132 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Динамические компрессоры принцип работы

Какие бывают виды компрессоров

Компрессор является агрегатом для сжатия и перемещения различных газов, в том числе и воздуха, на различные приборы и пневмоинструменты. Компрессорную технику широко применяют в промышленности, строительстве, медицине и т.д. Существующие виды компрессоров и их классификация определяют критерии эксплуатации данного оборудования.

Классификация компрессоров по принципу действия

По принципу действия компрессоры классифицируются на объемные и динамические.

Объемные

Это агрегаты, имеющие рабочие камеры, в которых происходит процесс сжатия газа. Сжатие происходит за счет периодического изменения объема камер, соединенных с входом (выходом) аппарата. Чтобы предотвратить обратный выход газа из агрегата, в нем устанавливают систему клапанов, которые открываются и закрываются в определенный момент наполнения и опорожнения камеры.

Динамические

В динамических компрессорах повышение давления газа происходит за счет ускорения его движения. В результате кинетическая энергия частиц газа превращается в энергию давления.

Важно! Динамические компрессоры отличаются от объемных открытой проточной частью. То есть, при зафиксированном вале его можно продуть в любом направлении.

Виды объемных компрессоров

Компрессорное оборудование объемного типа подразделяется на 3 группы:

Мембранные

Имеют в рабочей камере эластичную мембрану, как правило, полимерную. Благодаря возвратно-поступательным движениям поршня мембрана выгибается в разные стороны. В результате движений мембраны объем рабочей камеры меняется. Клапаны в зависимости от положения мембраны либо впускают воздух в камеру, либо выпускают.

Приходить в движение мембрана может от пневматического, мембранно-поршневого, электрического или механического привода.

Важно! В мембранных аппаратах воздух или газ в процессе перемещения через рабочую камеру не контактирует с другими узлами агрегата (кроме мембраны и корпуса). Благодаря этому на выходе получают газ высокой степени чистоты.

Поршневые

Благодаря наличию кривошипно-шатунного механизма поршень совершает возвратно-поступательные движения в рабочей камере, отчего ее объем то уменьшается, то увеличивается.

Поршневые компрессоры имеют установленные на рабочей камере односторонние клапаны, перекрывающие движение воздуха в обратном направлении. Несмотря на хорошую производительность, поршневые аппараты имеют и недостатки: достаточно высокий уровень шума и заметная вибрация.

Роторные

В роторных компрессорах сжатие воздуха происходит вращающимися элементами — роторами. Каждый элемент в зависимости длины и шага винта имеет постоянное значение сжатия, которое также зависит и от формы отверстия для выхода газа.

В таких компрессорах клапаны не устанавливаются. Также конструкция агрегата не содержит узлов, способных вызвать разбалансировку. Благодаря этому он может работать с высокой скоростью вращения ротора. При такой конструкции аппарата величина потока газа достигает высоких значений при небольших габаритах самого компрессора.

Роторные компрессоры подразделяются на несколько подвидов.

Безмасляные

Имеют ассиметричный профиль винта, повышающий КПД агрегата благодаря уменьшению утечек при сжатии газа. Для обеспечения синхронного встречного вращения роторов применяют внешнюю зубчатую передачу. Во время работы роторы не соприкасаются, и смазка им не требуется, поэтому выходящий из агрегата воздух не имеет никаких примесей. Для уменьшения внутренних утечек детали агрегата и корпус изготавливаются с высокой точностью. Также безмасляные аппараты могут быть многоступенчатыми, чтобы убрать разность температур воздуха на входе и выходе аппарата, которая ограничивает повышение давления.

Винтовые

Состоят из одного или нескольких винтов, которые находятся в зацеплении, установленных в герметичном корпусе.

Рабочее пространство создается между корпусом и винтами при их вращении. Данный вид компрессоров отличается хорошей производительностью и беспрерывной подачей воздуха. Для снижения трения между входящими в зацеп винтами, которое увеличивает износ деталей, применяется смазка. Если требуется получить сжатый воздух (газ) без примесей смазочных материалов, то применяются безмасляные винтовые аппараты. В последних, чтобы уменьшить силу трения, подвижные детали изготавливаются из антифрикционных материалов.

Зубчатые

Данные компрессоры еще называют шестеренчатыми, поскольку их главными деталями являются шестерни. Они при работе вращаются в противоположных направлениях, создавая между зубьями и стенками корпуса рабочую камеру.

При вхождении зубьев в зацепление на стороне выходного отверстия агрегата происходит уменьшение объема камеры, вследствие чего воздух под давлением выходит через патрубок. Компрессоры данного типа нашли широкое применение в ситуациях, когда не требуется подача воздуха или газа под высоким давлением.

Спиральные

Это разновидность безмасляных компрессоров роторного типа. Спиральные аппараты также сжимают газ в объеме, который уменьшается постепенно.

Главными элементами данного аппарата являются спирали. Одна спираль закреплена неподвижно в копрусе устройства. Другая подвижная, соединена с приводом. Сдвиг по фазе между спиралями равняется 180°, благодаря чему происходит образование воздушных полостей с изменяемым объемом.

Роторно-пластинчатые

Пластинчатый компрессор имеет ротор с прорезанными пазами. В них вставлено определенное количество подвижных пластин. Как видно из рисунка, приведенного ниже, ось ротора с осью корпуса не совпадает.

Пластины при вращении ротора перемещаются центробежной силой от его центра к периферии и прижимаются к внутренней поверхности корпуса. В результате происходит непрерывное создание рабочих камер, ограниченных соседними пластинами и корпусами ротора и аппарата. За счет смещенных осей изменяется объем рабочих камер.

Жидкостно-кольцевые

В данных агрегатах используюется вспомогательная жидкость. В статически закрепленном корпусе аппарата устанавливается ротор с пластинами.

Конструкционные особенности данного аппарата – это смещенные оси ротора и корпуса относительно друг друга. В корпус заливается жидкость, которая принимает форму кольца, прижимаясь к стенкам аппарата вследствие отбрасывания ее лопастями ротора. При этом происходит ограничение рабочего пространства, наполненного газом, между жидкостным кольцом, корпусом и лопатками ротора. Объем рабочих камер изменяется посредством вращающегося ротора со смещенной осью.

Важно! Чтобы перекачиваемый газ не уносил с собой частички жидкости, в жидкостно-кольцевых аппаратах устанавливают узел сепарации, отсекающий влагу из воздуха. Также на устройствах данного типа устанавливается система, обеспечивающая подпитку рабочей камеры вспомогательной жидкостью.

Виды динамических компрессоров

Аппараты с динамическим принципом действия разделяют на осевые, центробежные и струйные. Различаются они между собой типом рабочего колеса и направлением движения потока воздуха.

На заметку! Также динамические аппараты еще называют турбокомпрессорами, поскольку конструкция их напоминает турбину.

Осевые аппараты

В осевых компрессорах поток газа движется вдоль оси вращения вала через неподвижные направляющие и подвижные рабочие колеса. Скорость потока воздуха в осевом аппарате набирается постепенно, а преобразование энергии происходит в направляющих.

Для осевых компрессоров характерны:

  • высокая скорость работы;
  • высокий КПД;
  • высокая подача потока воздуха;
  • компактные размеры.

Центробежные агрегаты

Центробежные компрессоры имеют конструкцию, обеспечивающую радиальный выходной поток воздуха. Поток воздуха, попадая на вращающееся рабочее колесо с радиально расположенными крыльчатками, за счет центробежных сил выбрасывается к стенкам корпуса. Далее, воздух перемещается в диффузор, где и происходит процесс его сжатия.

Центробежные аппараты не имеют узлов с возвратно-поступательными движениями, поэтому обеспечивают равномерный поток воздуха, силу которого можно регулировать. Также данный тип агрегатов отличается долговечностью и экономичностью.

Струйные компрессоры

В аппаратах струйного принципа действия для увеличения давления газа (пассивного) используется энергия активного газа.

Для этого к устройству подводится 2 потока газа: один с низким давлением (пассивный), а второй – с высоким (активный). На выходе из устройства образуется газовый поток с давлением выше пассивного, но меньшим, чем у активного газа.

Важно! Отличительной особенностью струйных компрессоров является простота конструкции, отсутствие подвижных деталей, высокая надежность.

Классификация компрессоров по другим параметрам

Кроме классификации компрессоров по принципу сжатия, принято разделять данные агрегаты по следующим параметрам:

  1. Тип привода. Компрессоры могут работать как с электродвигателями, так и с двигателями внутреннего сгорания (ДВС). Соответственно, аппараты бывают с прямой передачей (коаксиальные) и с ременным приводом. Как правило, компрессор с прямым приводом – это агрегат бытового назначения. Коаксиальный компрессор привлекает потребителя доступной ценой и широко используются на дачах в гаражах и т.д., поскольку давление воздуха, выдаваемое аппаратом, не превышает 0,8 МПа. Если сравнивать бензиновый и дизельный компрессор, то последний является более надежным в эксплуатации. Также дизель имеет более простое устройство и легок в обслуживании.
  2. Система охлаждения. Аппараты бывают с жидкостным и воздушным охлаждением или вообще без него.
  3. Условия эксплуатации. Аппараты могут быть стационарными, работающими только в помещении от электросети, и передвижными (переносными), работа которых допускается на открытом воздухе и при низких температурах. Например, передвижные компрессоры с двигателем внутреннего сгорания широко используются в местах, где нет централизованного электроснабжения.
  4. Конечное давление. По данному параметру аппараты подразделяют на четыре группы. Агрегаты низкого давления (0,15-1,2 МПа) используются в составе установок для сжатия газов (воздуха). Устройства среднего давления (1,2-10 МПа) применяются для разделения, транспортировки и сжижения газов в нефтеперерабатывающей, газовой и химической промышленности. Аппараты высокого давления (10-100 МПа) и сверхвысокого давления (свыше 100 МПа) используются в установках для синтеза газов.
  5. Производительность. Указывается в единицах объема за определенных промежуток времени (м 3 /мин). Производительность агрегата напрямую зависит от таких параметров, как скорость вращения вала, диаметр цилиндра, длина хода поршня. По производительности принято разделять аппараты на 3 категории: малая – до 10 м 3 /мин; средняя – от 10 до 100 м 3 /мин; большая – свыше 100 м 3 /мин.
Читать еще:  Как заряжать аккумулятор автомобиля зарядным устройством видео

Кроме всего, компрессоры подразделяются в зависимости от области применения на агрегаты общего назначения, нефтехимические, химические, энергетические и т.д.

Устройство центробежных компрессоров

Центробежные компрессоры представляют собой оборудование, входящее в группу компрессоров динамического типа с радиальной конструкцией. Главным преимуществом установок данного типа является их высокая производительность, которая в разы превышает показатели компрессоров других видов. Благодаря этому, центробежные воздушные компрессоры, устройство которых позволяет использовать их при интенсивной эксплуатации, широко используются в промышленных масштабах – в нефтеперерабатывающей отрасли, металлообработке и других сферах деятельности.

Центробежные компрессоры – устройство и основные элементы

Компрессорные установки, состоящие в группе оборудования центробежного типа, представляют собой широкое разнообразие агрегатов, различных по своим характеристикам и техническому оснащению. Но при этом, центробежным компрессорам характерно общее стандартное оснащение. Так, оборудование данного типа включает в себя такие основные элементы, как:

  • корпус оборудования;
  • патрубки – входное и выходное устройства;
  • рабочие колеса;
  • диффузор;
  • привод – может быть различных типов (дизельный, электрический и другие).

Здесь Вы можете ознакомиться с каталогом компрессоров, реализуемых ООО ГК «ТехМаш».

Конструкция центробежных установок может быть различной в зависимости от количества в оборудовании следующих элементов:

  • ступеней – одно- и многоступенчатые;
  • роторов – однороторные и многороторные.

Кроме того, устройство центробежных компрессоров также имеет классификацию и по типу корпуса:

  • Установки с разъемом корпуса горизонтального типа – в данном случае корпус имеет горизонтальное разделение на две части. Подобные особенности конструкции установки обеспечивают легкий доступ к ротору оборудования в случае необходимости. Используются агрегаты данного типа при необходимости получения давления с показателем ниже 60 атмосфер.

  • Оборудование с разъемом корпуса вертикального типа – данное оборудование устанавливается в специальный цилиндр и применяется в технологических процессах, где уровень давления доходит до 700 атмосфер. При этом цилиндр содержит такие же диафрагмы и ротор, как и оборудование, корпус которого имеет горизонтальный разъем.

  • Установки, оснащенные редуктором – данное оборудование, как правило, оснащено несколькими валами и редуктором, обеспечивающим передачу движения с мотора на вал. Применяются подобные компрессоры при необходимости получения давления с показателем ниже среднего.

Действие центробежных компрессоров

Устройство и принцип работы центробежных компрессоров основаны на динамическом сжатии газообразной среды. Основным элементом данного оборудования является ротор, оснащенный валом с рабочими колесами, расположение которых симметрично. В процессе работы оборудования, на частицы газа действует сила инерции, которая возникает благодаря наличию вращательного движения, совершаемого лопатками колеса. При этом происходит перемещение газа от центра компрессора к краю рабочего колеса и в результате газ сжимается и приобретает скорость. Далее скорость газа снижается и последующее сжатие происходит в круговом диффузоре – кинетическая энергия переходит в потенциальную. На следующем этапе газ поступает в обратный направляющий канал и переходит в следующую ступень установки.

Важным отличием центробежных установок от оборудования другого типа является отсутствие контакта между маслом и газом. В случае с агрегатами данного типа требования к смазке рабочих элементов оборудования значительно ниже, нежели в установках объемного действия. При этом смазка полностью защищает от ржавчины элементы оборудования, а масло, имеющее слабое окисление, смазывает зубчатые колеса, уплотнения и подшипники максимально эффективно.

Так, работа компрессора центробежного имеет достаточно простой принцип действия и основывается на вращательном движении лопастей рабочего колеса, который является одним из главных рабочих элементов установок центробежной группы. При этом, данному оборудованию характерно быстрое повышение уровня давления и достижение его максимальной величины за короткий период работы агрегата.

Одна из главных особенностей установок данного типа заключается в зависимости потребляемой оборудованием мощности, давления сжимаемого газа и его коэффициента полезного действия от уровня производительности компрессора. Характер и степень данной зависимости указывается в рабочих характеристиках установок, при этом индивидуально для каждой модели оборудования.

Конструкция, а также принцип работы центробежных компрессоров являются достаточно простыми в сравнении с установками других типов. Данная особенность позволяет получить сразу несколько преимуществ – возможность длительного срока использования оборудования при его интенсивной эксплуатации и высоком уровне эффективности работы. При этом, данное оборудование на протяжении всего периода использования требует минимального технического обслуживания, а в случае необходимости, легко поддается ремонту при поломках различных типов.

Два основных принципа сжатия: объемное и динамическое

Share via
Share via

Прежде чем вы узнаете о различных компрессорах и методах сжатия, сначала нам следует познакомить вас с двумя основными принципами сжатия газа. После этого мы сравним их и рассмотрим различные компрессоры в этих категориях.

Каковы два основных принципа сжатия?

Существует два общих принципа сжатия воздуха (или газа): сжатие возвратно-поступательным движением и динамическое сжатие. К первому типу относятся, например, возвратно-поступательные (поршневые) компрессоры, орбитальные (спиральные) компрессоры и различные типы ротационных компрессоров (винтовые, зубчатые, лопастные). При сжатии возвратно-поступательным движением воздух всасывается в одну или несколько камер сжатия, которые затем изолируются от входа. Постепенно объем каждой камеры уменьшается, и воздух внутри сжимается. Когда давление достигает расчетного коэффициента сжатия, открывается порт или клапан, и воздух выгружается в выпускную систему под действием постоянного уменьшения объема камеры сжатия. При динамическом сжатии воздух вращается лопастями быстро вращающегося рабочего колеса компрессора и разгоняется до высокой скорости. Затем газ выпускается через диффузор, где кинетическая энергия преобразуется в статическое давление. К основным компрессорам с динамическим сжатием относятся турбокомпрессоры с осевой или радиальной схемой потока.

Что такое компрессоры с возвратно-поступательным движением?

Велосипедный насос демонстрирует простейшую форму сжатия с возвратно-поступательным движением, когда воздух втягивается в цилиндр и сжимается движущимся поршнем. Поршневой компрессор характеризуется тем же принципом работы и использует поршень, движение которого вперед и назад осуществляется с помощью шатуна и вращающегося коленчатого вала. Если для сжатия используется только одна сторона поршня, такой компрессор называется компрессором одностороннего действия. Если используются верхняя и нижняя стороны поршня, компрессор осуществляет двойное действие.

Коэффициент давления представляет собой соотношение между абсолютными давлениями на входе и выходе. Соответственно, машина, которая всасывает воздух при атмосферном давлении (1 бар (а) и сжимает его до 7 бар избыточного давления, работает при коэффициенте давления (7 + 1)/1 = 8).

Схема компрессора для компрессоров с возвратно-поступательным движением

На двух графиках ниже показано (соответственно) соотношение давления и объема для теоретического компрессора и более реалистичная схема для поршневого компрессора. Рабочий объем — это объем цилиндра, в котором перемещается поршень на этапе всасывания. Объем камеры сжатия — это объем, расположенный под впускным и выпускным клапанами и над поршнем, который должен оставаться в верхней точке поворота поршня по механическим причинам.

Читать еще:  Устройство и принцип действия центробежного насоса

Разница между рабочим объемом и объемом всасывания обусловлена расширением воздуха, оставшегося в объеме камеры сжатия перед началом всасывания. Разница между теоретической диаграммой p/V и фактической диаграммой обусловлена практической конструкцией компрессора, например, поршневого. Клапаны никогда не являются полностью герметичными, и между поршневой юбкой и стенкой цилиндра всегда присутствует утечка определенной степени. Кроме того, клапаны не могут полностью открываться и закрываться без минимальной задержки, что приводит к перепаду давления, когда газ протекает по каналам. Из-за такой конструкции газ нагревается при входе в цилиндр.

Работа компрессора с изометрическим сжатием:

Работа компрессора с изоэнтропическим сжатием:

Эти соотношения показывают, что для изоэнтропического сжатия требуется больше работы, чем для изотермического сжатия.

Что такое динамические компрессоры?

В динамическом компрессоре повышение давления происходит во время протекания потока газа. Протекающий газ разгоняется до высокой скорости с помощью вращающихся лопастей на рабочем колесе. Затем скорость газа преобразуется в статическое давление, когда газ вынужден замедляться при расширении в диффузоре. В зависимости от основного направления, используемого потоком газа, эти компрессоры называются радиальными или осевыми. По сравнению с компрессорами объемного типа динамические компрессоры имеют характеристику, при которой небольшое изменение рабочего давления приводит к значительному изменению скорости потока.

Скорость каждого рабочего колеса имеет верхний и нижний предел расхода. Верхний предел означает, что скорость потока газа достигает скорости звука. Нижний предел означает, что противодавление становится больше, чем давление компрессора, что говорит о возникновении обратного потока внутри компрессора. Это, в свою очередь, приводит к пульсации, шуму и опасности механического повреждения.

Сжатие в несколько ступеней

Теоретически, воздух или газ могут быть сжаты изоэнтропически (при постоянной энтропии) или изотермически (при постоянной температуре). Любой процесс может быть частью теоретически обратимого цикла. Если бы сжатый газ можно было использовать сразу после сжатия при его конечной температуре, процесс изоэнтропического сжатия имел бы определенные преимущества. В действительности воздух или газ редко используются непосредственно после сжатия и перед применением их обычно охлаждают до температуры окружающей среды. Следовательно, предпочтительным является процесс изотермического сжатия, поскольку он требует меньшего количества работы. Обычный практический подход к выполнению процесса изотермического сжатия включает охлаждение газа во время сжатия. При эффективном рабочем давлении 7 бар изоэнтропическое сжатие теоретически требует энергии на 37% больше, чем изотермическое сжатие.

Практический метод снижения нагрева газа состоит в том, чтобы разделить сжатие на несколько ступеней. Газ охлаждают после каждой ступени перед сжатием до конечного давления. Это также увеличивает энергоэффективность, причем наилучший результат достигается, когда каждая ступень сжатия имеет одинаковый коэффициент давления. При увеличении количества ступеней сжатия весь процесс приближается к изотермическому сжатию. Тем не менее, существует экономический предел для количества ступеней, которые может использовать конструкция реальной установки.

В чем разница между турбокомпрессором и компрессором с возвратно-поступательным движением?

При постоянной скорости вращения кривая давления/расхода для турбокомпрессоров существенно отличается от эквивалентной кривой для компрессора с возвратно-поступательным движением. Турбокомпрессоры — это машины с переменным расходом и переменной характеристикой давления. С другой стороны, компрессор объемного типа представляет собой машину с постоянным расходом и переменным давлением. Компрессор обеспечивает более высокое отношение давления даже на низкой скорости. Турбокомпрессоры рассчитаны на большой расход воздуха.

Рубрикатор

Динамические компрессоры. Принцип действия и классификация

Динамические компрессоры можно разделить на две группы: центробежные и осевые.

У центробежных компрессоров при вращении рабочего колеса газ под действием центробежной силы отбрасывается от центра к внешней окружности колеса, а на стороне всасывания образуется разрежение, и газ непрерывно поступает из всасывающего трубопровода в каналы между лопатками рабочего колеса. На выходе из колеса газ попадает в диффузор, где скорость его снижается, а давление возрастает.

У осевых компрессоров движение газа совершается вдоль оси ротора, сжатие газа происходит в результате изменения скорости движения газа между лопатками ротора и направляющего аппарата.

Динамические компрессоры классифицируются по следующим признакам:

по конечному давлению — вентиляторы, создающие поток газа или воздуха с давлением 0,001—0,015 МПа, воздухо- и газо-дувки, нагнетающие газ или воздух без охлаждения под давлением 0,015—0,25 МПа, компрессоры, создающие давление от 0,25 до 35 МПа, вакуум-насосы для отсасывания газов из аппаратов, находящихся под вакуумом, и сжатия их до атмосферного давления, эксгаустеры — вакуумные компрессоры большой производительности, нагнетатели — одноколесные компрессоры, создающие давление до 5,6 МПа и производительностью до 34*106м3/сут;

по числу ступеней сжатия — одноступенчатые и многоступенчатые;

по направлению движения газа относительно оси вращения ротора — центробежные с радиальным движением газа, осевые с осевым движением газа, диагональные с комбинированным направлением движения газа;

по виду привода — от электродвигателя, от паровых или газовых турбин (турбокомпрессорные агрегаты).

Динамические компрессоры имеют ряд преимуществ по сравнению с поршневыми: простота конструкции, надежность в работе, удобство в эксплуатации, небольшие габаритные размеры и масса, уравновешенность, а значит, легкий фундамент, непрерывная и плавная подача газа, отсутствие загрязнения газа смазкой. Но у динамических компрессоров ниже КПД, чем у поршневых компрессоров, что особенно сказывается при малой производительности и высоких давлениях нагнетания.

Динамические компрессоры широко применяют во многих отраслях народного хозяйства, в производствах химической, нефтехимической и нефтеперерабатывающей промышленности, в металлургической, горной и металлообрабатывающей промышленности. Большие турбокомпрессорные установки работают на перекачке газа по магистральным газопроводам.

До недавнего времени область применения центробежных компрессоров ограничивалась конечным давлением газа. Компрессоры применялись главным образом для средних давлений 0,8—1,0 МПа, максимум до 3,0 МПа при большой производительности. В связи с созданием компрессоров высокого давления центробежные компрессоры постепенно заменяют поршневые во многих производствах химической и нефтехимической промышленности.

За последние годы создано много новых машин различного назначения. Окружная скорость на ободе колеса современных центробежных компрессоров находится в пределах 300—350 м/с, а частота вращения составляет 250 с-1 и выше. При указанных скоростях обеспечивается высокая производительность центробежных компрессоров, достигающая 200 м3/с при относительно небольшой массе и габаритных размерах.

Широко распространены центробежные компрессоры для сжатия воздуха до давлений 0,7—1,4 МПа. К этим компрессорам относят шесть типов машин номинальной производительностью от 6 до 50 м3/с.

Разработаны и выпускают компрессоры для технологических установок по производству этилена и пропилена, которые пред-

назначены для сжатия взрывоопасных газов до давлений 1,7— 4,2 МПа. Компрессоры специального назначения применяют, например, для отсасывания азота из химической аппаратуры, сжатия газов пиролиза метана в производстве ацетилена из природного газа, сжатия и подачи нитрозного газа в технологическую Ш схему производства азотной кислоты и др. f

Для высоких степеней сжатия при большой производительности используют одновременно центробежные и поршневые компрессоры. Наддувные компрессоры давлением до 3 МПа и производительностью 40 000 м3/ч подают сжатый газ или воздух непосредственно в третью ступень поршневого компрессора высокого давления. Сейчас созданы циркуляционные компрессоры (ЦКМ) и | турбокомпрессоры высокого давления, заменяющие поршневые циркуляционные компрессоры в системах синтеза. Использование их упрощает технологическую схему синтеза аммиака, спиртов и повышает надежность работы агрегата.

В ближайшие годы получат более широкое применение для технологических целей осевые компрессоры, которые обеспечивают большую производительность при сравнительно невысоких степенях сжатия.

Читать еще:  Как пользоваться газовой горелкой с баллончиком видео

Увеличение мощности технологических установок, рост потребления газов, сжатых до 15 и 35 МПа, предопределили значительные сдвиги в направлении создания ЦКМ высокого давления.

В результате больших теоретических и экспериментальных исследований создан довольно значительный типоразмерный ряд центробежных компрессоров, обеспечивающих давление нагнетания до 27—35 МПа.

Вопрос № 3. Объемные компрессоры. Принцип действия

Объемные компрессоры. Принцип действия. Классификация. Основные параметры.

КЛАССИФИКАЦИЯ КОМПРЕССОРОВ*

Разнообразие технологических целей, рабочих условий, принципов действия и конструкций компрессоров затрудняет создание единой и достаточно строгой их классификации. Представленные ниже градации — условны, они не имеют строгого научного обоснования, скорее носят традиционный характер.

Приведем принятую в настоящее время классификацию компрессоров по некоторым срезам.

По характеру изменения давления в технологических аппаратах выделяют собственно компрессоры(создание повышенного давления в аппарате) и вакуум-насосы(создание разрежения в нем). Заметим: термин «вакуум-насос» сохранился чисто исторически, речь идет не о насосах (так в науке ПАХТ именуют уст­ройства для перемещения жидкостей), а о компрессорах опре­деленного назначения.

По величине развиваемого напора (давления) различают венти­ляторы,создающие избыточное давление до 0,015 МПа, газодув-ки — до0,2 МПа и компрессоры— свыше 0,2 МПа. Внутри пе­речисленных типов компрессоров нередко проводят более дроб­ную классификацию.

По производительности различают малыекомпрессоры — объемной производительностью до 0,015 м 3 /с, средние— от 0,015 до 1,5 м 3 /с и крупные— более 1,5 м 3 /с (практически — до десятков кубометров в секунду).

В плане изучения и описания сжатия газов в компрессорах наиболее важна классификация по принципу действия. Здесь существуют различные подходы. Согласно наиболее простому из них (и, вероятно, весьма удобному в плане рассмотрения в курсе ПАХТ), все компрессоры подразделяют на три группы: поршневые, центробежныеи остальные (обычно их именуют специальными).

Более обоснованной в рассматриваемом аспекте представ­ляется следующая классификация:

— компрессоры объемного действия, принцип работы кото­рых основан на сжатии газов в результате уменьшения объема замкнутого рабочего пространства с постоянной массой газа в нем. К таким компрессорам относятся поршневые— с возврат­но-поступательным движением поршня, ротационные(в том числе водокольцевые) — с вращательным перемещением изме­няющегося рабочего объема (см. ниже) и целый ряд иных раз­новидностей;

динамические компрессоры, для которых характерно по­вышение кинетической энергии газового потока и преобразова­ние затем значительной ее доли в потенциальную (энергию дав­ления). К числу таких компрессоров относятся центробежные,или турбокомпрессоры,в которых давление создается под дей­ствием центробежных сил на газовый поток; осевыекомпресси­онные машины, основанные на сообщении газовому потоку кинетической энергии (в осевом направлении); струйные(инжекторы), базирующиеся на обмене количеством движения между газовыми потоками, и некоторые другие.

Кроме того, существует ряд компримирующих устройств, ис­пользующих иные физические явления.

Конструкции и принцип работы некоторых компрессоров описаны в последующих разделах — по ходу изучения отдель­ных типов компрессионных машин.

Ниже наиболее детально рассмотрены особенности и техно­логический расчет поршневых компрессоров, отчасти — турбо­компрессоров. Для некоторых других устройств показаны прин­ципы и условия их работы, отмечены особенности; в отдельных случаях продемонстрированы пути расчета основных (прежде всего — энергетических) характеристик. Более подробные све­дения об устройстве, работе и расчете различных типов компрессоров можно найти в специальной литературе* .

188.64.169.166 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Устройство центробежных компрессоров

Центробежные компрессоры представляют собой оборудование, входящее в группу компрессоров динамического типа с радиальной конструкцией. Главным преимуществом установок данного типа является их высокая производительность, которая в разы превышает показатели компрессоров других видов. Благодаря этому, центробежные воздушные компрессоры, устройство которых позволяет использовать их при интенсивной эксплуатации, широко используются в промышленных масштабах – в нефтеперерабатывающей отрасли, металлообработке и других сферах деятельности.

Центробежные компрессоры – устройство и основные элементы

Компрессорные установки, состоящие в группе оборудования центробежного типа, представляют собой широкое разнообразие агрегатов, различных по своим характеристикам и техническому оснащению. Но при этом, центробежным компрессорам характерно общее стандартное оснащение. Так, оборудование данного типа включает в себя такие основные элементы, как:

  • корпус оборудования;
  • патрубки – входное и выходное устройства;
  • рабочие колеса;
  • диффузор;
  • привод – может быть различных типов (дизельный, электрический и другие).

Здесь Вы можете ознакомиться с каталогом компрессоров, реализуемых ООО ГК «ТехМаш».

Конструкция центробежных установок может быть различной в зависимости от количества в оборудовании следующих элементов:

  • ступеней – одно- и многоступенчатые;
  • роторов – однороторные и многороторные.

Кроме того, устройство центробежных компрессоров также имеет классификацию и по типу корпуса:

  • Установки с разъемом корпуса горизонтального типа – в данном случае корпус имеет горизонтальное разделение на две части. Подобные особенности конструкции установки обеспечивают легкий доступ к ротору оборудования в случае необходимости. Используются агрегаты данного типа при необходимости получения давления с показателем ниже 60 атмосфер.

  • Оборудование с разъемом корпуса вертикального типа – данное оборудование устанавливается в специальный цилиндр и применяется в технологических процессах, где уровень давления доходит до 700 атмосфер. При этом цилиндр содержит такие же диафрагмы и ротор, как и оборудование, корпус которого имеет горизонтальный разъем.

  • Установки, оснащенные редуктором – данное оборудование, как правило, оснащено несколькими валами и редуктором, обеспечивающим передачу движения с мотора на вал. Применяются подобные компрессоры при необходимости получения давления с показателем ниже среднего.

Действие центробежных компрессоров

Устройство и принцип работы центробежных компрессоров основаны на динамическом сжатии газообразной среды. Основным элементом данного оборудования является ротор, оснащенный валом с рабочими колесами, расположение которых симметрично. В процессе работы оборудования, на частицы газа действует сила инерции, которая возникает благодаря наличию вращательного движения, совершаемого лопатками колеса. При этом происходит перемещение газа от центра компрессора к краю рабочего колеса и в результате газ сжимается и приобретает скорость. Далее скорость газа снижается и последующее сжатие происходит в круговом диффузоре – кинетическая энергия переходит в потенциальную. На следующем этапе газ поступает в обратный направляющий канал и переходит в следующую ступень установки.

Важным отличием центробежных установок от оборудования другого типа является отсутствие контакта между маслом и газом. В случае с агрегатами данного типа требования к смазке рабочих элементов оборудования значительно ниже, нежели в установках объемного действия. При этом смазка полностью защищает от ржавчины элементы оборудования, а масло, имеющее слабое окисление, смазывает зубчатые колеса, уплотнения и подшипники максимально эффективно.

Так, работа компрессора центробежного имеет достаточно простой принцип действия и основывается на вращательном движении лопастей рабочего колеса, который является одним из главных рабочих элементов установок центробежной группы. При этом, данному оборудованию характерно быстрое повышение уровня давления и достижение его максимальной величины за короткий период работы агрегата.

Одна из главных особенностей установок данного типа заключается в зависимости потребляемой оборудованием мощности, давления сжимаемого газа и его коэффициента полезного действия от уровня производительности компрессора. Характер и степень данной зависимости указывается в рабочих характеристиках установок, при этом индивидуально для каждой модели оборудования.

Конструкция, а также принцип работы центробежных компрессоров являются достаточно простыми в сравнении с установками других типов. Данная особенность позволяет получить сразу несколько преимуществ – возможность длительного срока использования оборудования при его интенсивной эксплуатации и высоком уровне эффективности работы. При этом, данное оборудование на протяжении всего периода использования требует минимального технического обслуживания, а в случае необходимости, легко поддается ремонту при поломках различных типов.

Ссылка на основную публикацию
Adblock
detector