров такой адаптер на максимальный ток 2 А стоит примерно 200..250 рублей.

Если у вас в хозяйстве есть небольшой сетевой трансформатор с напряжением на вторичной обмотке в районе 9 — 14В, вы можете собрать блок питания по классической схеме:

Но я думаю, что покупной импульсный адаптер — более дешевый и главное «быстрый» вариант. Можно также такой адаптер заказать в Китае, на Алиэкспресс:

Печатная плата .

Печатная плата разведена в программе DipTracе. Бесплатную версию программы на 400 пинов вы можете скачать на официальном сайте. Ее функционала вполне достаточно для такой платы.

Ниже во фрейме вы видите трехмерное изображение печатной платы. Нажав на кнопку «плэй» в центре изображения, вы сможете «покрутить» плату в виртуальном 3D пространстве и подробно её рассмотреть:

Интерактивный 3D просмотр .
Кликните в центре изображения, дождитесь загрузки 3D модели. Крутить: левая кнопка мыши; Размер: колесо мыши.

Большие контактные площадки над двумя оранжевыми реле — это высоковольтная часть платы. В центре этих круглых пинов я просверлил отверстия диаметром 3 мм, и с помощью крепежа на M3 (винт — гайка — шайба — шайба — гайка) закрепил провода от электродвигателя и от сети 220 вольт. Можно конечно просто эти провода припаять, если вам лень возиться с крепежом. При соединении высоковольтной части платы нужно соблюдать аккуратность и внимательность, чтобы не допустить замыкания по высоковольтным цепям.

Печатная плата — односторонняя. На ней есть три перемычки. Одна перемычка находится на низковольтной части платы (справа от резисторов R4 и R2). Она выполнена отрезком монтажного провода. Две другие перемычки находятся в высоковольтной части платы. Для их создания необходимо кусками изолированного провода сечением не менее 1 мм соединить точки на плате: A1 с A2 (первая перемычка) и B1 с В2 . Будьте внимательны, в этих точках действует напряжение сети и через эти провода течет ток электродвигателя. Поэтому не используйте здесь тонкий провод

Подключение электродвигателя к плате

Подключение электродвигателя несложно, но повторяю, здесь нужно быть очень внимательным и проверять всё несколько раз, так как ошибка может вызвать замыкание и «бабах. «, так как вы работаете с напряжением сети 220В.

Для успешного подключения электродвигателя из его корпуса в распределительную коробку должны быть выведены все 4 провода, то есть начало-конец рабочей обмотки и начало-конец стартовой обмотки. В некоторых двигателях общая точка соединения обмоток двигателей находится внутри корпуса и выведен просто один общий провод. такой двигатель подключить с реверсом не получится. У нашего двигателя 6АЕ80 все 4 конца выведены из корпуса а монтаж изначально сделан на трех-контактной монтажной колодке внутри распределительного отсека.

Синий и коричневый провода ведут к пусковому конденсатору. Оставим их как есть.

первое что нужно сделать, это отсоединить от схемы провода рабочей обмотки. В данном моторе они промаркированы U1 и U2. Их нужно отсоединить, удлинить дополнительными кусками провода (сечением 1.5 — 2 мм) и вывести наружу через «штуццер», пометив как U1 и U2. еще два куска такого же провода соединяем к колодке на место, куда были прикручены концы рабочей обмотки ( на фото это — левый и средний винты контактной колодки) и выводим тоже наружу, помечая как KU1 и KU2 (Колодка-U1 и Колодка-U2). Эти 4 провода соединяем с одноименными контактами на высоковольтной части печатной платы (за реле).

Схема подключения мотора к плате контроллера

Толстыми линиями показаны провода, которые нужно добавить. Тонкие линии — то что внутри мотора.

Сеть 220 вольт подключаем к контактам 220-1 и 220-2 на плате контроллера.

Детали контроллера

D1, D2 — диоды 1N4001
Все резисторы мощностью 0.125 — 0.25 Вт с номиналами, указанными на схеме.
Конденсатор C1 — керамический на 0.1 мкФ
Конденсатор С2 — электролитический на 47 мкФ 16В
две нормально разомкнутые кнопки для пульта (я купил подходящие в радиомагазине по 15 рублей)

Внимание! Для управления двигателями большей мощности потребуются реле, способные коммутировать больший ток. Такие реле могут быть больших габаритов и из придется монтировать отдельно.

Программа для микроконтроллера

Прошивка для микроконтроллера PIC12F629 написана на языке Си в среде MikroC Pro For Pic. Для прошивки микроконтроллера вам потребуется любой из программаторов, способных прошивать микроконтроллеры PIC.

Файлы для скачивания

Видео об изготовлении этого устройства. Часть 1

Видео об изготовлении этого устройства. Часть 2

Реверс электродвигателя

Для электродвигателя режим работы с периодическим изменением направления вращения (реверсирование) является наиболее благоприятным. По той причине, что ликвидируется паразитное намагничивание, вызывающее перегрев и потерю мощности электрической машиной. Кроме того, схемы реверсивного пуска намного проще, чем механические трансмиссии, состоящие из системы зубчатых шестерней. Наибольшее число вопросов вызывает способ изменения направления вращения двигателей переменного тока, ведь изменить полярность питающего напряжения невозможно. В этой статье мы представим вам основные схемные решения для запуска асинхронных и коллекторных электродвигателей, в которых предусмотрена возможность их реверсирования.

Реверс трехфазных асинхронных машин

Направление движения вращающегося магнитного поля асинхронных электродвигателей зависит от порядка подачи фаз, независимо от того как соединены его статорные обмотки – звездой или треугольником. Например, если фазы A, B, C подать на входные клеммы 1, 2 и 3 соответственно, то вращение пойдет (предположим) по часовой стрелке, а если на клеммы 2, 1, и 3, то против нее. Схема подключения через магнитный пускатель избавит вас от необходимости откручивать гайки в клеммной коробке и производить физическую перестановку проводов.

Трехфазные асинхронные машины на 380 вольт принято подключать магнитным пускателем, в котором три контакта находятся на одной раме и замыкаются одновременно, подчиняясь действию так называемой втягивающей катушки – магнитного соленоида, работающего как от 380, так и от 220 вольт. Это избавляет оператора от близкого контакта с токоведущими частями, что при токах свыше 20 ампер может быть небезопасно.

Для реверсивного пуска используется пара пускателей. Клеммы питающего напряжения на входе соединяются по прямой схеме: 1–1, 2–2, 3–3. А на выходе встречно: 4–5, 5–4, 6–6. Чтобы избежать короткого замыкания при случайном одновременном нажатии двух кнопок «Пуск» на пульте управления, напряжение на втягивающие катушки подается через дополнительные контакты противоположных пускателей. Так, чтобы при замкнутой основной группе контактов линия, которая идет на соленоид соседнего прибора, была разомкнута.

На пульте управления устанавливается трехкнопочный пост с однопозиционными – одно действие за одно нажатие – кнопками: одна «Стоп» и две «Пуск». Разводка проводов в нем следующая:

  • один фазный провод подается на кнопку «Стоп» (она всегда нормально замкнута) и перемычками с нее на кнопки «Пуск», которые всегда нормально разомкнуты.
  • С кнопки «Стоп» два провода на дополнительные контакты пускателей, которые при их срабатывании замыкаются. Так обеспечивается блокировка.
  • С кнопок «Пуск» перекрестно по одному проводу на дополнительные контакты пускателей, которые при их срабатывании размыкаются.

Подробнее о схемах подключения магнитных пускателей для трехфазных электродвигателей читайте здесь.

Реверс однофазных синхронных машин

Для запуска этим моторам необходима вторая обмотка на статоре, в цепь которой включен фазосдвигающий элемент, обычно бумажный конденсатор. Реверсировать можно только те, у которых обе статорных обмотки равнозначны – по диаметру провода, числу витков, а также при условии, что одна из них не отключается после набора оборотов.

Суть схемы реверсирования в том, что фазосдвигающий конденсатор будет подключаться то к одной из обмоток, то к другой. Для примера рассмотрим асинхронный однофазный двигатель АИРЕ 80С2 мощностью 2,2 кВт.

В его клеммной коробке шесть резьбовых выводов, обозначенных литерами с цифрами W2 и W1, U1 и U2, V1 и V2. Чтобы двигатель вращался по часовой стрелке, коммутация производится следующим образом:

  • Сетевое напряжение подается на клеммы W2 и V1.
  • Концы одной обмотки соединяются с клеммами U1 и U2. Чтобы ее запитать, они соединяются перемычками по схеме U1–W2 и U2–V1.
  • Концы второй обмотки подключают к клеммам W2 и V2.
  • Фазосдвигающий конденсатор подключают к клеммам V1 и V2.
  • Клемма W1 остается свободной.

Чтобы вращение происходило против часовой стрелки, изменяют положение перемычек, они ставятся по схеме W2–U2 и U1– W1. Схема автоматического реверса строится так же на двух магнитных пускателях и трех кнопках – двух нормально разомкнутых «Пуск» и одной нормально замкнутой «Стоп».

Реверс коллекторных двигателей

Схема включения его обмоток аналогична той, что используется в двигателях постоянного тока с последовательным возбуждением. Одна токоснимающая щетка коллектора подключается к обмотке статора, а питающее напряжение подается на другую щетку и второй вывод статорной обмотки.

При изменении положения штепсельной вилки в розетке происходит одновременная переполюсовка магнитов ротора и статора. Поэтому направление вращения не изменяется. Так же, как это происходит в двигателе постоянного тока при одновременном изменении полярности питающего напряжения на обмотке возбуждения и якоря. Изменить порядок следования фаза – ноль надо только в одном элементе электрической машины – коллекторе, который обеспечивает не только пространственное, но электрическое разделение проводников – обмотки якоря изолированы друг от друга. На практике это выполняется двумя способами:

  1. Физической переменой места установки щеток. Это нерационально, поскольку связано с необходимостью внесения изменений в конструкцию устройства. Кроме того, приводит к преждевременному выходу щеток из строя, поскольку форма выработки на их рабочем конце не совпадает с формой поверхности коллектора.
  2. Изменением положения перемычки между щеточным узлом и обмоткой возбуждения в клеммной коробке, а также точки подключения сетевого провода. Можно реализовать с помощью одного многопозиционного выключателя или двух магнитных пускателей.
Читать еще:  Как правильно подключить саундбар к телевизору

Не забудьте, что все работы по перестановке перемычек в клеммной коробке или подключению схемы реверсирования должны проводиться при полностью снятом напряжении.

Принцип работы и подключение однофазного электродвигателя 220в

Однофазный двигатель работает за счет переменного электрического тока и подключается к сетям с одной фазой. Сеть должна иметь напряжение 220 Вольт и частоту, равную 50 Герц.

Электромоторы этого типа находят применение в основном в маломощных устройствах:

  1. Бытовой технике.
  2. Вентиляторах низкой мощности.
  3. Насосах.
  4. Станках для обработки сырья и т. п.

Выпускаются модели с мощностью от 5 Вт до 10 кВт.

Значения КПД, мощности и пускового момента, у однофазных моторов существенно ниже, чем у трехфазных устройств тех же размеров. Перегрузочная способность также выше у двигателей с 3 фазами. Так, мощность однофазного механизма не превышает 70% мощности трехфазного того же размера.

устройство

Устройство:

  1. Фактически имеет 2 фазы, но работу выполняет лишь одна из них, поэтому мотор называют однофазным.
  2. Как и все электромашины, однофазный двигатель состоит из 2 частей: неподвижной (статор) и подвижной (ротор).
  3. Представляет собой асинхронный электромотор, на неподвижной составляющей которого имеется одна рабочая обмотка, подключаемая к источнику однофазного переменного тока.

К сильным сторонам двигателя данного типа можно отнести простоту конструкции, представляющую собой ротор с короткозамкнутой обмоткой. К недостаткам – низкие значения пускового момента и КПД.

Главный минус однофазного тока – невозможность генерирования им магнитного поля, выполняющего вращение. Поэтому однофазный электромотор не запустится сам по себе при подключении к сети.

В теории электрических машин, действует правило: чтобы возникло магнитное поле, вращающее ротор, на статоре должно быть по крайней мере 2 обмотки (фазы). Требуется также смещение одной обмотки на некоторый угол относительно другой.

Во время работы, происходит обтекание обмоток переменными электрическими полями:

  1. В соответствии с этим, на неподвижном участке однофазного мотора расположена так называемая пусковая обмотка. Она смещена на 90 градусов по отношению к рабочей обмотке.
  2. Сдвиг токов можно получить, включив в цепь фазосдвигающее звено. Для этого могут использоваться активные резисторы, катушки индуктивности и конденсаторы.
  3. В качестве основы для статора и ротора используется электротехническая сталь 2212.

Принцип действия и схема запуска

Принцип работы:

  1. Электрическим током порождается пульсирующее магнитное поле на статоре мотора. Это поле можно рассматривать как 2 разных поля, которые вращаются разнонаправлено и имеют равные амплитуды и частоты.
  2. Когда ротор находится в неподвижном состоянии, эти поля приводят к появлению равных по модулю, но разнонаправленных моментов.
  3. Если у двигателя отсутствуют специальные пусковые механизмы, то при старте результирующий момент будет равен нулю, а значит – двигатель не будет вращаться.
  4. Если же ротор приведен во вращение в какую-то сторону, то соответствующий момент начинает преобладать, а значит, вал двигателя продолжит вращаться в заданном направлении.

Схема запуска:

  1. Запуск производится магнитным полем, которое вращает подвижную часть мотора. Оно создается 2 обмотками: главной и дополнительной. Последняя имеет меньший размер и является пусковой. Она подключается к основной электрической сети через ёмкость или индуктивность. Подключение осуществляется только на время пуска. В моторах с низкой мощностью, пусковая фаза замкнута накоротко.
  2. Пуск двигателя осуществляют удержанием пусковой кнопки на несколько секунд, вследствие чего происходит разгон ротора.
  3. Во время отпускания пусковой кнопки, электромотор из двухфазного режима переходит в однофазный, и его работа поддерживается соответствующей компонентой переменного магнитного поля.
  4. Пусковая фаза рассчитана на кратковременную работу– как правило, до 3 с. Более длительное время нахождения под нагрузкой, может привести к перегреву, возгоранию изоляции и поломке механизма. Поэтому, важно своевременно отпустить пусковую кнопку.
  5. С целью повышения надежности в корпус однофазных двигателей встраивают центробежный выключатель и тепловое реле.
  6. Функция центробежного выключателя состоит в отключении пусковой фазы, когда ротор набирает номинальную скорость. Это происходит автоматически – без вмешательства пользователя.
  7. Тепловое реле отключает обе фазы обмотки, если они нагреваются выше допустимого.

Подключение

Для работы устройства требуется 1 фаза с напряжением 220 Вольт. Это означает, что подключить его можно в бытовую розетку. Именно в этом причина популярности двигателя среди населения. На всех бытовых приборах, от соковыжималки до шлифовальной машины, установлены механизмы этого типа.

аподключение с пусковым и рабочим кондсенсаторами

Существует 2 типа электромоторов: с пусковой обмоткой и с рабочим конденсатором:

  1. В первом типе устройств, пусковая обмотка работает посредством конденсатора только во время старта. После достижения машиной нормальной скорости, она отключается, и работа продолжается с одной обмоткой.
  2. Во втором случае, для моторов с рабочим конденсатором, дополнительная обмотка подключена через конденсатор постоянно.

Электродвигатель может быть взят от одного прибора и подключен к другому. Например, исправный однофазный мотор от стиральной машины или пылесоса может использоваться для работы газонокосилки, обрабатывающего станка и т.п.

Существует 3 схемы включения однофазного двигателя:

  1. В 1 схеме, работа пусковой обмотки выполняется посредством конденсатора и только на период запуска.
  2. 2 схема также предусматривает кратковременное подключение, однако оно происходит через сопротивление, а не через конденсатор.
  3. 3 схема является самой распространенной. В рамках этой схемы конденсатор постоянно подключен к источнику электричества, а не только во время старта.

Подключение электромотора с пусковым сопротивлением:

  1. Вспомогательная обмотка таких устройств имеет повышенное активное сопротивление.
  2. Для запуска электромашины этого типа, может быть использован пусковой резистор. Его следует последовательно подключить к пусковой обмотке. Таким образом, можно получить сдвиг фаз 30° между токами обмоток, чего будет вполне достаточно для старта механизма.
  3. Кроме того, сдвиг фаз может быть получен путем использования пусковой фазы с большим значением сопротивления и меньшей индуктивностью. У такой обмотки меньшее количество витков и тоньше провод.

Подключение мотора с конденсаторным пуском:

  1. У данных электромашин пусковая цепь содержит конденсатор и включается только на период старта.
  2. Для достижения максимального значения пускового момента, требуется круговое магнитное поле, которое выполняет вращение. Чтобы оно возникло, токи обмоток должны быть повернуты на 90° относительно друг друга. Такие фазосдвигающие элементы, как резистор и дроссель не обеспечивают необходимый сдвиг фаз. Только включение в цепь конденсатора позволяет получить сдвиг фаз 90°, если правильно подобрать емкость.
  3. Вычислить, какие провода к какой обмотке относятся, можно путем измерения сопротивления. У рабочей обмотки его значение всегда меньше (около 12 Ом), чем у пусковой (обычно около 30 Ом). Соответственно, сечение провода рабочей обмотки больше, чем у пусковой.
  4. Конденсатор подбирается по потребляемому двигателем току. Например, если ток равен 1.4 А, то необходим конденсатор емкостью 6 мкФ.

Проверка работоспособности

Как проверить работоспособность двигателя путем визуального осмотра?

Ниже перечислены дефекты, которые сигнализируют о возможных проблемах с двигателем, их причиной могла стать неправильная эксплуатация или перегрузка:

  1. Сломанная опора или монтажные щели.
  2. В середине мотора потемнела краска (указывает на перегревание).
  3. Через щели в корпусе внутрь устройства втянуты сторонние вещества.

Чтобы проверить работоспособность двигателя, следует включить его сначала на 1 минуту, а затем дать поработать около 15 минут.

Если после этого двигатель окажется горячим, то:

  1. Возможно, подшипники загрязнились, зажались или просто износились.
  2. Причина может быть в слишком высокой емкости конденсатора.

Отключите конденсатор, и запустите мотор вручную: если он перестанет нагреваться – необходимо уменьшить конденсаторную емкость.

Обзор моделей

Одними из наиболее популярных являются электродвигатели серии АИР. Существуют модели, исполненные на лапах 1081, и модели комбинированного исполнения – лапы + фланец 2081.

Электродвигатели в исполнении лапы+фланец обойдутся примерно на 5% дороже, чем аналогичные на лапах.

Как правило, производители предоставляют гарантию от 12 месяцев.

Для электродвигателей, имеющих высоту вращения 56-80 мм, исполнение станины алюминиевое. Двигатели с высотой вращения более 90 мм представлены в чугунном исполнении.

Модели различаются между собой по мощности, частоте вращения, высоте оси вращения, КПД.

Чем мощнее двигатель, тем выше его стоимость:

  1. Двигатель с мощностью 0.18 кВт можно приобрести за 3 тыс. рублей (электродвигатель АИРЕ 56 B2).
  2. Модель с мощностью 3 кВт будет стоить уже около 10 тыс. рублей (АИРЕ 90 LB2).

Высота оси вращения для моторов с 1 фазой варьируется от 56 мм до 90 мм и напрямую зависит от мощности: чем мощнее двигатель, тем больше высота оси вращения, а значит и цена.

Различные модели имеют разный КПД, обычно от 67% до 75%. Больший КПД соответствует большей стоимости модели.

Следует обратить внимание также на двигатели, выпускаемые итальянской компанией ААСО, основанной в 1982 году:

  1. Так, электромотор ААСО серии 53, рассчитан специально для применения в газовых горелках. Эти моторы также могут быть использованы в установках для мойки, генераторах теплого воздуха, системах централизованного обогрева.
  2. Электромоторы серий 60, 63, 71 разработаны для использования в установках водоснабжения. Также, фирма предлагает универсальные двигатели серий 110 и 110 компакт, которые отличаются разнообразной сферой применения: горелки, вентиляторы, насосы, подъемные устройства и другое оборудование.

Купить моторы производства компании ААСО можно по цене от 4600 рублей.

Ссылка на основную публикацию
Adblock
detector