891 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Какое напряжение после диодного моста

Что получается после выпрямления

Предисловие

Очень много вопросов задают по статье как получить из переменного напряжения постоянное. Напомню, что мы получали постоянное напряжение с помощью типичной схемы, которая используется во всей электронике:

Да, та статья получилась чуток сыровата, но суть преобразования переменного тока в постоянный мы постарались объяснить на пальцах. Но читатели все равно “не вкурили” ту статью, поэтому было решено написать еще одну статейку, но на этот раз разжевать все досконально.

Снова да ладом…

Придется возвращаться к истокам. Вместо трансформатора я возьму ЛАТР, который будет выдавать переменный ток:

Выставляем на ЛАТРе с помощью цифрового осциллографа напряжение амплитудой в 10 Вольт:

Как мы можем увидеть в нижнем левом углу, частота нашего сигнала 50 Герц. Это и есть частота сети. Длина одного кубика по вертикали равна 2 Вольтам.

Далее берем 4 кремниевых диода

И спаиваем из них диодный мост вот по такой схеме:

Подаем напряжение с ЛАТРа на диодный мост, а с других концов цепляем щуп осциллографа

Тыкаем щупом осциллографа в эти красные кружочки на схеме. Землю на один кружочек, а сигнальный на другой.

Смотрим, что получилось на дисплее осциллографа

Дело в том, что сопротивление щупа осциллографа обладает очень высоким входным сопротивлением, или иначе простыми словами: мы подцепили очень-очень высокоомный резистор к выходу диодного моста. Поэтому диодный мост в холостом режиме, то есть в режиме без нагрузки, не функционирует.

Для того, чтобы проверить диодный мост на работоспособность, нам надо его нагрузить. Это может быть резистор в несколько десятков или сотен Ом, лампочка, либо какая-нибудь электронная безделушка. В моем случае я взял лампочку накаливания на 12 Вольт от поворотника мотоцикла:

Цепляем ее к диодному мосту

Тыкаем щуп осциллографа в эти точки и смотрим осциллограмму

Как мы видим, напряжение с ЛАТРа чуть просело. Все зависит, конечно, от подключаемой нагрузки и мощности самого ЛАТРа. Про это я писал еще в статье работа трансформатора

Теперь тыкаем щупом в эти точки

Классика жанра! Превращаем отрицательную полуволну в положительную и получаем “горки” с частотой в 100 Герц ;-). Но ваш внимательный глаз ничего не заметил? Если даже мы и выпрямили напряжение с помощью диодного моста, то почему амплитуда каждой полуволны стала еще чуть меньше?

Дело все в том, что на PN-переходе диода в прямом смещении падает напряжение в 0,6-0,7 Вольт. Именно поэтому оно и вычитается с амплитуды напряжения, которое надо выпрямить.

Давайте теперь к диодному мосту запаяем конденсатор емкостью в 5000 мкФ и не будем цеплять никакую нагрузку

Тыкаем щупом сюда

Получили вот такую осциллограмму постоянного тока. Она в 1,41 раз больше, чем действующее (среднеквадратичное) значение сигнала с ЛАТРа (о действующем напряжении чуть ниже)

А теперь цепляем лампочку

Осциллограмма кардинально изменилась.

Как мы видим, напряжение просело и у нас получилась осциллограмма постоянного напряжения с небольшими пульсациями. Вот эти маленькие “холмики” и есть пульсации, в отличите от “гор” сразу после диодного моста с лампочкой-нагрузкой. Физический смысл здесь такой: конденсатор не успевает разряжаться на нагрузке, как снова приходит новая “горка” и снова заряжает конденсатор.

Правило диодного выпрямителя с конденсатором очень простое: чем больше емкость конденсатора и чем больше сопротивление нагрузки, тем меньше по амплитуде будут пульсации, и наоборот.

Но почему у нас просело напряжение? Ведь было уже 10 Вольт постоянного напряжения на конденсаторе без нагрузки?

А как цепанули лампочку стало намного меньше…

В чем же проблема? А проблема именно в законе сохранения энергии…

Среднеквадратичное значения напряжения

Допустим, у нас есть лампочка накаливания. Я ее подцепил к источнику постоянного тока и она у меня загорелась с какой-то яркостью. Потом я цепляю эту лампу к источнику переменного тока и добиваюсь такого же свечения лампы. Форма сигнала постоянного и переменного напряжения разные, а мощность, выдаваемая в нагрузку, в данном случае лампочку, одинаковая. Можно сказать, что среднеквадратичное значение переменного тока равняется значению постоянного тока.

То есть если у нас лампочка на 12 Вольт, я могу подать на нее 12 Вольт с блока питания или 12 Вольт с ЛАТРа. Лампочка будет светить с такой же яркостью. Мультиметр в режиме измерения переменного тока показывает именно среднеквадратичное значение напряжения.

Итак, чему же равняется среднеквадратичное значение вот этого сигнала?

А давайте замеряем. Для этого я беру мой любимый прибор токоизмерительные клещи, в который встроен целый мультиметр с True RMS и начинаю замерять среднеквадратичное значение

Мультиметр показал 7,18 Вольт. Это и есть среднеквадратичное значение этого сигнала.

Для синусоидальных сигналов оно легко вычисляется по формуле:

Umax – максимальная амплитуда, В

UД – действующее (среднеквадратичное) значение напряжения, В

Если считать по формуле, то получим 10/√2=7,07 Вольт. Сходится с небольшой погрешностью.

Как мы подцепили нагрузку, у нас сразу просела амплитуда напряжения с ЛАТРа, а следовательно, и среднеквадратичное значение напряжения

6, 68 Вольт. Хотя по формуле получается 9/1,41=6,38. Спишем на погрешности измерения.

Среднеквадратичное значение сложных сигналов

Но чему же равняется среднеквадратичное значение напряжения после диодного моста с включенной нагрузкой-лампочкой?

Для определения среднеквадратичного значения такого сигнала:

нам понадобится формула и табличка.

где Ka – это коэффициент амплитуды

Umax – максимальная амплитуда сигнала

U – действующее (среднеквадратичное) значение сигнала

А вот и табличка:

Теперь ищем по табличке наш пульсирующий сигнал с выпрямителя. Как мы видим, его коэффициент амплитуды равен 1,41 или, если быть точнее, √2. То есть точно такой же, как и у синусоидального сигнала.

Вычисляем по формуле и получаем:

После того, как мы поставили конденсатор, у нас почти получилась осциллограмма постоянного тока с значением в примерно в 6 Вольт, если полностью усреднить нашу кривую, то есть пренебречь небольшими пульсациями. Можно даже сказать, что это значение постоянного тока будет равняться среднеквадратичному значению переменного тока номиналом в 6 Вольт. Не забываем, что 0,6-0,7 Вольт у нас падают на диодах.

Заключение

Итак, какие выводы делаем из всего вышесказанного и показанного? Среднеквадратичное значение напряжения на выходе диодного выпрямителя чуточку меньше, чем до диодного моста. По 0,6-0,7 Вольт падает на диодах. Если бы мы поставили диоды Шоттки, то выиграли бы 0,3-0,4 Вольта, так как падения на Шоттках 0,2-0,3 Вольта. Схема двухполупериодного выпрямителя, с энергетической точки зрения является очень неплохой и поэтому используется в большинстве радиоэлектронных устройств.

Выпрямитель, схема диодного моста

Почти вся электронная аппаратура для своей работы требует определённую величину постоянного напряжения. В электрический сети передаётся синусоидальный сигнал с частотой 50 Гц. Для преобразования сигнала используется свойство полупроводниковых элементов пропускать ток только в одном направлении, а в другом блокировать его прохождение. В качестве преобразователя применяется схема диодного моста, позволяющая получать на выходе сигнал постоянной величины.

Физические свойства p-n перехода

Главным элементом, использующимся при создании выпрямительного узла, является диод. В основе его работы лежит электронно-дырочный переход (p-n).

Общепринятое определение гласит: p-n переход — это область пространства, находящаяся на границе соединения двух полупроводников разного типа. В этом пространстве образуется переход n-типа в p-тип. Значение проводимости зависит от атомного строения материала, а именно от того, насколько прочно атомы удерживают электроны. Атомы в полупроводниках располагаются в виде решётки, а электроны привязаны к ним электрохимическими силами. Сам по себе такой материал является диэлектриком. Он или плохо проводит ток, или не проводит его совсем. Но если в решётку добавить атомы определённых элементов (легирование), физические свойства такого материала кардинально изменяются.

Примешанные атомы начинают образовывать, в зависимости от своей природы, свободные электроны или дырки. Образованный избыток электронов формирует отрицательный заряд, а дырок — положительный.

Избыток заряда одного знака заставляет носителей отталкиваться друг от друга, в то время как область с противоположным зарядом стремится притянуть их к себе. Электрон, перемещаясь, занимает свободное место, дырку. При этом на его старом месте также образовывается дырка. В результате чего создаётся два потока движения зарядов: один основной, а другой обратный. Материал с отрицательным зарядом в качестве основных носителей использует электроны, его называют полупроводником n-типа, а с положительным зарядом, использующим дырки, p-типа. В полупроводниках обоих типов неосновные заряды образуют ток, обратный движению основных зарядов.

В радиоэлектронике из материалов для создания p-n перехода используется германий и кремний. При легировании кристаллов этих веществ образуется полупроводник с различной проводимостью. Например, введение бора приводит к появлению свободных дырок и образованию p-типа проводимости. Добавление фосфора, наоборот, создаст электроны, и полупроводник станет n-типа.

Принцип работы диода

Диод — это полупроводниковый прибор, имеющий малое сопротивление для тока в одном направлении, и препятствующий его прохождению в обратном. Физически диод состоит из одного p-n перехода. Конструктивно представляет собой элемент, содержащий два вывода. Вывод, подключённый к p-области, называется анодом, а соединённый с n-областью — катодом.

При работе диода существует три его состояния:

  • сигнал на выводах отсутствует;
  • он находится под действием прямого потенциала;
  • он находится под действием обратного потенциала.

Прямым потенциалом называется такой сигнал, когда плюсовой полюс источника питания подключён к области p-типа полупроводника, другими словами, полярность внешнего напряжения совпадает с полярностью основных носителей. При обратном потенциале отрицательный полюс подключён к p-области, а положительный к n.

В области соединения материала n- и p-типа существует потенциальный барьер. Он образуется контактной разностью потенциалов и находится в уравновешенном состоянии. Высота барьера не превышает десятые доли вольта и препятствует продвижению носителей заряда вглубь материала.

Если к прибору подключено прямое напряжение, то величина потенциального барьера уменьшается и он практически не оказывает сопротивление протеканию тока. Его величина возрастает и зависит только сопротивления p- и n- области. При прикладывании обратного потенциала, величина барьера увеличивается, так как из n-области уходят электроны, а из p-области дырки. Слои обедняются и сопротивление барьера прохождению тока возрастает.

Основным показателем элемента является вольт-амперная характеристика. Она показывает зависимость между приложенным к нему потенциалом и током, протекающим через него. Представляется эта характеристика в виде графика, на котором указывается прямой и обратный ток.

Схема простого выпрямителя

Синусоидальное напряжение представляет собой периодический сигнал, изменяющийся во времени. С математической точки зрения он описывается функцией, в которой начало координат соответствует времени равным нулю. Сигнал состоит из двух полуволн. Находящаяся полуволна в верхней части координат относительно нуля называется положительным полупериодом, а в нижней части — отрицательным.

При подаче переменного напряжения на диод через подключённую к его выводам нагрузку, начинает протекать ток. Этот ток обусловлен тем, что в момент поступления положительного полупериода входного сигнала диод открывается. В этом случае к аноду прикладывается положительный потенциал, а к катоду отрицательный. При смене волны на отрицательный полупериод диод запирается, так как меняется полярность сигнала на его выводах.

Читать еще:  Мультиметр цифровой для чего он нужен

Таким образом, получается, что диод как бы отрезает отрицательную полуволну, не пропуская её на нагрузку и на ней появляется пульсирующий ток только одной полярности. В зависимости от частоты приложенного напряжения, а для промышленных сетей она составляет 50 Гц, изменяется и расстояние между импульсами. Такого вида ток называется выпрямленным, а сам процесс —однополупериодным выпрямлением.

Выпрямляя сигнал, используя один диод, можно питать нагрузку, не предъявляющую особых требований к качеству напряжения. Например, нить накала. Но если запитать, например, приёмник, то появится низкочастотный гул, источником которого и будет промежуток, возникающий между импульсами. В некоторой мере для избавления от недостатков однополупериодного выпрямления совместно с диодом применяется параллельно включённый нагрузке конденсатор. Этот конденсатор будет заряжаться при поступлении импульсов и разряжаться при их отсутствии на нагрузку. А значит, чем больше значение ёмкости конденсатора, тем ток на нагрузке будет более сглажен.

Но наибольшего качества сигнала возможно достичь, если использовать для выпрямления одновременно две полуволны. Устройство, позволяющее это реализовать, получило название диодный мост, или по-другому — выпрямительный.

Диодный мост

Такое устройство представляет собой электрический прибор, служащий для преобразования переменного тока в постоянный. Словосочетание «диодный мост» образуется из слова «диод», что предполагает использование в нём диодов. Схема диодного моста выпрямителя зависит от сети переменного тока, к которой он подключается. Сеть может быть:

В зависимости от этого и выпрямительный мост называется мостом Гретца или выпрямителем Ларионова. В первом случае используется четыре диода, а во втором прибор собирается уже на шести.

Первая схема выпрямительного прибора собиралась на радиолампах и считалась сложным и дорогим решением. Но с развитием полупроводниковой техники диодный мост полностью вытеснил альтернативные способы выпрямления сигнала. Вместо диодов редко, но ещё применяются селеновые столбы.

Конструкции и характеристики прибора

Конструктивно выпрямительный мост выполняется из набора отдельных диодов или литого корпуса, имеющего четыре вывода. Корпус может быть плоского или цилиндрического вида. По принятому стандарту, значками на корпусе прибора отмечаются выводы подключения переменного напряжения и выходного постоянного сигнала. Выпрямители, имеющие корпус с отверстием, предназначены для крепления на радиатор. Основными характеристиками выпрямительного моста являются:

  1. Наибольшее прямое напряжение. Это максимальная величина, при которой параметры прибора не выходят за границы допустимых.
  2. Наибольшее допустимое обратное напряжение. Это максимальное импульсное напряжение, при котором мост длительно и надёжно работает.
  3. Наибольший рабочий ток выпрямления. Обозначает средний ток, протекающий через мост.
  4. Максимальная частота. Частота подаваемого на мост напряжения, при которой прибор работает эффективно и не превышает допустимый нагрев.

Превышение значений характеристик выпрямителя приводит к резкому сокращению срока его службы или пробою p-n переходов. Необходимо отметить такой момент, что все параметры диодов указываются для температуры окружающей среды 20 градусов. К недостаткам применения мостовой схемы выпрямления относят большее падение напряжения, по сравнению с однополупериодной схемой, и более низкое значение коэффициента полезного действия. Для уменьшения величины потерь и снижения нагрева мосты часто изготавливают с применением быстрых диодов Шотки.

Схема подключения устройства

На электрических схемах и печатных платах диодный выпрямитель обозначается в виде значка диода или латинскими буквами. Если выпрямитель собран из отдельных диодов, то рядом с каждым ставится обозначение VD и цифра, обозначающая порядковый номер диода в схеме. Редко используются надписи VDS или BD.

Диодный выпрямитель может подключаться напрямую к сети 220 вольт или после понижающего трансформатора, но схема включения его остаётся неизменной.

При поступлении сигнала в каждом из полупериодов ток сможет протекать только через свою пару диодов, а противоположная пара будет для него заперта. Для положительного полупериода открытыми будут VD2 и VD3, а для отрицательного VD1 и VD4. В итоге на выходе получится постоянный сигнал, но его частота пульсации будет увеличена в два раза. Для того чтобы уменьшить пульсацию выходного сигнала, используется, как и в случае с одним диодом, параллельное включение конденсатора С1. Такой конденсатор ещё называют сглаживающим.

Но случается так, что диодный мост ставится не только в переменную сеть, но и подключается в уже выпрямленную. Для чего нужен диодный мост в такой цепи, станет понятно, если обратить внимание в каких схемах используется такое его включение. Эти схемы связаны с использованием чувствительных радиоэлементов к переполюсовке питания. Использование моста позволяет осуществить простую, но эффективную защиту «от дурака». В случае ошибочного подключения полярности питания радиоэлементы, установленные за мостом, не выйдут из строя.

Проверка на работоспособность

Такой тип электронного прибора можно проверить, не выпаивая из схемы, так как в конструкциях устройств никакое его шунтирование не используется. В случае выпрямителя, собранного из диодов, проверяется каждый диод в отдельности. А в случае с монолитным корпусом измерения проводятся на всех четырёх его выводах.

Суть проверки сводится к прозвонке мультиметром диодов на короткое замыкание. Для этого выполняются следующие действия:

  1. Мультиметр переключается в режим позвонки диодов или сопротивления.
  2. Штекер одного провода (чёрного) вставляется в общее гнездо тестера, а второго (красного) в гнездо проверки сопротивления.
  3. Щупом, подключённым чёрным проводом, дотроньтесь до первой ножки, а щупом красного провода до третьего вывода. Тестер должен показать бесконечность, а если поменять полярность проводов, то мультиметр покажет сопротивление перехода.
  4. Минус тестера подается на четвёртую ногу, а плюс на третью. Мультиметр покажет сопротивление, при смене полярности бесконечность.
  5. Минус на первую ногу, плюс на вторую. Тестер покажет открытый переход, при смене – закрытый.

Такие показания тестера говорят об исправности выпрямителя. В случае отсутствия мультиметра можно воспользоваться обычным вольтметром. Но при этом придётся подать питание на схему и замерить напряжение на сглаживающем конденсаторе. Его величина должна превышать входное в 1,4 раза.

Устройство, принцип действия и схема диодного моста выпрямителя

Переменный электрический ток преобразуется в постоянный пульсирующий за счет применения специальных электронных схем — диодных мостов. Схему диодного моста выпрямителя разделяют на 2 варианта исполнения: однофазную и трехфазную.

В работе выпрямителя главным элементом является диод. Конструктивно он представляет собой пластину полупроводникового кристалла с двумя зонами разной проводимости. Особенностью является одностороннее пропускание электрического тока, в зависимости от направления течения.

Устройство и работа выпрямительного диода основаны на особенностях p-n перехода между зонами полупроводника. Его сопротивление зависит от полярности внешнего напряжения. В одном случае оно велико, в другом — незначительно.

Однофазный диодный мост

Когда на входе — переменное синусоидальное напряжение, в каждый полупериод ток проходит через одну пару диодов, а другая закрыта. В итоге на выходе схемы диодного моста выпрямителя образуется пульсирующее напряжение, частота которого в два раза больше, чем на входе.

Трехфазная мостовая схема

В данной схеме используются диодные полумостовые выпрямители. Выходное напряжение здесь получается с меньшими пульсациями.

Как сгладить пульсации при выпрямлении питания?

Качество выпрямленного напряжения снижается с увеличением его пульсации. Чтобы ее уменьшить, применяются элементы, накапливающие энергию при ее поступлении от выпрямителя и отдающие при прекращении ее подачи.

На схеме диодного моста выпрямителя с конденсатором последний подключается параллельно нагрузке. Его емкость подбирается в зависимости от нагрузочного тока. При подаче импульса происходит зарядка конденсатора. Между импульсами (когда их нет) напряжение с него отдается нагрузке.

В результате сглаживания выходное напряжение фильтра становится больше и приближается к величине амплитуды выпрямленной величины.

Идеальное напряжение на выходе фильтра получить не удается из-за разрядки конденсатора между импульсами. Обычно подобные пульсации допустимы. Их можно уменьшить путем увеличения емкости конденсатора.

Если для сглаживания применяется катушка индуктивности, ее подключают последовательно с нагрузкой. В комбинированные цепи фильтров входят дроссели и конденсаторы.

Конструкции диодных мостов

Простейшее устройство моста выполняется с помощью спайки отдельных диодов. В промышленности выпускают монолитные конструкции, которые меньше по размерам и дешевле. Кроме того, в них подбираются диоды с аналогичными характеристиками, что позволяет им работать с одинаковым нагревом. Это повышает надежность схемы диодного моста выпрямителя.

Преимуществом диодных мостов из отдельных элементов является возможность ремонта, когда один их них выйдет из строя. Сборку же приходится заменять полностью. Неисправности в ней возникают редко, поскольку элементы правильно подобраны.

Питание выпрямителей

Устройства, потребляющие большой ток, обычно питаются от сети 220 В. Напрямую приборы не подключают, поскольку напряжение для электронных схем требуется небольшое, а ток — постоянный. Тогда применяют сетевой адаптер.

Напряжение понижается с помощью трансформатора, который также создает гальваническую развязку между первичной и вторичной питающими цепями. За счет этого снижается опасность удара электрическим током и защищается аппаратура при появлении в схеме короткого замыкания.

Современные адаптеры в большинстве случаев работают по упрощенной бестрансформаторной схеме без гальванической развязки, где лишнее напряжение поглощается на конденсаторе.

Схема диодного моста 12 вольт: инструкция и сборка

Блок питания состоит из двух модулей, где первый — это понижающий трансформатор, а второй — диодный мост, преобразующий один вид напряжения в другой.

Подбирается подходящий трансформатор. Первичная обмотка находится с помощью тестера. Ее сопротивление должно быть самым большим. Путем прозвонки мультиметром в режиме измерения сопротивления находятся нужные концы. Затем находятся другие пары и делается маркировка.

На первичную обмотку подается 220 В. Затем тестер переводится в режим измерения переменного напряжения и измеряется напряжение на остальных обмотках. Следует выбрать или намотать одну на 10 В. Важно, чтобы напряжение не было 12 В, поскольку после емкостного фильтра оно увеличивается на 18 %.

Трансформатор подбирается под нужную мощность, после чего берется запас на 25 %.

4 диода скручиваются в диодный мост и концы пропаиваются. Затем схема соединяется, на выход подключается конденсатор на 25 В и 2200 мкф (электролит) и проверяется в работе.

Бестрансформаторная схема диодного моста выпрямителя 24 вольта

В радиолюбительской практике широко используются маломощные блоки питания без трансформаторов.

Питание 220 В подается через конденсатор балласта С1. Выпрямитель состоит из диодов VD1, VD2 и стабилитронов VD3, VD4. Чтобы устранить броски тока через мост, при подключении питания последовательно с конденсатором устанавливается резистор ограничения тока сопротивлением 50-100 Ом. Чтобы разрядить конденсатор при неработающей схеме, к нему параллельно подключается резистор на 150-300 кОм.

На выход схемы устанавливается сглаживающий конденсатор емкостью 2000 мкф.

Отсутствие гальванической связи создает опасность удара электрическим током.

Применение

Области применения диодного моста чрезвычайно широки и разнообразны:

  • осветительные приборы (светодиодные и люминесцентные лампы);
  • приборы учета электроэнергии;
  • блоки питания электронной аппаратуры;
  • промышленные блоки питания, управления и зарядные устройства.

Как выбрать диоды для изготовления диодного моста?

Главными критериями выбора являются напряжение и сила тока, при которой диод не перегревается. При прямом включении на нем падает напряжение около 0,6 В, поскольку он обладает внутренним сопротивлением. Обратное напряжение, которое диод выдерживает, не входя в режим теплового и электрического пробоя, имеет определенный предел. Если он рассчитан на 220 В, то берется запас не ниже 25 %. Но лучше брать его достаточно большим, чтобы уберечь от случайных скачков напряжения в сети.

Читать еще:  Чем убрать супер клей с кожи рук

Ток также берется с запасом. Если нужно, предусматривается охлаждающий радиатор.

Для правильного выбора пользуются справочной таблицей диодов и диодных мостов.

Производители диодных мостов

Среди элементов для осветительной техники выделяются выпрямители серий 1N4007 и MS250 производства компании Diotec. Они рассчитаны на напряжение до 1000 В. В первом случае схема диодного моста состоит из 4 диодов, размещенных на печатной плате, а во втором она представлена в виде компактной сборки. Хотя серия 1N4007 надежна в работе, сборка MS250 позволяет экономить вес и занимаемую площадь. Несмотря на это, спрос на серию 1N4007 остается высоким, поскольку цена снизилась настолько, что определяется преимущественно затратами на выводы из меди.

Технология изготовления диодных мостов серии MS продолжается. Сейчас все 4 кристалла моста устанавливаются вместе, что повышает его теплостойкость за счет равномерности параметров.

Надежность выпрямителей падает с повышением температуры окружающего воздуха. Эту проблему решает устройство серии B250S2A, рассчитанное на ток 2,3 А и пропускающее 0,7 А при 125 °С.

Большинство изготовителей покупают диоды, после чего собирают готовые выпрямители. Компания Diotec занимается всем циклом производства, от изготовления кристаллов до сборки и упаковки.

Другая ведущая мировая компания — IRF — обладает уникальными технологиями сокращения габаритов деталей, улучшения теплоотдачи, повышения эффективности полупроводниковой техники. Она является единственной, производящей компоненты для всего цикла преобразования энергии.

Заключение

Схема диодного моста выпрямителя применяется во всей радиоэлектронной аппаратуре. Применять следует двухполупериодные выпрямители, характеристики которых значительно лучше однопериодных. Проверить любой из них можно самостоятельно, прозвонив каждый диод.

Полупроводниковые однофазные выпрямители блоков питания.

Классификация, свойства, схемы, онлайн калькулятор.
Расчёт ёмкости сглаживающего конденсатора.

«- Почему пульт не работает?
— Я, конечно, не электрик, но, по-моему, пульт не работает, потому что телевизора нет».

— А для чего нам ещё «нахрен не упал» профессиональный электрик?
— Для чего? Да много для чего! Например, для того, чтобы быть в курсе, что без источника питания, а точнее без преобразователя сетевого переменного напряжения в постоянное, не обходится ни одно электронное устройство.
— А электрик?
— Электрик, электрик. Что электрик. «Электрик Сидоров упал со столба и вежливо выругался. »

Итак, приступим.
Выпрямитель — это электротехническое устройство, предназначенное для преобразования переменного напряжения в постоянное.
Выпрямитель содержит трансформатор,
необходимый для преобразования напряжения сети Uc до величины U2, определяемой требованиями нагрузки;
вентильную группу (в нашем случае диодную), которая обеспечивает одностороннее протекание тока в цепи нагрузки;
фильтр, передающий на выход схемы постоянную составляющую напряжения и сглаживающий пульсации напряжения.

Расчёт трансформатора — штука громоздкая, в рамках этой статьи рассматриваться не будет, поэтому сразу перейдём к основным и наиболее распространённым схемам выпрямителей блоков питания радиоэлектронной аппаратуры.
В процессе повествования давайте сделаем допущение, что под величинами переменных напряжений и токов в цепях выпрямителей мы будем подразумевать их действующие (эффективные) значения:
Uдейств = Uампл/√ 2 и Iдейств = Iампл/√ 2 .
Именно такие значения приводятся в паспортных характеристиках обмоток трансформаторов, да и большинство измерительных приборов отображают — не что иное, как аккурат эффективные значения сигналов переменного тока.

Однополупериодный выпрямитель.


Рис.1

На Рис.1 приведена однофазная однополупериодная схема выпрямления, а также осциллограммы напряжений в различных точках (чёрным цветом — напряжение на нагрузке при отсутствии сглаживающего конденсатора С1, красным — с конденсатором).
В данном типе выпрямителя напряжение с вторичной обмотки трансформатора поступает в нагрузку через диод только в положительные полупериоды переменного напряжения. В отрицательные полупериоды полупроводник закрыт, и напряжение в нагрузку подаётся только с заряженного в предыдущий полупериод конденсатора.
Однополупериодная схема выпрямителя применяется крайне редко и только для питания цепей с низким током потребления ввиду высокого уровня пульсаций выпрямленного напряжения, низкого КПД, и неэффективного использования габаритной мощности трансформатора.

Здесь обмотка трансформатора должна обеспечивать величину тока, равную удвоенному значению максимального тока в нагрузке Iобм = 2×Iнагр и напряжение холостого хода

U2 ≈ 0,75×Uн .
При выборе диода D1 для данного типа схем, следует придерживаться следующих его параметров:
Uобр > 3,14×Uн и Iмакс > 3,14×Iн .

Едем дальше.
Двухполупериодный выпрямитель с нулевой точкой.


Рис.2

Схема, приведённая на Рис.2, является объединением двух противофазных однополупериодных выпрямителей, подключённых к общей нагрузке. В одном полупериоде переменного напряжения ток в нагрузку поступает с верхней половины вторичной обмотки через открытый диод D1, в другом полупериоде — с нижней, через второй открытый диод D2.
Как и любая двухполупериодная, эта схема выпрямителя имеет в 2 раза меньший уровень пульсации по сравнению с однополупериодной схемой. К недостаткам следует отнести более сложную конструкцию трансформатора и такое же, как в однополупериодной схеме — нерациональное использование трансформаторной меди и стали.

Каждая из обмоток трансформатора должна обеспечивать величину тока, равную значению максимального тока в нагрузке Iобм = Iнагр и напряжение холостого хода

U2 ≈ 0,75×Uн .
Полупроводниковые диоды D1 и D2 должны обладать следующими параметрами:
Uобр > 3,14×Uн и Iмакс > 1,57×Iн .

И наконец, классика жанра —
Мостовые схемы двухполупериодных выпрямителей.


Рис.3

На Рис.3 слева изображена схема однополярного двухполупериодного мостового выпрямителя с использованием одной обмотки трансформатора. Графики напряжений на входе и выходе выпрямителя аналогичны осциллограммам, изображённым на Рис.2.
Во время положительного полупериода переменного напряжения ток протекает через цепь, образованную D2 и D3, во время отрицательного — через цепь D1 и D4. В обоих случаях направление тока, протекающего через нагрузку, одинаково.

Если сравнивать данную схему с предыдущей схемой выпрямителя с нулевой точкой, то мостовая имеет более простую конструкцию трансформатора при таком же уровне пульсаций, менее жёсткие требования к обратному напряжению диодов, а главное — более рациональное использование трансформатора и возможность уменьшения его габаритной мощности.
К недостаткам следует отнести необходимость увеличения числа диодов, что приводит к повышенным тепловым потерям за счёт большего падения напряжения в выпрямителе.

Обмотка трансформатора должна обеспечивать величину тока, равную Iобм = 1,41×Iнагр и напряжение холостого хода

U2 ≈ 0,75×Uн .
Полупроводниковые диоды следует выбирать исходя из следующих соображений:
Uобр > 1,57×Uн и Iмакс > 1,57×Iн .

При наличии у трансформатора двух одинаковых вторичных обмоток, или одной с отводом от середины выводом, однополярная схема преобразуется в схему двуполярного выпрямителя со средней точкой (Рис.3 справа).
Естественным образом, диоды в двуполярном исполнении должны выбираться исходя из двойных значений Uобр и Iмакс по отношению к однополярной схеме.

Значения Uобр и Iмакс приведены исходя из величин наибольшего (амплитудного) значения обратного напряжения, приложенного к одному диоду, и наибольшего (амплитудного) значения тока через один диод при отсутствии сглаживающих фильтров на выходе.

Конденсатор С1 во всех схемах — это простейший фильтр, выделяющий постоянную составляющую напряжения и сглаживающий пульсации напряжения в нагрузке.
Для выпрямителей, не содержащих стабилизатор, его ёмкость рассчитывается по формулам:
С1 = 6400×Iн/(Uн×Кп) для однополупериодных выпрямителей и
С1 = 3200×Iн/(Uн×Кп) — для двухполупериодных,
где Кп — это коэффициент пульсаций, численно равный отношению амплитудного значения пульсирующего напряжения к его постоянной составляющей.
Для стабилизированных источников питания ёмкость С1 можно уменьшить в 5-10 раз.

«Коэффициент пульсаций выбирают самостоятельно в зависимости от предполагаемой нагрузки, допускающей питание постоянным током вполне определённой «чистоты»:
10 -3 . 10 -2 (0,1-1%) — малогабаритные транзисторные радиоприёмники и магнитофоны,
10 -4 . 10 -3 (0,01-0,1%) — усилители радио и промежуточной частоты,
10 -5 . 10 -4 (0,001-0,01%) — предварительные каскады усилителей звуковой частоты и микрофонных усилителей.» — авторитетно учит нас печатное издание.

Ну и под занавес приведём незамысловатую онлайн таблицу.

КАЛЬКУЛЯТОР РАСЧЁТА ВЫПРЯМИТЕЛЯ ДЛЯ БЛОКА ПИТАНИЯ.

Какое напряжение после диодного моста

Wanderer84
Господа электронщики, подскажите пожалуйста, как можно повысить напряжение на БП с 12 до 15-20 вольт

Стабилизатор есть, но очень простой и весьма древний.

Тема настолько обширна и никаких параметров.

1. Посмотри какое напряжение на конденсаторах фильтра, после диодного моста. Может этого достаточно? Правда стабилизации не будет.
А может и будет, если стабилизатор много режет.

2. Какой планируемый ток нагрузки после модернизации?
До нее ясно — 1-2А.
Я не раз делал умножитель на диодах и электролитах, подключая его прямо ко вторичной обмотке. Правда нагрузка была с током в единицы, десяток-другой миллиампер.

Более конкретные ответы даются на не менее конкретные вопросы.

Можно поподробнее что-нибудь про DC-DC преобразователи, если нетрудно.

Не все так просто. Это целое направление в электронике и надо читать, читать, читать. Или готовое найти.
Но раз возник вопрос именно в такой формулировке: «Что-нибудь про DC-DC», то проще транс или даже весь БП поменять.

3. Трансформатор какой стоит?
4. Что на нем написано?
5. Есть ли у него не используемые выводы?

Виталий Андреевич
Может, попробовать собрать вместо простого выпрямителя схему удвоения напряжения на двух диодах и двух кондеях, и после этого отрезАть «лишнее» с помощью КРЕНки на 15 В.

Так в п.2 У меня об этом и написано. Как вариант.

Iwashka
3. Трансформатор какой стоит?
4. Что на нем написано?
5. Есть ли у него не используемые выводы?

Трансформатор стоит ТС-10-1. Это правда далеко не 1-2 А, ошибочка вышла
Кстати, кто-нибудь знает макс. ток нагрузки для этого транса?

Неиспользуемых выводов нет. Напряжение на вторичной обмотке 15.5 AC. После диодного моста — почти 18 В DC. Странно, вроде на вторичной должно быть меньше.

Идея с умножителем никак не пойдёт, потому что ток всё же нужен приличный. А вообще, скорее всего придётся взять другой трансформатор.

Wanderer84
скорее всего придётся взять другой трансформатор.
100%
Твой не вытянет ни по току, ни по напряжению.

После диодного моста — почти 18 В DC.
Все правильно, там без нагрузки около 20 должно быть.

Wanderer84
Так что, никто не знает макс. ток нагрузки для ТС-10-1
Параметры этого транса (в отличие от ТС-5-4 в соседней ветке) находятся в справочнике:

Мощность 10 В*А
Вторичка : выводы 4-5, напряжение 12,8В, Ток 0,75 А

ЗЫ. Это если в виду имеется трансформатор..
А если это симистор ТС-10-1
То он на 10А, 100В..

1. Если транс не залит компаундом, отмотать нужное число витков обмотки.
2. Если у транса случайно есть обмотка примерно на 8В, включить ее последовательно-встречно, чтобы напряжение вычиталось.
2-1. Если у транса случайно есть обмотка примерно на 90В, включить ее последовательно-согласно с первичной обмоткой.
3. Применить автотрансформатор до или после этого транса.
4. Применить DC-DC преобразователь

Читать еще:  Для чего нужна канифоль в паянии

Wanderer84
Ещё вопрос от чайника: каким образом лучше всего понизить напряжение пост. тока на выходе выпрямителя (с 40В до 28В) с минимальными потерями тока. Или как понизить переменное напряж. на выходе трансформатора перед выпрямителем (с 28 до 20В)?
Я в таких случаях перематываю вторичку — тут нужно отмотать это еще проще. Обычно вторичка снаружи и это не вызывает проблем. Меряем вольты, отматываем известное кол-во витков. Считаем сколько витков на вольт и остальное отматываем точно. Трансы сейчас обычно на сердечнике ПЛ (сердечник из 4 кусков) — разбираются просто. Если транс залит — его лучше отложить в сторону и для переделки использовать другой. Впрочем, когда они были на Ш-образных пластинах, это тоже не останавливало.
Если транс на торроиде — обычно проще намотать снаружи дополнительную обмотку и, как тут советовали, вычитать и ли суммировать ее напряжение с намотанной обмоткой.

be_smart 4. самое кошерное решение если нельзя намотать сверху обмотку.
Самое главное в этом отношении, не мотать ее в субботу.

цитата (Wanderer84): Iwashka

5. Есть ли у него не используемые выводы?

Неиспользуемых выводов нет. Напряжение на вторичной обмотке 15.5 AC.
А потом:
цитата (Wanderer84): Отмотка-намотка не пойдёт — транс залит и наматывать больше некуда. А вот обмотки есть весьма интересные. Сейчас буду пробовать их соединять. И как это понимать?
Сначала: Неиспользуемых выводов нет, а потом: А вот обмотки есть весьма интересные.

А кажется понал. Я на счет выводов спрашивал. Их-то как раз и нет. А вот обмотки существуют.
Блин, ну и я, спрашивать не умею. Звиняйте.

Iwashka
И как это понимать?
Сначала: Неиспользуемых выводов нет, а потом: А вот обмотки есть весьма интересные.

А кажется понал. Я на счет выводов спрашивал. Их-то как раз и нет. А вот обмотки существуют.
Блин, ну и я, спрашивать не умею. Звиняйте.

Слушай, дружище, если ты не заметил, сейчас речь идёт совсем о другом трансформаторе. (не ТС-10-1). Откуда у ТС-10-1 вообще 28 вольт возьмётся на вторичке? Его параметры здесь уже упоминались:

spliner
Мощность 10 В*А
Вторичка : выводы 4-5, напряжение 12,8В, Ток 0,75 А

Типы выпрямителей переменного тока

Какие бывают выпрямители?

Ещё в начале ХХ века имел место очень принципиальный спор между корифеями электротехники. Какой ток выгоднее передавать потребителю на большие расстояния: постоянный или переменный? Научный спор выиграли сторонники передачи переменного тока по проводам высоковольтных линий от подстанции к потребителю. Эта система принята во всём мире и успешно эксплуатируется до сих пор.

Но большинство электронной техники и не только бытовой, но и промышленной питается постоянными напряжениями и это привело к созданию целой отрасли электрики – преобразование (выпрямление) переменного тока. После того как электронная лампа была забыта, главным элементом любого выпрямителя стал полупроводниковый диод.

Схемотехника выпрямителей весьма обширна, но самым простым является однополупериодный выпрямитель.

Однополупериодный выпрямитель.

Напряжение с вторичной обмотки силового трансформатора подаётся на один единственный диод. Вот схема.

Поэтому выпрямитель и назван однополупериодным. Выпрямляется только один полупериод и на выходе получается импульсное напряжение. Форма его показана на рисунке.

Схема проста и не требует большого количества элементов. Это и сказывается на качестве выпрямленного напряжения. При низких частотах переменного напряжения (например, как в электросети — 50 Гц) выпрямленное напряжение получается сильно пульсирующим. А это очень плохо.

Для того чтобы снизить величину пульсации выпрямленного напряжения приходится брать величину конденсатора С1 очень большую, порядка 2000 – 5000 микрофарад, что увеличивает размер блока питания, так как электролиты на 2000 — 5000 мкф имеют довольно большие размеры. Поэтому на низких частотах эта схема практически не используется. Зато однополупериодные выпрямители прекрасно зарекомендовали себя в импульсных блоках питания работающих на частотах 10 – 15 кГц (килогерц). На таких частотах величина ёмкости фильтра может быть очень небольшой, а простота схемы уже не столь сильно влияет на качество выпрямленного напряжения.

Примером использования однополупериодного выпрямителя может служить простой зарядник от сотового телефона. Так как зарядник сам по себе маломощный, то в нём применяется однополупериодная схема, причём как во входном сетевом выпрямителе 220V (50Гц), так и в выходном, где требуется выпрямить переменное напряжение высокой частоты со вторичной обмотки импульсного трансформатора.

К несомненным достоинствам такого выпрямителя следует отнести минимум деталей, низкую стоимость и простые схемные решения. В обычных (не импульсных) блоках питания многие десятилетия успешно работают двухполупериодные выпрямители.

Двухполупериодные выпрямители.

Они бывают двух схемных решений: выпрямитель со средней точкой и мостовая схема, известная, как схема Гретца. Выпрямитель со средней точкой требует более сложного в исполнении силового трансформатора, хотя диодов там используется в два раза меньше чем в мостовой схеме. К недостаткам двухполупериодного выпрямителя со средней точкой можно отнести то, что для получения одинакового напряжения, число витков во вторичной обмотке трансформатора должно быть в два раза больше, чем при использовании мостовой схемы. А это уже не совсем экономично с точки зрения расходования медного провода.

Далее на рисунке показана типовая схема двухполупериодного выпрямителя со средней точкой.

Величина пульсаций выпрямленного напряжения меньше чем у однополупериодного выпрямителя и величину конденсатора фильтра так же можно использовать гораздо меньшую. Наглядно увидеть, как работает двухполупериодная схема можно по рисунку.

Как видим, на выходе выпрямителя уже в два раза меньше «провалов» напряжения — тех самых пульсаций.

Активно применяется схема выпрямителя со средней точкой в выходных выпрямителях импульсных блоков питания для ПК. Так как во вторичной обмотке высокочастотного трансформатора требуется меньшее число витков медного провода, то гораздо эффективнее применять именно эту схему. Диоды же применяются сдвоенные, т.е. такие, у которых общий корпус и три вывода (два диода внутри). Один из выводов — общий (как правило катод). По виду сдвоенный диод очень похож на транзистор.

Наибольшую популярность приобрела в бытовой и промышленной аппаратуре мостовая схема. Взгляните.

Можно без преувеличения сказать, что это самая распространённая схема. На практике вы с ней ещё не раз встретитесь. Она содержит четыре полупроводниковых диода, а на выходе, как правило, ставится RC-фильтр или только электролитический конденсатор для сглаживания пульсаций напряжения.

О данной схеме уже рассказывалось на странице про диодный мост. Стоит отметить, что и у мостовой схемы есть недостатки. Как известно, у любого полупроводникового диода есть так называемое прямое падение напряжения (Forward voltage dropVF). Для обычных выпрямительных диодов оно может быть 1 — 1,2 V (зависит от типа диода). Так вот, при использовании мостовой схемы на диодах теряется напряжение, равное 2 x VF, т.е. около 2 вольт. Это происходит потому, что в выпрямлении одной полуволны переменного тока участвуют 2 диода (затем другие 2). Получается, что на диодном мосте теряется часть напряжения, которое мы снимаем со вторичной обмотки трансформатора, а это явные потери. Поэтому в некоторых случаях в составе диодного моста применяются диоды Шоттки, у которых прямое падение напряжения невелико (около 0,5 вольта). Правда, стоит учесть, что диод Шоттки не рассчитан на большое обратное напряжение и очень чувствителен к его превышению.

Большой интерес вызывает выпрямитель с удвоением напряжения.

Выпрямитель с удвоением напряжения.

Принцип удвоителя напряжения Латура-Делона-Гренашера основан на поочерёдном заряде-разряде конденсаторов С1 и С2 разными по полярности полуволнами входного напряжения. В результате между катодом одного диода и анодом второго диода возникает напряжение в два раза превышающее входное. Схема в студию:)

Стоит отметить, что данная схема применяется в блоках питания нечасто. Но её можно смело использовать, если необходимо вдвое увеличить напряжение, которое снимается со вторичной обмотки трансформатора. Это будет более логичным и правильным решением, чем перематывать вторичную обмотку трансформатора с целью увеличить выходное напряжение вторичной обмотки в 2 раза (ведь при этом придётся наматывать вторичную обмотку с вдвое большим числом витков). Так что, если не удалось найти подходящий трансформатор — смело применяем данную схему.

Развитием схемы стало создание умножителя на полупроводниковых диодах.

Умножитель напряжения.

Каждый диод и конденсатор образуют «звено» и эти звенья можно соединять последовательно до получения напряжения в несколько десятков киловольт. Конечно, для этого входное напряжение тоже должно быть достаточно большим.

На рисунке изображён четырёхзвенный умножитель и на выходе мы получаем напряжение в четыре раза превышающее входное (U). Эти выпрямители получили большое распространение там, где нужно получить высокое напряжение при достаточно малом токе. Например, по такой схеме были выполнены источники высокого напряжения в старых телевизорах и осциллографах для питания анода электронно-лучевой трубки.

Сейчас такие источники питания используются в научных лабораториях, в детекторах элементарных частиц, в медицинской аппаратуре (люстра Чижевского) и в оружии самообороны (электрошокер). При повторении подобных конструкций и подборе деталей, следует учитывать рабочее напряжение, как диодов, так и конденсаторов исходя из напряжения, которое вы хотите получить. Весь умножитель, как правило, заливается специальным компаундом или эпоксидной смолой во избежание высоковольтных пробоев между элементами схемы.

Для нормальной работы некоторых устройств как, например, люстры Чижевского необходимы достаточно высокие напряжения. Как считают специалисты, излучатель отрицательных аэроионов, эффективен только при напряжении не менее 60 киловольт.

Трёхфазные выпрямители.

Устройства, которые используются для получения постоянного тока из переменного трёхфазного тока, называются трёхфазными выпрямителями. Трёхфазные выпрямители в бытовой технике, конечно, не используются. Единственный прибор, который может использоваться в быту это сварочный аппарат. В качестве трёхфазных выпрямителей используются наработки двух известных электротехников Миткевича и Ларионова. Самая простая схема Миткевича называется «три четверти моста параллельно», что означает три силовых диода включенных параллельно через вторичные обмотки трёхфазного трансформатора. Схема.

Коэффициент пульсаций на нагрузке очень мал, что позволяет использовать конденсаторы фильтра небольшой ёмкости и малых габаритов.

Более сложной является схема Ларионова, которая называется «три полумоста параллельно», что это такое хорошо видно из рисунка.

В схеме используется уже шесть диодов и немного другая схема включения. Вообще схем трёхфазных выпрямителей достаточно много и наиболее совершенной, хотя редко употребляемой является схема «шесть мостов параллельно», а это уже 24 диода! Зато эта схема может выдавать высокое напряжение при большой мощности.

Трёхфазные мощные выпрямители используются в электровозах, городском электротранспорте (трамвай, троллейбус, метро), в промышленных установках для электролиза. Так же промышленные системы очистки газовых смесей, буровое и сварочное оборудование используют трёхфазные выпрямители.

Теперь вы знаете, какие бывают выпрямители переменного тока и сможете легко обнаружить их на принципиальной схеме или печатной плате любого прибора. А для тех, кто хочет знать больше, рекомендуем ознакомиться с книгой «Полупроводниковые выпрямители».

Ссылка на основную публикацию
Adblock
detector