Метод измерения твердости по виккерсу предназначен
Твердость по Виккерсу. Шкала и метод Виккерса
Укрощение строптивых. Так образно можно назвать измерение твердости по Виккерсу. Метод используют для работы с особо твердыми металлами и их сплавами.
К таким нужен особый подход. Присутствуют в лабораториях и алмазы . В каком качестве?
Измерение твердости по Виккерсу
Из алмазов производят наконечники инденторов. Последние вдавливаются в металл, дабы определить степень его сопротивления.
Только вот, в часть сплавов погрузиться может лишь алмаз – самый твердый минерал на Земле, с показателем по шкале Мооса в 10 баллов.
В большинстве твердомеров, к примеру, аппаратах Роквелла , на инденторе устанавливается конус из закаленной стали.
Для отдельных металлов она сгодится. Даже самый твердый уран по шкале Мооса может похвастаться всего 6-ю баллами, а закаленная сталь – 7,5-8-ю.
Однако, если брать урановые сплавы, они могут быть равнозначны 9-бальному корунду.
Специализация метода не означает, что твердость по Виккерсу запрещено проставлять на мягких материалах. Машина, способная справиться с самыми прочными, измерит и податливые.
Просто, предприятиям, работающим исключительно с мягкими сплавами, нет нужды покупать дорогостоящий твердомер с алмазным наконечником.
Измерение твердости по методу Виккерса отличается не только использованием алмазных вдавливателей, но и возможностью определить степень сопротивления предметов разной величины.
Есть наручные часы ? Пружины в них проходят проверку на аппаратах Виккерса.
Каким образом они приспособлены работать одновременно и с массивными, и с миниатюрными предметами, рассмотрим в следующей главе.
Принцип измерения по Виккерсу
Для определения твердости по Виккерсу нужна четырехгранная пирамида из алмаза . Обязательна правильная форма вдавливателя.
Да, да, камень именно вдавливается в поверхность испытуемого материала. Если угол между противоположными гранями пирамиды составляет ровно 136 градусов, измерения должны быть верными.
Опыты проводятся с помощью специального прибора. У него есть опорный столик, на который кладется испытуемый образец и тот самый индентор с бриллиантовой пирамидой.
Есть пресс, вдавливающий наконечник, и регуляторы нагрузки. Результаты записываются цифрами, к которым прибавляются буквы HV.
Твердость по Виккерсу соответствует диагонали отпечатка от алмазной пирамидки. Отпечаток этот подвергается изучению под микроскопом, точность которого равна 1 микрометру.
На других твердомерах подобных «дивайсов» нет. Поэтому, точность измерений по Виккерсу повышена.
Описание метода можно свести к формуле: HV=P/F(ean/ii 2 ). Под P понимается нагрузка. F обозначает площадь отпечатка.
Интересно, что результат почти не зависит от приложенной нагрузки. Кажется, можно ведь надавить посильнее, или послабже.
Однако, выручает пирамидальная форма индентора. Профиль отпечатка треугольный, то есть, обладает свойствами подобия.
Для убеждения в правильности измерений можно повторить опыт уже на твердомере Бринелля. Это инженер из Швеции.
Его шкала твердости металлов совпадает с отметками Виккерса в пределах от 100 до 450-ти единиц. В этих границах находится, к примеру, твердость стали по Виккерсу.
Выдержка на обоих твердомерах равна 10-15-ти секундам. Это время вдавливания наконечников инденторов в испытуемую поверхность.
Она не должна быть шероховатой. Иначе, результаты могут быть неточными на обоих приборах. Это считается минусом методов.
Применение измерений по Виккерсу
Шкала твердости Виккерса позволяет протестировать не только часовые пружины, но и листовые материалы вплоть до гальванического покрытия.
Гальваника – металлическое напыление, призванное защитить предмет от коррозии, улучшить свойства и эстетику.
Толщина пленки может составлять всего доли миллиметра. Ни один твердомер кроме аппарата Виккерса за такое «не возьмется».
Твердомер Виккерса способен настраиваться на нагрузку от 1-го до 500-от граммов. С таким же успехом аппарат дает давление и в полтонны.
Применение разных грузов, отлаженная электроника, делают твердомер Виккерса универсальным для любых предприятий, особенно, широкого профиля.
Твердость по Виккерсу – ГОСТ, входящий в национальный стандарт Российской Федерации. Прописаны не только требования к той, или иной, продукции, но и запросы по отношению к твердомерам.
Получается, маркировка по Виккерсу – показатель качества товаров. Особенно часто твердость требуется определить в отрасли автомобилестроения.
По Виккерсу ориентируются и конструкторы космических кораблей, спутников, воздушных судов. Все они нуждаются в корпусах и прочих деталях повышенной прочности.
Но, мало разработать сплав, должный отличаться исключительной твердостью. Нужно еще и доказать, что она именно такова, как прописано в документах. Вот и приходит на помощь твердость по Виккерсу.
Принцип определения сопротивления металлов важен и в ювелирной отрасли. Приобретая драгоценности, люди хотят, чтобы они были носкими.
Это во многом зависит от твердости сплавов. Золотое изделие может быть дорогостоящим, но потерять блеск уже через несколько месяцев эксплуатации.
На украшении останутся множественные царапины от контакта с другими поверхностями. Так что, ориентироваться стоит не только на пробу , но и показатель Виккерса.
Кроме процента главного металла, он зависит от характера и количества примесей – лигатуры . Она в пробах не указывается.
Известно, что золото – мягкий металл. По идее, чем больше лигатуры, тем тверже должен быть сплав .
Получается, из-за соображений носкости можно взять 375-ю пробу, в которой драгоценного сырья всего около 38%? Ан, нет.
Твердость 9-каратного золота ниже показателя 18- каратного ( 750 -я проба) всего на 5 единиц. У первого по Виккерсу 120 единиц, у второго – 125.
А вот злато 585 -ой пробы тверже обоих образцов минимум на 10 баллов. Это уже приличный показатель. С золотом разорались. О гальванике упомянули.
Осталось выяснить, какие еще материалы измеряются методом Виккерса. Такие данные и в космосе пригодятся, и в быту не помешают.
Какие материалы измеряются на твердость по Виккерсу
Кроме гальванизированных поверхностей, метод применим к азотированным материалам. Их обрабатывают газом в специальных камерах, насыщая исходную поверхность атомами азота .
Итог – повышенная стойкость к коррозии и выдающаяся микротвердость. Так называют сопротивляемость отдельных областей в структуре материала.
Раз азотируется поверхность, значит, твердостью отличается именно она, прикрывая более уязвимое нутро.
Знак Виккерса ставят и на цементированных поверхностях. Цемент в привычном понимании слова здесь ни при чем.
Верхний слой материала, к примеру, стали, насыщают углеродом. Это придает сплаву особую твердость до 8,5 баллов по шкале Мооса.
По Виккерсу это в районе 750-ти единиц, то есть, почти на 400 HV превосходит твердость металлов.
Виккерсу идея его твердомера пришла в первой половине 20-го столетия. Еще тогда физик решил заложить в прибор систему автоматической обработки данных.
Современные инженеры довели идею предшественника до совершенства, если оно существует.
Стационарные аппараты 21-го века компактны, снабжены всеми возможными настройками. Стоит, правда, такое совершенство немало.
Но, это, как говориться, боль производителей. Дело потребителей, — видеть в инструкциях цифры , позволяющие понять, насколько надежна та, или иная вещь.
Методы измерения твердости материалов по Виккерсу, Бринеллю, Роквеллу (стр. 2 из 2)
— поверхность образца должна быть плоской и очищенной от окалины и других посторонних веществ;
— диаметры отпечатков должны находиться в пределах 0,2D£d£0,6D;
— образцы должны иметь толщину не менее 10 – кратной глубины отпечатка (или менее диаметра шарика);
— расстояние между центрами соседних отпечатков и между центром отпечатка и краем образца должны быть не менее 4d.
Диаметр отпечатка измеряют при помощи отсчетного микроскопа (лупы Бринелля), на окуляре которого имеется шкала с делениями, соответствующими десятым долям миллиметра. Измерение проводят с точностью до 0,05 мм в двух взаимно перпендикулярных направлениях; для определения твердости следует принимать среднюю из полученных величин.
Измерение твердости по ВиккерсУ
При испытании на твердость по методу Виккерса в поверхность материала вдавливается алмазная четырехгранная пирамида с углом при вершине a=136 0 (Рис. 1.1). После снятия нагрузки вдавливания измеряется диагональ отпечатка d1 . Число твердости по Виккерсу HV подсчитывается как отношение нагрузки З к площади поверхности пирамидального отпечатка М:
Число твердости по Виккерсу обозначается символом HV с указанием нагрузки P и времени выдержки под нагрузкой, причем размерность числа твердости (кгс/мм 2 ) не ставится. Продолжительность выдержки индентора под нагрузкой принимают для сталей 10 – 15 с, а для цветных металлов – 30 с.
Например, 450 HV10/15 означает, что число твердости по Виккерсу 450 получено при P = 10 кгс (98,1 Н), приложенной к алмазной пирамиде в течение 15 с.
Преимущества метода Виккерса по сравнению с методом Бринелля заключается в том, что методом Виккерса можно испытывать материаллы более высокой твердости из-за применения алмазной пирамиды.
Измерение твердости по Роквеллу
Твердость измеряют на приборе Роквелла (Рис. 4), в нижней части станции которого установлен столик 5. В верхней части станции индикатор 3, масляный регулятор 2 и шток 4, в котором устанавливается наконечник с алмазным конусом (имеющим угол при вершине 120 0 и радиус закругления 0,2 мм) или стальным шариком диаметром 1,588 мм. Индикатор 3 представляет собой циферблат, на котором нанесены две шкалы (черная и красная) и имеются две стрелки – большая (указатель твердости) и маленькая – для контроля величины предварительного нагружения, сообщаемого вращением маховика 6. Столик с установленным на нем образцом для измерений поднимают вращением маховика до тех пор, пока малая стрелка не окажется против красной точки на шкале. Это означает, что наконечник вдавливается в образец под предварительной нагрузкой, равной 10 кгс.
После этого поворачивают шкалу индикатора (круг циферблата) до совпадения цифры 0 на черной шкале с большой стрелкой. Затем включают основную нагрузку, определяемую грузом 1, и после остановки стрелки считывают значение твердости по Роквеллу, представляющее собой цифру. Столик с образцом опускают, вращая маховик против часовой стрелки.
Твердомер Роквелла измеряет разность между глубиной отпечатков, полученных от вдавливания наконечника под действием основной и предварительной нагрузок. Каждое давление (единица шкалы) индикатора соответствует глубине вдавливания 2 мкм. Однако условное число твердости по Роквеллу (HR) представляет собой не указанную глубину вдавливания t, а величину 100 – t по черной шкале при измерении конусом и величину 130 – t по красной шкале при измерении шариком.
Числа твердости по Роквеллу не имеют размерности и того физического смысла, который имеют числа твердости по Бринеллю, однако можно найти соотношение между ними с помощью специальных таблиц.
Твердость по методу Роквелла можно измерять:
— алмазным конусом с общей нагрузкой 150 кгс. Твердость измеряется по шкале С и обозначается HRC (например, 65 HRC). Таким образом определяют твердость закаленной и отпущенной сталей, материалов средней твердости, поверхностных слоев толщиной более 0,5 мм;
— алмазным конусом с общей нагрузкой 60 кгс. Твердость измеряется по шкале А, совпадающей со шкалой С, и обозначается HRA. Применяется для оценки твердости очень твердых материалов, тонких поверхностных слоев (0,3 … 0,5 мм) и тонколистового материала;
— стальным шариком с общей нагрузкой 100 кгс. Твердость обозначается HRB и измеряется по красной шкале B. Так определяют твердость мягкой (отожженной) стали и цветных сплавов.
При измерении твердости на приборе Роквелла необходимо, чтобы на поверхности образца не было окалины, трещин, выбоин и др. Необходимо контролировать перпендикулярность приложения нагрузки и поверхности образца и устойчивость его положения на столике прибора. Расстояние отпечатка должно быть не менее 1,5 мм при вдавливании конуса и не менее 4 мм при вдавливании шарика.
Твердость следует измерять не менее 3 раз на одном образце, усредняя полученные результаты.
Преимущество метода Роквелла по сравнению с методами Бринелля и Виккерса заключается в том, что значение твердости по методу Роквелла фиксируется непосредственно стрелкой индикатора, при этом отпадает необходимость в оптическом измерении размеров отпечатка.
Список используемой литературы
1. Геллер Ю.А. Рахштадт А.Г. Материаловедение. Методы анализа, лабораторные работы и задачи. М.: Металлургия, 1984г.
2. Металловедение и термическая обработка стали: Справ. М.Л Бернштейн, А.Г. Рахштадт М.: Металлургия, 1983г.
Методы Виккерса и Шора для твердомеров
Твёрдость по Виккерсу: методика и оборудование
В результате внедрения на поверхности исследуемого образца остаётся отпечаток в виде ромба (иногда – неправильного). По значению диагонали этого ромба (или среднего арифметического значения обеих диагоналей) устанавливают число твёрдости Виккерса, которое имеет размерность механического давления.
Выпускаемое оборудование, при помощи которого определяется твердость по Виккерсу, относится к машинам статического действия. Они могут быть стационарными и переносными. Линейка видов такого оборудования отечественного производства маркируется ТП (Твёрдость Пирамидальная).
Стандартными условиями для проведения испытаний служат:
- Измерительный диапазон усилий нагружения 49-1176 Н, который в твердомерах ТП имеет 7 положений (ступенчато-изменяемых);
- Время выдержки образца под давлением – не менее 5 с.
- Принцип измерения диагоналей отпечатка
Число Виккерса (HV) рассчитывается по формуле:
где Р — прилагаемая нагрузка (кгc), d — средняя диагональ отпечатка (мм) и α — лицевой угол индентора (136°)
При измерении твердости по Виккерсу должны быть соблюдены следующие условия:
- плавное возрастание нагрузки до необходимого значения
- обеспечение перпендикулярности приложения действующего усилия к испытуемой поверхности
- поверхность испытуемого образца должна иметь шероховатость не более 0,16 мкм
- поддержание постоянства приложенной нагрузки в течение установленного времени
- расстояние между центром отпечатка и краем образца или соседнего отпечатка должно быть не менее 2,5 длины диагонали отпечатка
- минимальная толщина образца должна быть для стальных изделий больше диагонали отпечатка в 1,2 раза; для изделий из цветных металлов – в 1,5 раза.
Измерение твёрдости по Виккерсу HV выполняется в следующей последовательности.
- Образец или деталь устанавливается на стол прибора измеряемой поверхностью вверх. После этого стол вращением рукоятки маховика поднимают вверх, до лёгкого соприкосновения с индентором.
- Отпускают рычаг, приводя тем самым в движение нагружающий механизм. После установленной с помощью реле времени продолжительности измерения нагрузка снимается и рабочая головка, с закреплённым в ней индентором, возвращается в исходное положение.
- После этого можно развернуть приборный стол с образцом к имеющемуся на станине твердомера отсчётному микроскопу, и замерить диагонали отпечатка.
Предварительные установки твердомера Виккерса производят при помощи рукоятки настройки. При этом с уменьшением толщины образца нагрузку следует принимать меньшей. Твёрдость по Виккерсу иногда указывается при значении рабочей нагрузки. Например, обозначение HV50940 означает твёрдость по Виккерсу в 940 единиц, которая была получена после нагружения образца усилием 50 кг.
Еще примеры обозначения:
- 500 HV — твердость по Виккерсу, полученная при нагрузке F=30 кгс и времени выдержки 10-15 с;
- 220 HV 10/40 — твердость по Виккерсу, полученная при нагрузке 98,07 (10 кгс) и времени выдержки 40 с.
Достоинства метода Виккерса:
- Постоянство отношения диагоналей получаемого отпечатка при изменении рабочей нагрузки.
- Возможность определения твёрдости оченьтонких слоёв материала изделия, поскольку в крайнем положении индентор имеет весьма малую площадь поверхности.
- Повышенная точность результата благодаря высокой твёрдости алмазной пирамидки индентора и отсутствия деформации самой испытательной головки. Измерение твёрдости по Виккерсу отличается повышенной точностью, т.к. диагональ отпечатка d измеряется с помощью специально установленного на твердомере микроскопа с точностью 1-2мкм.
- Широкий диапазон измерений охватывает сравнительно мягкие металлы (алюминий, медь и пр.) и высокопрочные стали и твёрдые сплавы.
- Метод Виккерса позволяет определять твёрдость отдельных слоёв металла, например, цементированного при химико-термической обработке образца, или слоя с изменённым химическим составом (после поверхностного упрочнения или легирования). Кроме гальванизированных поверхностей, метод применим и к азотированным материалам.
К недостаткам метода можно отнести зависимость измеряемой твёрдости от приложенной нагрузки или глубины внедрения индентора (явление размерного эффекта, часто называемого в англоязычной литературе indentation size effect). Особенно сильно эта зависимость проявляется при малых нагрузках.Также к недостаткам метода следует отнести необходимость получения поверхности с малой шероховатостью и относительно большое время испытания.
Практический диапазон измерения твёрдости по Виккерсу 145-1000 HV. Ввиду высокой точности метода, для оценки параметра НV больших партий заготовок широко применяются автоматизированные установки с гидравлическим и электромеханическим приводом, а также с автоматизацией отсчёта результатов, которые выводятся на монитор.
Твёрдость по Шору: методика и оборудование
Твердость по Шору — один из методов измерения твердости материалов. Как правило, используется для измерения твердости низкомодульных материалов. Обычно — полимеров: пластмасс, эластомеров, каучуков и продуктов их вулканизации.
Для измерения дюрометром (твердомером) Шора применяется несколько шкал, используемых для материалов с различными свойствами. Две наиболее распространенных шкалы — тип A и тип D. Шкала типа A предназначена для более мягких материалов, D — для более твердых. Помимо этого, стандарт ASTM D2240 предусматривает в общей сложности 12 шкал измерений, используемых в зависимости от целевой задачи; различают типы A, B, C, D, DO, E, M, O, OO, OOO, OOO-S и R. Все шкалы делятся от 0 до 100 условных единиц, при этом высокие значения соответствуют более твердым материалам.
Метод отличается сравнительно большим разбросом значений результатов измерений, но удобен своей простотой (в том числе конструкцией измерительного прибора) и оперативностью проведения измерений, позволяя производить их, в том числе на готовых изделиях, крупногабаритных деталях и криволинейных поверхностях достаточно больших радиусов. Из-за чего получил широкое распространение в производственной практике.
Принцип измерения следующий:
При испытании материалов, твердость которых не зависит от относительной влажности, дюрометр и образцы для испытания кондиционируют не менее 1 ч в условиях одной из стандартных атмосфер по ГОСТ 12423(ISO 291), защитив их от воздействия прямых солнечных лучей. При испытании материалов, твердость которых зависит от относительной влажности, образцы для испытаний следует кондиционировать по тем же стандартам или согласно соответствующей нормативно-технической документации на испытуемый материал.
При этих же условиях проводят испытание.
Испытуемый образец должен иметь толщину не менее 6 мм. Для достижения необходимой толщины образец для испытаний может состоять из нескольких тонких слоев, но результаты испытаний, полученные с такими образцами, могут не согласовываться с результатами испытаний цельных образцов, так как поверхности таких слоев иногда не полностью соприкасаются друг с другом.
Размеры образцов должны позволять проводить испытание на расстоянии не менее 12 мм от любого края, если только заранее не будет известно, что при испытаниях на меньшем расстоянии от края достигаются идентичные результаты. Поверхность образца в месте контакта с опорной поверхностью на площади радиусом не менее 6 мм от кончика индентора должна быть очень ровной. На кривых, неровных или шероховатых поверхностях нельзя получить удовлетворительные результаты измерения твердости с помощью дюрометра.
Испытуемый образец помещают на твердую ровную горизонтальную поверхность. Дюрометр устанавливают в вертикальном положении так, чтобы кончик индентора находился на расстоянии не менее 12 мм от любого края образца. Как можно быстрее без толчка к образцу прижимают опорную поверхность дюрометра, держа ее параллельно поверхности испытуемого образца. К опорной поверхности с помощью специального приспособления или груза прилагают давление, достаточное для обеспечения надежного контакта с образцом.
Твёрдость по Шору обозначается в виде числового значения шкалы, к которому приписывается буква, указывающая тип шкалы с явным указанием названия метода измерения твердости или прибора.
- Например: «Твёрдость по Шору 80A».
- Например: «Твёрдость по дюрометру 80A».
- Допускается: «Твёрдость по Шору 80 по шкале D».
- В таблицах допускается обозначение: «Твёрдость, ед. Шор(-а) А».
Метод позволяет измерять глубину начального вдавливания, глубину вдавливания после заданных периодов времени или и то и другое одновременно.
Метод является эмпирическим испытанием. Не существует простой зависимости между твердостью, определяемой с помощью данного метода, и каким-либо фундаментальным свойством испытуемого материала.
Твердость по Шору указывают с округлением до целой единицы. В шкале Шора за 100 единиц принята максимальная твёрдость стабилизированного после закалки на мартенсит образца из углеродистой инструментальной стали, что соответствует высоте падения бойка 13,6± 0,3 мм.
Метод отличается сравнительно большим разбросом значений результатов измерений, но удобен своей простотой (в том числе конструкцией измерительного прибора) и оперативностью проведения измерений, позволяя производить их, в том числе на готовых изделиях, крупногабаритных деталях и криволинейных поверхностях достаточно больших радиусов. Из-за чего получил широкое распространение в производственной практике.
Метод измерения твердости по виккерсу предназначен
ГОСТ Р ИСО 6507-1-2007
НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ
Металлы и сплавы
ИЗМЕРЕНИЕ ТВЕРДОСТИ ПО ВИККЕРСУ
Metals and alloys. Vickers hardness test. Part 1. Test method
ОКС 17.020
ОКСТУ 0008
Дата введения 2008-08-01
Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом от 27 декабря 2002 г. N 184-ФЗ «О техническом регулировании», а правила применения национальных стандартов Российской Федерации — ГОСТ Р 1.0-2004 «Стандартизация в Российской Федерации. Основные положения»
Сведения о стандарте
1 ПОДГОТОВЛЕН Всероссийским научно-исследовательским институтом физико-технических и радиотехнических измерений Федерального агентства по техническому регулированию и метрологии на основе собственного аутентичного перевода стандарта, указанного в пункте 4
2 ВНЕСЕН Управлением метрологии Федерального агентства по техническому регулированию и метрологии
4 Настоящий стандарт идентичен международному стандарту ИСО 6507-1:2005 «Материалы металлические. Определение твердости по Виккерсу. Часть 1. Метод испытания» (ISO 6507-1:2005 «Metallic materials — Vickers hardness test — Part 1: Test method»).
Наименование настоящего стандарта изменено относительно наименования указанного международного стандарта для приведения в соответствие с ГОСТ Р 1.5-2004 (подраздел 3.5)
При применении настоящего стандарта рекомендуется использовать вместо ссылочных международных стандартов соответствующие им национальные стандарты Российской Федерации, сведения о которых приведены в дополнительном приложении Е
5 ВВЕДЕН ВПЕРВЫЕ
Информация об изменениях к настоящему стандарту публикуется в ежегодно издаваемом информационном указателе «Национальные стандарты», а текст изменений и поправок — в ежемесячно издаваемых информационных указателях «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет
1 Область применения
1 Область применения
Настоящий стандарт распространяется на метод измерения твердости металлов и сплавов по шкалам Виккерса, а также тонких поверхностных слоев и покрытий при испытательных нагрузках от 0,09807 до 980,7 Н и длин диагоналей отпечатков от 0,020 до 1,400 мм.
В зависимости от величины нагрузки при измерении твердости по шкалам Виккерса различают три диапазона. Зависимость применяемых групп шкал Виккерса от величины нагрузки приведена в таблице 1.
Обозначение диапазонов шкал твердости
Твердость по шкале Виккерса
От 1,961 до 49,03
От HV 0,2 до HV 5
Твердость по шкале Виккерса с малой нагрузкой
От 0,09807 до 1,961
От HV 0,01 до HV 0,2
Примечание 1 — Для отпечатков с длиной диагонали менее 0,02 мм имеет место значительный рост неопределенности результата измерений.
Примечание 2 — Обычно уменьшение нагрузки при измерениях приводит к росту размаха результатов измерений. Это в большей степени проявляется при измерениях твердости с малой нагрузкой и микротвердости, при которых возрастает роль принципиальных ограничений на точность измерения длины диагоналей отпечатка. При измерениях микротвердости маловероятно, что погрешность определения средней длины диагоналей отпечатка будет меньше чем ±0,001 мм (см. [2]-[5]).
2 Нормативные ссылки
В настоящем стандарте использованы нормативные ссылки на следующие международные стандарты:
ИСО 6507-2:2005 Материалы металлические. Определение твердости по Виккерсу. Часть 2. Поверка и калибровка испытательных машин
ИСО 6507-3:2005 Материалы металлические. Определение твердости по Виккерсу. Часть 3. Калибровка контрольных образцов
ИСО 6507-4:2005 Материалы металлические. Определение твердости по Виккерсу. Часть 4. Таблицы определения твердости
3 Метод измерения
3.1 При измерении твердости и микротвердости по Виккерсу алмазный наконечник в форме правильной четырехгранной пирамиды с углом между противоположными гранями при вершине вдавливается в поверхность испытуемого образца под действием нагрузки (статической силы) . Схема приложения нагрузки приведена на рисунке 1. Нагрузку прикладывают перпендикулярно к поверхности испытуемого образца. После снятия нагрузки измеряют длины диагоналей отпечатка и .
Рисунок 1 — Схема приложения нагрузки
Рисунок 1 — Схема приложения нагрузки
Твердость по Виккерсу пропорциональна частному от деления нагрузки на площадь боковой поверхности отпечатка. Площадь боковой поверхности рассчитывают по длинам диагоналей, допуская, что отпечаток имеет форму правильной пирамиды, имеющей в основании квадрат, и с углом при вершине, совпадающим с углом при вершине у наконечника.
4 Определения и обозначения
4.1 На рисунке 1 и в таблице 2 приводятся основные определения и обозначения, используемые при измерении твердости по шкалам Виккерса.
Угол между противоположными гранями на вершине пирамидального наконечника (136°)
Нагрузка (статическая сила), используемая при измерении, Н
Примечание — Константа , где ускорение свободного падения 9,80665.
Число твердости по Виккерсу HV определяют по формуле
— нагрузка, используемая при измерении, Н;
4.2 Обозначения чисел твердости Виккерса — HV.
Примечание — Первоначально нагрузка выражалась в килограммах силы (кгс). В настоящее время испытательную нагрузку принято выражать в ньютонах, однако принятые ранее обозначения шкал твердости Виккерса не меняются. Например, в документах вместо 30 кгс надо использовать 294,2 Н.
5 Твердомеры
5.1 Твердомеры должны обеспечивать предписанные нагрузки или нагрузки из требуемого диапазона по ИСО 6507-2.
5.2 Пирамидальный наконечник в форме правильной четырехгранной пирамиды должен удовлетворять требованиям ИСО 6507-2.
5.3 Измерительное устройство — в соответствии с ИСО 6507-2.
Примечание — Процедура, которую можно использовать для периодического контроля твердомера, изложена в приложении D.
6 Требования к объектам измерений
6.1 Измерения должны проводиться на плоской, гладкой, свободной от посторонних веществ и включений поверхности. Поверхность после окончательной обработки должна обеспечивать точное измерение длины диагоналей отпечатков.
6.2 При подготовке поверхности образца следует исключить, по возможности, изменение его твердости от нагрева или охлаждения.
Отпечатки микротвердости Виккерса имеют небольшую глубину, поэтому подготовку поверхности следует проводить с особой осторожностью. Рекомендуется использовать полировку или электрополировку в зависимости от свойств материала.
6.3 Толщина испытуемого образца или покрытия должна быть в 1,5 раза больше средней длины диагоналей отпечатка (приложение А). Не допускается видимая деформация обратной поверхности испытуемых образцов.
6.4 Для образцов с криволинейной поверхностью в приложении В приведены таблицы поправочных коэффициентов.
6.5 На опорной поверхности образца не должно быть видимых повреждений. Образец во время измерения твердости не должен прогибаться или пружинить. Образец должен лежать на подставке устойчиво, чтобы избежать его смещения при измерении твердости.
7 Измерение твердости
7.1 Измерение твердости можно проводить при температуре окружающей среды от 10 °С до 35 °С. Измерения проводят при температуре (23±5) °С, если температуру можно контролировать.
7.2 Рекомендуется использовать испытательные нагрузки по таблице 3.
Обозначение шкалы твердости
Примечание — При необходимости могут использоваться и другие нагрузки, например HV 2,5 (24,52 Н), и нагрузки больше 980,7 Н.
7.3 Испытуемый образец должен размещаться на жесткой опоре. Поверхность опоры должна быть ровной и без следов смазки. Испытуемый образец должен неподвижно лежать на опоре, его перемещение во время измерения недопустимо.
7.4 Во время испытания приводят наконечник в контакт с поверхностью испытуемого образца и увеличивают нагрузку в направлении, перпендикулярном к поверхности, без рывков или вибрации, пока прикладываемая нагрузка не достигнет определенной величины.
Время от начала приложения нагрузки до достижения номинального значения нагрузки должно быть не меньше 2 и не больше 8 с.
Для измерений по Виккерсу с малой нагрузкой и микротвердости это время не должно превышать 10 с.
Для измерений по Виккерсу с малой нагрузкой и микротвердости скорость внедрения наконечника в образец не должна превышать 0,2 мм/с.
Примечание — Для измерения микротвердости наконечник должен входить в контакт с образцом при скорости от 15 до 70 мкм/с.
Время выдержки под нагрузкой должно быть от 10 до 15 с. Для некоторых материалов предусмотрено более длительное время выдержки под нагрузкой, допуск для времени выдержки в таких случаях должен быть ±2 с.
7.5 Во время цикла измерения, включающего приложение нагрузки, выдержку под нагрузкой и снятие нагрузки, твердомер должен быть защищен от вибрационных воздействий.
7.6 Расстояние между центром отпечатка и краем образца должно быть не менее 2,5 средних длин диагоналей отпечатка для стали, меди и сплавов меди и не менее трех средних длин диагоналей отпечатка для легких металлов, свинца, олова и их сплавов.
Расстояние между центрами двух смежных отпечатков должно быть не менее трех средних длин диагоналей отпечатка для стали, меди и сплавов меди и не менее шести средних длин диагоналей отпечатка для легких металлов, свинца, олова и их сплавов. Если два смежных отпечатка отличаются по размерам, расстояние должно определяться по средней длине диагонали большего отпечатка.
7.7 Измеряют длины двух диагоналей. Среднеарифметическое значение двух измерений должно быть использовано для вычисления твердости по Виккерсу. Для плоских поверхностей разность между длинами диагоналей не должна превышать 5% длины меньшей из них. Если разность больше, это должно фиксироваться в протоколе измерений.
Примечание — Увеличение микроскопа должно быть таким, чтобы длина диагонали отпечатка составляла не менее 25% и не более 75% ширины рабочего поля.
7.8 При измерении твердости на криволинейных поверхностях необходимо применять таблицы приложения В. В приложении В приведены таблицы для определения чисел твердости по Виккерсу в зависимости от испытательной нагрузки и средней длины диагоналей отпечатка.
8 Оценка неопределенности результатов измерений
Полную оценку неопределенности результатов измерений твердости следует проводить в соответствии с требованиями руководства [6].
Для оценки неопределенности результатов измерений существуют два подхода:
— один подход основывается на оценке неопределенности всех возможных источников, возникающих во время калибровки системы приложения нагрузки, измерительной системы твердомера, параметров алмазной пирамиды. Процедура оценки изложена в [7];
— другой подход основывается на оценке неопределенности с использованием эталонной меры твердости [7]-[10]. Руководство по определению содержится в приложении D.
Примечание — Не всегда можно оценить вклад от разных источников в неопределенность измерений. В этом случае оценку неопределенности по типу А можно выполнить с помощью статистического анализа нескольких отпечатков по эталонной мере твердости. Когда неопределенности, оцененные по типу А и В, складываются, вклады различных источников не учитывают дважды (см. [6], пояснение 4).
Методы оценки неопределенности приводятся в приложении D.
9 Отчет об измерениях
Отчет об измерениях должен содержать следующую информацию:
a) ссылку на настоящий стандарт;
b) все атрибуты, необходимые для идентификации эталонной меры твердости;
c) полученные результаты;
d) все операции, не предусмотренные в настоящем стандарте;
e) подробности измерений или обстоятельства, которые могли повлиять на результат;
f) температуру, при которой проводят измерения, если она вне диапазона, указанного в 7.1.
Примечание 1 — Сравнение чисел твердости HV возможно только для измерений с одной и той же нагрузкой.
Примечание 2 — Не существует метода точного перевода чисел твердости из одной шкалы Виккерса в другую. Следовательно, такого перевода следует избегать, если нет надежной базы для перевода, полученной сравнительными измерениями.
Примечание 3 — Следует заметить, что для анизотропных материалов, полученных холодным прокатом, возможна значительная разница между длинами двух диагоналей отпечатка. В этом случае, по возможности, внедрение наконечника должно быть проведено так, чтобы диагонали составляли около 45° с направлением проката. Технические условия на продукцию должны содержать ограничения на разницу между длиной диагоналей.
Приложение А (обязательное). Минимальная толщина объектов измерений в зависимости от их твердости и величины нагрузки
Рисунок А.1 — Минимальная толщина испытуемых образцов в зависимости от испытательной нагрузки и твердости (для шкал от HV 0,2 до HV 100)
Ось — толщина испытуемого образца, мм; ось — твердость HV
Рисунок А.1 — Минимальная толщина испытуемых образцов в зависимости
от испытательной нагрузки и твердости (для шкал от HV 0,2 до HV 100)
Рисунок А.2 — Номограмма для определения характеристик измерения твердости по Виккерсу по минимальной толщине образцов (для шкал от HV 0,01 до HV 100)
1 — число твердости HV; 2 — минимальная толщина образца , мм; 3 — длина диагонали отпечатка , мм;
4 — обозначение шкалы твердости HV; 5 — испытательная нагрузка , Н
Рисунок А.2 — Номограмма для определения характеристик измерения твердости по Виккерсу
по минимальной толщине образцов (для шкал от HV 0,01 до HV 100)
Приложение В (обязательное). Таблица поправочных коэффициентов для измерения на криволинейных поверхностях
В.1 Сферические поверхности
В таблицах В.1 и В.2 даны поправочные коэффициенты, когда измерения твердости выполняют на сферических поверхностях.
Таблица В.1 — Выпуклые сферические поверхности
Твердость материалов по Виккерсу
Твердость материала означает его сопротивление местной пластической деформации при проникновении в него другого тела, которое не подвержено такой деформации. Из определения следует вывод, что твердость внедряемого тела должна превышать таковую у испытуемого образца на достаточную величину. Рассмотрим определение твердости по методу Виккерса.
Все методики различаются как технологией измерения, так и используемыми инструментами и устройствами. Наиболее распространены три методики определения величины твердости:
- Сопротивление вдавливанию твердого наконечника (индентора) в испытуемый образец. Форма индентора может быть самой разнообразной – в виде конуса, шара, пирамиды и т.д.
- Сопротивление царапанию высокопрочными эталонными образцами.
- Определение сопротивления качения маятника, где испытуемое тело является опорой наконечника определенной формы.
Большинство измерений проводится на плоской поверхности исследуемого материала. Каждая из методик определения технических характеристик дает определенную погрешность. Для большей точности требуется соблюдение условий по величине испытуемого образца, его минимальной толщине. Кроме того, каждая методика работает только в определенном диапазоне значений измерений.
Суть метода
Метод определения твердости по Виккерсу основан на исследовании зависимости глубины проникновения алмазного конуса (индентора) в исследуемый материал от величины усилия. После снятия усилия на поверхности образца остается отпечаток, соответствующий глубине погружения индентора. Ввиду того, что геометрические размеры индентора известны и строго регламентированы, вместо глубины погружения определяют площадь отпечатка в поверхностном слое испытуемого материала.
Определение твердости по Виккерсу возможно для веществ с самыми высокими значениями, поскольку в качестве испытательного конуса используется пирамидка из алмаза, который имеет максимальную известную твёрдость.
Индентор выполнен в виде четырехугольной пирамиды с углами между гранями 136°. Такой угол выбран для того, чтобы сблизить значения метода Виккерса с методом Бриннеля. Таким образом, значения твердости в пределах 400-450 единиц практически совпадают, особенно, в области меньших значений.
Твердость по Виккерсу определяют путем вдавливания пирамиды в испытуемый образец под действием силы определенной величины. Зная приложенную силу и площадь отпечатка можно определить твердость поверхности испытуемого материала.
Вместо расчета площади отпечатка используются значения измеренных диагоналей ромба, между которыми находится прямая зависимость.
Итоговый результат твёрдости определяют по формуле:
В данной формуле F – это значение силы, а d – диагональ ромба.
Как правило, при измерениях по Виккерсу никаких вычислений по приведенной формуле не применяют, а используют табличные значения, исходя из приложенного усилия, времени воздействия и результирующей площади следа.
Скачать ГОСТ 2999-75
Значение приложенной силы регламентировано и составляет 30 кг. Время воздействия на поверхность обычно составляет 10-15 с. Это самые распространенные значения, однако во многих ситуациях необходимо воздействовать на материал образца при помощи иных значений силы.
Большинство измерительных приборов отрегулировано для некоторых дискретных и строго нормированных значений усилия.
Величина нагрузки зависит от измеряемого материала (его предполагаемой твердости). Чем тверже поверхность испытуемого образца материала, тем больше нагрузка. Это вызвано стремлением к уменьшению погрешности при определении площади и уменьшения влияния вязкости материала.
Для снижения погрешности также предъявляются ограничения по размерам испытуемого образца. Минимальная толщина образца должна быть в 1,2-1,5 раз больше предполагаемой диагонали отпечатка в зависимости от вида металла (меньшая величина соответствует стали, большая предназначена для цветных металлов). Расстояние между краем образца или краем предыдущего отпечатка и центром отпечатка должно быть не менее 2,5 величины диагонали.
Особые требования предъявляются также к чистоте поверхности. Ее шероховатость не должна превышать 0,16 мкм, что означает необходимость в полировке поверхности.
Таблица для определения твердости по Виккерсу
Малые линейные размеры образца требуют применение микроскопа дл измерения размеров отпечатка, причем, чем тверже образец, тем более четкую картинку должен передавать микроскоп для сохранения точности измерения.
Область применения
Измерение твердости по методу Виккерса – универсальный метод, но наиболее точные значения он дает при исследовании веществ с высокой твёрдостью. Малые усилия и, соответственно, небольшие линейные размеры отпечатка позволяют практически не нарушать поверхность измеряемого материала.
Дальнейшее развитие метод Виккерса получил при измерениях микротвердости. Величина давления при этом составляет от 2 до 500 г, а глубина погружения индентора не превышает 0,2 мкм. Столь малые величины требуют применения микроскопов с большой увеличительной способностью.
Установка для измерения твердости по Виккерсу
Причина применения данной методики заключается в измерениях прочности покрытий практически любой толщины и твердости. Таким образом, не существует принципиальных ограничений по определению характеристик анодированных, цементированных и азотированных деталей и инструментов. Это важно при определении качества гальванических и химических покрытий.
Возможны измерения очень тонких поверхностных слоев. К примеру, если использовать методику Виккерса по определению микротвердости с глубиной погружения 0,2 мкм, то допустимая толщина материала составляет 0,3 мкм. Глубина упрочненного слоя стали при использовании различных методик составляет десятые доли миллиметра, толщина слоя родия составляет десятки микрометров.
В отечественных лабораториях наиболее распространен твердомер типа ТП-7Р-1. Он имеет пять фиксированных значений испытательной нагрузки с пределами измерений HV от 8 до 2000.
Достоинства и недостатки метода
Основной недостаток метода Виккерса заключен в самом принципе измерений – это зависимость полученного значения измеряемой величины от приложенной нагрузки. Чтобы избежать погрешностей, жестко регламентированы величины прилагаемых усилий и время воздействия на образец.
Еще один недостаток, который свойственен большинству методов измерений – необходимость в тщательной подготовке исследуемой поверхности.
Среди достоинств метода – специфическая форма измерительного инструмента – индентора. Малая площадь взаимодействия позволяет измерять твёрдости отдельных вкраплений или зерен в теле образца.
Обозначение твердости
Как и любая физическая величина, твёрдость имеет свое обозначение. Из-за наличия множества методик измерений, каждая из них требует своего обозначения во избежание путаницы. Следует заметить, что часть методов выдает искомую величину как безразмерную, но по методу Виккерса твердость измеряется как кгс/мм 2 . В обозначениях размерность не пишут, подразумевая ее наличие.
Твердость по Виккерсу обозначается символами HV, где после символов может стоять значение силы и времени выдержки:
- HV 500 – стандартная нагрузка 30 кгс (294,2 Н) при времени выдержки 10-15 с;
- HV 150 10/40 – нагрузка 10 кгс (98,07 Н) при выдержке 40 с.
Перевод значений, измеренных другими методами, производится при помощи стандартных таблиц, которые входят в комплекты документации на измерительные приборы, а также присутствуют в справочной литературе.
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.
Метод измерения твердости по виккерсу предназначен
Если у Вас возникают проблемы, пожалуйста дайте нам знать, отправив письмо на адрес: info@techintest.ru . Спасибо!
ГРАФИК РАБОТЫ
Часы работы нашего офиса:
Пн-Пт: 9:00 — 18:00
Сб-Вс: ВЫХОДНОЙ
ВОЙДИТЕ В СИСТЕМУ, ЧТОБЫ ПОЛУЧИТЬ ДОСТУП К ДОП. ФУНКЦИЯМ
РЕГИСТРАЦИЯ
ЗАБЫЛИ ПАРОЛЬ?
- Главная
- СТАТЬИ
- Твердость. Измерение твердости по Роквеллу, Бринеллю, Виккерсу
Friday Nov 08th, 2019
Твердость. Измерение твердости по Роквеллу, Бринеллю, Виккерсу
Твердость – сопротивление твердого тела изменению формы (деформированию) либо разрушению в поверхностном слое при местных силовых контактных воздействиях. Проецируя это определение на методы неразрушающего контроля, можем получить следующее определение твердости: это свойство материала сопротивляться пластической деформации.
Наибольшее распространение для определения твердости металлов получили методы, основанные на вдавливании индентора в виде стального шарика (методы Бринелля и Роквелла), алмаза в форме пирамиды (метод Виккерса) или алмаза с округлой вершиной (также метод Роквелла) в испытуемый образец.
Давайте рассмотрим отдельной каждый из указанных методов.
Метод Роквелла – метод определения твердости материалов, преимущественно металлов, основанный на вдавливании под заданной нагрузкой в поверхность испытуемого образца специального индентора – алмаза в форме конуса либо стального закаленного шарика. Метод назван по имени разработавшего его в 1919 году американского металлурга Стенли Роквелла. Отличием данного метода является применение небольших испытательных нагрузок (60, 100 и 150 кгс), что позволяет применять его для испытания тонких образцов и окончательно обработанных изделий, а также применение специальных шкал твердости, связанных только с глубиной отпечатка.
Шкалы твердости по Роквеллу.
Существует 11 основных шкал для определения твердости по методу Роквелла. Это шкалы A; B; C; D; E; F; G; H; K; N; T, при этом, как упоминалось ранее, наиболее часто используемые среди них – это шкалы А, В и С с испытательной нагрузкой 60, 100 и 150 кгс соответственно.
Таблица 1. Наиболее широко используемые шкалы твёрдости по Роквеллу.
Шкала
Индентор
Нагрузка, кгс
Алмазный конус с углом 120° при вершине
Шарик диаметром 1/16 дюйма из карбида вольфрама (или закалённой стали)
Алмазный конус с углом 120° при вершине
Важно отметить, что чем твёрже материал, тем меньше будет глубина проникновения наконечника в него. Чтобы при большей твёрдости материала не получалось меньшее число твёрдости по Роквеллу, вводят условную шкалу глубин, принимая за одно её деление глубину, равную 0,002 мм. При испытании алмазным конусом предельная глубина внедрения составляет 0,2 мм, или 0,2/0,002 = 100 делений, при испытании шариком — 0,26 мм, или 0,26/0,002 = 130 делений.
Нормативные документы для метода Роквелла.
- ГОСТ 9013-59. Металлы. Метод измерения твердости по Роквеллу;
- ISO 6508-1: Metallic Materials — Rockwell Hardness Test. Part 1: Test Method (Scales A, B, C, D, E, F, G, H, K, N, T);
- ASTM E-18 Standard Methods for Rockwell Hardness and Rockwell Superficial Hardness of Metallic Materials;
- ASTM E-140 Standard Hardness Conversion Tables for Metals. Relationship Among Brinell Hardness, Vickers Hardness, Rockwell Hardness, Superficial Hardness, Knoop Hardness, and Scleroscope Hardness.
Метод Виккерса – метод измерения твердости металлов и сплавов, основанный на вдавливании в испытуемый материал правильной четырёхгранной алмазной пирамиды с углом 136° между противоположными гранями. При этом само значение твердости вычисляется путем деления приложенной нагрузки на площадь поверхности полученного пирамидального отпечатка.
Данный метод измерения подходит для определения значений твердости деталей малой толщины из черных и цветных металлов и сплавов; деталей, закаленных на малую глубину, а также деталей, имеющих тонкие слои гальванических покрытий. Основным недостатком метода Виккерса является зависимость измеряемой твёрдости от приложенной нагрузки или глубины внедрения индентора (явление размерного эффекта).
Нормативные документы для метода Виккерса.
- ГОСТ 2999-75 (СТ СЭВ 470-77) – Металлы и сплавы. Метод измерения твердости по Виккерсу;
- ISO 6507-1:2005 Metallic materials. Vickers hardness test. Part 1: Test method.
Метод Бринелля – один из основных методов определения твердости материалов, основанный на вдавливании в поверхность испытуемого материала металлического шарика из твёрдого сплава с определенным диаметром и дальнейшем измерении диаметра полученного отпечатка. В качестве инденторов используются шарики из твёрдого сплава диаметром 1; 2; 2.5; 5 и 10 мм. Величину нагрузки и диаметр шарика выбирают в зависимости от исследуемого материала. При этом сами исследуемые материалы делят на 5 основных групп:
- сталь, никелевые и титановые сплавы;
- чугун;
- медь и сплавы меди;
- лёгкие металлы и их сплавы;
- свинец, олово.
Кроме этого, вышеприведенные группы могут разделяться на подгруппы в зависимости от твёрдости образцов.
Нормативные документы для метода Бринелля.
- ISO 6506-1:2014 «Metallic materials — Brinell hardness test — Part 1: Test method»;
- ДСТУ ISO 6506-1:2007 «Визначення твердості за Брінеллем. Частина 1. Метод випробування»;
- ASTM E-10 «Standard Test Method for Brinell Hardness of Metallic Materials»;
- ASTM E140-07 «Standard Hardness Conversion Tables for Metals Relationship Among Brinell Hardness, Vickers Hardness, Rockwell Hardness, Superficial Hardness, Knoop Hardness, and Scleroscope Hardness».
Важно, также, отметить, что по ISO 6506-1:2005 (ГОСТ 9012-59) регламентированы следующие основные нагрузки для метода Бринелля: 9.807 Н; 24.52 Н; 49.03 Н; 61.29 Н; 98.07 Н; 153.2 Н; 245.2 Н; 294.2 Н; 306.5 Н; 612.9 Н; 980.7 Н; 1226 Н; 2452 Н; 4903 Н; 7355 Н; 9807 Н; 14 710 Н; 29 420 Н.
Среди недостатков метода можно отметить следующие: применим для материалов с твердостью не более 450 HB; измеряемые значения твердости напрямую зависят от приложенной нагрузки (обратный размерный эффект); по краям отпечатка от индентора образуются навалы и наплывы, что затрудняет измерение как диаметра, так и глубины отпечатка; из-за относительно большого диаметра используемых шариков данный метод неприменим для тонких образцов.
Для измерения твердости материалов по указанным методам используются специальные приборы: портативные и стационарные твердомеры. Подробнее о каждом из видов мы расскажем в следующих статьях.