Сварка нержавеющих труб гост
Варианты сварки нержавеющей стали, госты, методы
Типы сварки нержавейки
ГОСТ 14771-76 Дуговая сварка в защитном газе.
Настоящий стандарт устанавливает основные типы, конструктивные элементы и размеры сварных соединений из сталей, а также сплавов на железоникелевой и никелевой основах, выполняемых дуговой сваркой в защитном газе.
Так же следует отметить такие методы сварки как: точечная, роликовая, лазерная, высокочастотная, сварка сопротивления и другие.
Итак, следующий этап это обработка сварных швов. Поверхность сварного соединения нержавеющей стали образует пористый оксидный слой, который в своем составе содержит хром. Этот слой способствует значительному ослаблению стойкости к воздействию коррозии. Поверхность оксидного слоя возникает из стали, после чего под оксидным слоем образуется т.н. с низким содержанием хрома. Когда есть необходимость увеличить стойкость сварного соединения к коррозии, то оксидный слой и слой с низким содержанием хрома необходимо удалить. Этот процесс осуществляется с помощью термообработки, в данном случае термообработка способна выполнять растворение внутри стальной конструкции, благодаря этому процессу сглаживаются все возможные отличия присадочных материалов. Необходимо знать то, что разрешается использовать только те принадлежности, которые предназначены для обработки нержавейки, это могут быть: ленты и круги для шлифовки, щетки для обработки нержавеющего проката, дроби из нержавеющей стали.
Обработка сварных швов
Эффективным методом обработки сварных швов является травление. Если правильно выполнить метод травления, то это позволит качественно устранить оксидный слой и зону с низким содержанием хрома. Обработка по этому методу выполнения путем покрытия, погружения или наружного нанесения пасты, все зависит от условий. В основном, при травлении используют смешанные кислоты (азотная кислота/плавиковая кислота) в пропорциях 8 – 20% азотной кислоты и 0,5 – 5% плавиковой кислоты, с добавлением H2O (вода). Время травления зависит не только от концентрации кислот, но и от температуры, сорта проката и толщины окалины (кислотоупорный прокат по сравнению с нержавеющим прокатом требует продолжительной обработки). После метода травления конструкция становится стойкой к воздействию коррозии.
Мы ознакомились с основными методами сварки нержавейки и теперь можно смело поговорить о специальных требованиях по сварке при изготовлении нержавейки. При подготовке вышеперечисленных сплавов и сталей, нужно учитывать специальные требования и основные особенности:
Сварные конструкции МКК и основного металла в зоне около шва, могут подвергшейся сварке до температуры 450 – 650 градусов;
Если образуются кристаллизационные трещины, то это является следствием образования аустенитной структуры металла шва;
Охрупчивание может происходить в температурных диапазонах от 350 – 550 градусов из-за высокого содержания феррита и в диапазонах 550 – 850 градусов, при возникновении стигматизации.
Например, охрупчивание сварных швов может возникнуть в процессе штамповки горячих днищ, в случае если сварка происходит с применением присадочных материалов, которые дают чрезмерное содержание феррита. Для того чтобы избежать охрупчивания сварочных соединений в процессе обработки, следует ограничить содержание феррита в пределах 8 – 10%.
Усиленное коробление сварных конструкций, несет за собой следствие низкой теплопроводности и коэффициент термического расширения, который больше в 1,5 раз в сравнении с углекислыми сталями;
Увеличение длины прихваток и уменьшение расстояния между ними в сравнении с соединениями низколегированных сталей, сварных соединений и из-за большого коэффициента линейного расширения;
Если в структуре металла шва есть наличие феррита, то при температуре ниже 100 градусов снижается его пластичность и охрупчивание;
Чтобы увеличить стойкость сварных соединений к воздействию коррозии необходимо:
Использовать стали и присадочные материалы, содержащие минимальное количество углерода;
Добавлять в легированную сталь другие вспомогательные элементы (титан, ниобий, никель);
Применять стабилизирующий отжиг от 870 до 900 градусов, выдерживать от двух до трех часов и охлаждать на воздухе.
Уменьшить перегрев нержавеющей стали и обеспечить оптимальные механические свойства для стойкости к внешним факторам можно благодаря сварке соединений на максимально высокой скорости. Каждый последующий проход сварки нужно выполнять после охлаждения и тщательной зачистки конструкции.
Повышение коррозийной стойкости сварных соединений
Если вы будите соблюдать следующие требования, то сможете обеспечить повышение коррозийной стойкости сварных соединений:
Все внешние швы заваривают в последнюю очередь, а в случаях двусторонней сварки выполняется третий облицовочный шов, который обращен к внешней среде. Если такая возможность отсутствует, то следует принимать все необходимые меры чтобы уменьшить нагрев металла первого слоя. Чтобы не допускать нагревания металла сварку следует вести на максимально высокой скорости с применением минимальных токов. Для того чтобы устранить горячие трещины при сварке, нужно применить присадочные материалы, которые образуют сварные швы, эти швы обладают аустенитно-ферритной структурой и содержат ферритную фазу более 2%.
Если необходимо предотвратить горячие трещины в соединениях толщиной 10 мм и более, то рекомендуется сделать следующее:
Метод ручной дуговой сварки выполнять при минимальной длине дуги;
Сварку под флюсом выполнять на низкой скорости с минимальными подходами;
Тщательно выполнить шлифовку или заправить все кратеры. Запрещается выводить все кратеры на основной металл. В том случае, если произошел обрыв дуги, то необходимо убедиться в отсутствии горячей трещины, если же обнаружили трещину, то кратер необходимо удалить механическим методом;
Сварку соединений большой толщины выполнять с помощью электродов, которые обеспечивают повышенную стойкость металла к горячим трещинам (но при этом слабую стойкость к коррозии)
К сварке стабильно аустенитных сталей допускаются только те сварщики, которые уже имеют опыт и навыки по борьбе с горячими трещинами.
Что нужно знать, чтобы уменьшить сварочные деформации:
Рекомендуется производить процесс сварки на скоростных режимах, с короткой дугой и с минимальными токами;
Для ручной сварки следует разделить швы на отдельные участки и выполнять сварки в последовательности, для того чтобы обеспечить минимальное коробление;
Чтобы избежать трещин в зоне термического влияния, необходимо обвить шлак при температуре 100 -150 градусов;
Метод ручной дуговой сварки нержавеющей стали выполняют на короткой дуге без использования поперечных колебаний электрода.
Как осуществляется сварка нержавеющей стали, какие методики доступны
В нашем понимании закрепилась мысль, что сварка нержавеющей стали имеет определенные нюансы, однако этот процесс вполне выполним, даже в домашних условиях. Под нержавейкой понимают материал с антикоррозийными свойствами, которые проявляются, благодаря добавлению в состав хрома. В результате реакции хрома с кислородом образуется своеобразный оксидный барьер, защищающий сталь от окисления.
Зачастую вместе с хромом в составе нержавейки присутствуют такие элементы, как никель, молибден или титан. Эти элементы называются вспомогательными, от их наличия и количества зависят физико-химические свойства полученного сплава. Именно об этих свойствах должен знать сварщик, готовясь к проведению сварочных работ.
Сталь, традиционно именуемая нержавейкой, может иметь разные составы и, как следствие, по-разному реагировать на ведение сварки. Прежде всего, следует отметить, что материал можно разделить на несколько видов.
Аустенитная сталь характерна тем, что в своем составе имеет достаточно много хрома. В долевом соотношении его количество составляет 18%. Также в такой нержавейке содержится до 10% никеля. Примером может служить пищевая нержавейка, маркируемая по ГОСТ, как 08Х18Н10. В другой классификации она имеет название AISI 304. Применяется эта сталь, как при строительстве, так и в производстве посуды. К физическим свойствам можно отнести отсутствие магнитных свойств, пластичность, прочность и химическую стойкость.
Мартенситная нержавейка, благодаря своей специфической внутренней структуре, выделяется в особый класс. Она отличается низким содержанием углерода, который составляет всего 0,12% общего количества вещества. В составе мартенситной стали содержится 13% хрома. В отличие от предыдущего вида, данный материал прочен, но хрупок. Может использоваться в качестве сырья для производства режущих инструментов, а также крепежной фурнитуры при условии эксплуатации в неагрессивных средах. Подлежит дополнительной обработке. Так, при воздействии температуры нержавейка приобретает вязкость. Обозначается, как AISI 410 или 12х13, согласно ГОСТ.
Среднее положение по содержанию хрома занимает ферритная сталь. После ее закалки наблюдается повышенная устойчивость к внешним факторам агрессивной среды. Считается, что этот сплав наиболее трудно поддается сварке. Обозначается подобная сталь по ГОСТ 12х17 или AISI 430. Число 12 указывает на процентное содержание хрома.
Проблемы
Основная сложность сварочных работ обусловлена тем, что нержавеющая сталь считается высоколегированной. Компоненты, входящие в его состав, оказывают непосредственное влияние на результат работы. Ведущая роль здесь отводится хрому. В некоторых материалах его процентное соотношение может достигать 30. Тем не менее, от хрома невозможно «отказаться», так как именно он, наряду с никелем, титаном, молибденом и марганцем, придает металлу антикоррозийные свойства. Приходится учитывать ряд особенностей сплава.
- Нержавеющая сталь обладает высоким коэффициентом температурного расширения. Если сварка ведется без выдержки нужного зазора, особенно при значительной толщине заготовок, могут наблюдаться трещины. Они возникают в процессе остывания, когда металл начинает «стягиваться».
- Низкая теплопроводность не позволяет быстро распределяться теплу, как в случае сварки низкоуглеродистых сталей. В результате этого наблюдаются локальные зоны высокой температуры, что приводит к проплавлению заготовок насквозь, особенно если их толщина невелика. Причем снижение силы тока никак не влияет на ситуацию.
- Наблюдается такое явление, как межкристаллическая коррозия. Она вызвана появлением в структуре металла прослоек, содержащих железо и карбид хрома. Прогрессировать коррозия начинает после нагрева детали до 500°C градусов. Чтобы этого избежать, приходится с большой степенью точности настраивать параметры сварки, а сформированный шов необходимо сразу охлаждать. Самый простой способ – охлаждение в воде, однако он приемлем только для аустенитной нержавейки.
Не стоит забывать про еще один фактор, значительно усложняющий сварочный процесс. Высокое электрическое сопротивление и низкая теплопроводность материала приводит к тому, что при использовании хромоникелевых электродов наблюдается сильное нагревание последних. Выходом из данной ситуации является подбор электродов не только по диаметру, но и по длине.
Подготовительные работы
Сваривать детали из нержавеющей стали можно как обычным инвертором, так и с помощью аргонно-дугового сварочного аппарата. Какой бы способ сварки ни выбрал мастер, в любом случае необходимо провести подготовительные работы.
- Первым делом заготовки следует очистить от пыли и грязи. Посторонние частицы на поверхности металла становятся причиной некачественного и неровного шва.
- Если работа ведется с заготовками, имеющими относительно небольшую толщину (до 1,5 мм), то кромки прижимаются друг к другу вплотную. Для этого рекомендуется воспользоваться струбцинами.
- При толщине металла более 4 мм приходится разделывать кромки. Обычно их обтачивают напильником или шлифовальной машиной под углом 45° градусов. Такая своеобразная канавка позволяет добиться проваривания по всей толщине. Чем больше толщина заготовки, тем больший угол следует создать на кромках.
- Если тонкие листы нержавейки скрепляются плотно, то массивные заготовки требуют зазора между кромками. Имеющимися приспособлениями выставляется зазор в 2 мм. Он должен оставаться постоянным в течение всего процесса.
- Когда толщина металла превышает 7 мм, требуется его предварительный прогрев.
Способы
Различают несколько технологий, по которым ведется сварка нержавейки. Они зависят от имеющегося в наличии сварочного аппарата. Аргонодуговая сварка (сварка в режиме TIG) осуществляется инверторами, предназначенными для работы в среде аргона. Сварка ведется неплавящимся вольфрамовым электродом. В зону контакта электрода подается аргон через специальную горелку.
Классический режим сварки подразумевает применение плавящихся покрытых электродов. Сварочные инверторы, работающие в режиме MMA, считаются самыми доступными и недорогими. Ручная дуговая сварка применима для нержавейки только с условием использования специальных электродов.
Сварка в полуавтоматическом режиме (MIG/MAG) требует наличие проволоки из нержавеющей стали. Инверторный полуавтомат оснащен механизмом подачи проволоки, а также горелкой, через которую поступает защитный газ в зону формирования шва.
Холодная сварка принципиально отличается от представленных выше способов. Материал не нужно нагревать и плавить. Соединение деталей осуществляется под воздействием высокого давления.
Можно говорить лишь о статистике, которая показывает, что некоторые способы нашли свое применение в промышленности и в домашних условиях, а другие, наоборот, в силу технологичности не стали массовыми. Однако выбор зависит не от популярности, а от конкретных условий сварки и требований к полученному результату.
Сварка аргоном
Чтобы вести данный вид работ, необходимо иметь в наличии инвертор AC/DC TIG, предназначенный для ведения аргонодуговой сварки постоянным и переменным током. Сварка производится в ручном режиме с помощью неплавящихся вольфрамовых электродов. Так как подобные инверторы можно встретить у любого начинающего мастера, то данный вид сварки нержавейки доступен в домашних условиях. При этом результат получается достаточно качественным. Обычно к подобному способу прибегают при сваривании нержавеющих труб при монтаже магистралей для жидкостей или газов.
Можно выделить основные нюансы аргоновой сварки.
- Дугу необходимо поджигать бесконтактным способом, во избежание попадания вольфрама с электрода в зону расплавленного металла. Часто мастера зажигают дугу на стороне, а впоследствии ее постепенно перемещают в зону формирования будущего шва.
- Как было указано выше, допустима сварка постоянным и переменным током.
- В зависимости от толщины детали выбирается режим сварки. Под ним подразумеваются такие параметры, как диаметр вольфрамового электрода, присадка, показатели сварного тока, скорость подачи аргона и скорость формирования шва.
- В качестве присадки используется проволока из легированной стали. Степень ее легирования должна быть выше, нежели у самого материала.
- Не допускается ведение колебательных движений электродом, это может привести к нарушению зоны сварки и окислению металла.
Важным моментом является окончание сварки, так как на данном этапе можно существенно сэкономить вольфрамовый электрод. После наложения шва необходимо в течение некоторого времени продолжить подачу аргона. В результате того, что раскаленный электрод защищен газом, он не окисляется. Если обеспечить подачу присадки, то скорость сварки существенно увеличится, к тому же автоматизация повышает точность и эстетичность шва.
Ручная дуговая
В силу распространенности инверторов MMA такой режим работы считается традиционным. Если сварщик обладает достаточным опытом ведения работ покрытыми электродами, то технология сварки нержавейки ничем не будет отличаться от работ с черными металлами. Отметим, что при этом качество шва оставляет желать лучшего. При выборе электродов необходимо основываться на том, что все расходные материалы для нержавеющей стали делятся на два вида.
- Электроды с рутиловым покрытием предназначены для выполнения работ постоянным током с обратной полярностью. Имеет место разбрызгивание металлов, что является одним из недостатков сварки в режиме MMA.
- Электроды с покрытием из карбоната магния и кальция выбираются только для определенных сплавов.
Более подробное описание по подбору расходных материалов для каждого типа нержавейки прописаны в ГОСТ 10052-75.
Полуавтоматическая
Если использовать полуавтомат, работающий в режиме MIG/MAG, то в этом случае также можно сваривать нержавейку. По качеству и эстетике результата данный режим считается приоритетным, независимо от толщины заготовок. Источником тока служит инверторный полуавтомат, но подойдет и любой альтернативный выпрямитель тока.
Масса подается на одну из привариваемых деталей, а плюсовым электродом служит специальная горелка. Эта горелка выполняет одновременно две функции: обеспечивает подачу защитного газа и представляет собой электрод. Присадочная проволока подается встроенным устройством. Современные инверторные полуавтоматы снабжены удобным механизмом, позволяющим загружать проволоку в готовых бобинах.
Проволока для полуавтоматической сварки нержавейки также состоит из нержавеющей стали. Ее диаметр, как и прочие параметры, определяются толщиной заготовок.
Например, при толщине листа металла в 1,5 мм рекомендуется использовать проволоку диаметром 1 мм при силе тока в 80 – 100 А. Скорость подачи проволоки составляет 160 м/час. Если же толщина металла достигает 5 мм, то диаметра проволоки увеличивается до 1,6 мм, а сила тока – до 300 А.
В промышленности зачастую требования к сварному шву повышены, так как он должен противостоять агрессивному воздействию среды, поэтому применяют порошковую проволоку. Она представляет собой трубку, внутри которой размещен флюс. Это дает дополнительную защиту в зоне сварки. По себестоимости работы с полуавтоматической сваркой несколько выше, чем работы в режиме ММА, причем описанный метод требует от сварщика определенного навыка.
Холодная
Данный метод характерен тем, что не требует нагрева деталей и применения специального оборудования. В качестве скрепляющего материала используется двухкомпонентный клей. Состав сохраняет прочность и целостность после застывания. Место сварки не боится влаги, поэтому технология применяется при заделывании течи в емкостях.
Алгоритм работ достаточно прост. Необходимо зачистить и обезжирить поверхности, а затем нанести царапины. Клей отрезается в необходимом количестве. Состав следует размять в руке, слегка разогрев его и перемешав компоненты. После застывания шов можно обрабатывать.
Важная особенность такого способа заключается в том, что клеем можно заделывать отверстия, однако шов не способен выдерживать сильные нагрузки. Не рекомендуется использовать холодную сварку, как способ соединения деталей. Популярность таких работ обусловлена малыми затратами и относительной простотой их проведения.
Сварка нержавейки
Процесс сваривания нержавеющей стали достаточно кропотливый и трудоемкий. Прежде всего процесс сварки затруднен образованием тугоплавких карбидов, охрупчиванию при температурах нагрева выше 350 °С в следствии сигматизации (избыточный феррит), а так же МКК (межкристаллитная коррозия).
На практике сварку нержавеющей стали можно выполнять с помощью любых методов сварки:
Ручная дуговая сварка обычно при толщине материала более 1,5 мм.
Дуговая сварка вольфрамовым электродом в инертном газе (TIG) для сварки тонких листов и труб.
Дуговая сварка плавящимся электродом в инертном газе (сварка в среде активных газов (MIG/MAG) отличается высокой производительностью).
Импульсная дуговая сварка плавящимся электродом в инертном газе (для листов толщиной 0,8 мм сварка короткой дугой плавящимся электродом в инертном газе, для листов толщиной менее 0,8-3,0 мм сварка дугой со струйным переносом металла, плавящимся электродом в инертном газе, для листов толщиной более 3,0 мм
Плазменная сварка нержавейки может применяться для широкого диапазона толщины и в наше время применяется все более широко.
Дуговая сварка под флюсом для материалов толщиной более 10 мм.
Сварка сопротивления точечная и роликовая сварка тонких листов.
Лазерная сварка, высокочастотная сварка и т.д.
Материалы применяемые при различных видах сварки и наплавки в том числе и нержавейки приведены в разделе — Выбор сварочных материалов для сварки и наплавки
Последующая обработка сварных швов. На поверхности сварного соединения из нержавейки образуется пористый оксидный слой, содержащий в основном хром. Этот слой в значительной степени ослабляет стойкость соединения к коррозии. Хром оксидного слоя в основном материале возникает из стали, вследствие чего под оксидным слоем образуется т.н. со сниженным содержанием хрома. Если существует необходимость, чтобы стойкость сварного соединения к коррозии была столь же высокой, как и у основного материала из нержавейки, оксидный слой и зону со сниженным содержанием хрома следует удалить, т.е. сварное соединение должно пройти последующую обработку. Термообработка в данном случае под термообработкой понимается растворение внутри стальной конструкции (более 1000 С), с помощью которого сглаживаются возникшие различия присадочных материалов. Механические методы последующей обработки. Следует всегда помнить, что разрешается использовать только те рабочие принадлежности, которые предназначены для обработки нержавеющего проката: шлифовальные ленты и круги, предназначенные для обработки нержавеющего проката щетки из нержавеющей стали дроби из нержавеющей стали при дробеструйной обработке.
Травление является наиболее эффективным методом последующей обработки сварных швов. При правильном выполнении травление позволяет устранить и вредный оксидный слой, и зону со сниженным содержанием хрома. Травление выполняется путем погружения, поверхностного нанесения или покрытия пастой в зависимости от условий.
Чаще при травлении используется смешанная кислота: азотная кислота/фтористоводородная кислота (плавиковая кислота) в следующих пропорциях: 8 – 20 % HNO3 (азотная кислота) 0,5 – 5 % HF (фтористоводородная кислота) остальные компоненты Н2О (вода) Время травления аустенитного нержавеющего проката зависит от концентрации кислот, температуры, толщины окалины и сорта проката (т.н. кислотоупорный прокат требует более продолжительного времени обработки по сравнению с нержавеющим прокатом). Доведение степени шероховатости сварного шва до соответствующего показателя основного листа путем шлифования или полирования после травления еще более увеличивает стойкость конструкции к коррозии.
Специальные требования по сварке нержавейки
При подготовке к сварке высоколегированных сталей и сплавов аустенитного и аустенитно-ферритного классов, кроме общих положений, должны быть учтены специальные требования, изложенные ниже.
Основные особенности сварки высоколегированных коррозионностойких сталей:
— возможность появления при эксплуатации сварных конструкций МКК металла шва или основного металла в околошовной зоне, подвергшейся в процессе сварки нагреву до температуры 450-650°С, а также «ножевой» коррозии у линии сплавления;
— образование горячих (кристаллизационных) трещин, являющихся в основном следствием образования чисто аустенитной структуры металла шва;
— снижение в значительной мере пластических свойств сварных швов конструкций, длительно работающих при температуре свыше 350° С. Охрупчивание может наблюдаться в диапазоне температур 350-550°С из-за повышенного содержания феррита, в диапазоне 550-850°С — вследствие сигматизации. Охрупчивание сварных швов может произойти в процессе изготовления конструкции. Например, на операциях горячей штамповки днищ в случае сварки с применением присадочных материалов, обеспечивающих чрезмерно большое содержание феррита.
Чтобы избежать охрупчивания сварных соединений, длительно работающих при температурах свыше 350°С, необходимо ограничивать содержание ферритной составляющей в пределах 8-10%.
— возможность усиленного коробления сварных конструкций, что является следствием более низкой теплопроводности и большим, в среднем в 1,5 раза, коэффициентом термического расширения (в диапазоне температур от 0 до 850°С) по сравнению с углеродистыми сталями;
— необходимость увеличения длины прихваток и уменьшение расстояния между ними в 1,5-2,0 раза по сравнению с теми же параметрами постановки прихваток в соединениях углеродистых и низколегированных сталей вследствие значительных деформаций сварных соединений из-за большего коэффициента линейного расширения;
— предпочтительность применения сталей и сварных швов с аустенитной структурой для работы конструкции при температурах ниже минус 100°С, так как наличие феррита в структуре металла шва в условиях нагружения при низкой температуре ведет к снижению пластичности и охрупчиванию металла.
Мерами повышения стойкости сварных соединений против межкристаллитной коррозии нержавейки являются:
-применение сталей и присадочных материалов, содержащих минимально возможное количество углерода;
— легирование стали титаном, ниобием или другими сильными карбидообразующими элементами;
— закалка 1050-1100°С или стабилизирующий отжиг от 870 до 900°С, выдержка от 2 до 3 ч, охлаждение на воздухе.
Для уменьшения перегрева нержавейки и обеспечения оптимальных механических свойств и коррозионной стойкости сварку соединений небольшой толщины ( менее 8-10 мм) необходимо вести при максимально возможной скорости.
При многопроходной сварке каждый проход выполнять после охлаждения предыдущего до температуры ниже 100°С и тщательной его зачистки.
Для повышения коррозионной стойкости сварных соединений необходимо соблюдать следующие требования:
— швы, обращенные к коррозионной среде, заваривать в последнюю очередь; — для случаев двусторонней сварки — выполнять третий облицовочный шов, обращенный к среде. При отсутствии такой возможности (в случае односторонней сварки сосудов малого диаметра и др.) следует принимать все меры для уменьшения нагрева металла первого слоя шва последующими: охлаждение или наполнение сосуда водой, применение медных массивных подкладок, обдув воздухом, повышение скорости Сварки, снижение силы тока, уменьшение диаметра электрода, сварка без поперечных колебаний;
не допускать перегрева металла, для чего сварку вести на максимально возможных скоростях и минимальных токах, ограничивать возможность более чем двукратных ремонтных подварок;
а отдельных случаях необходимо полировать всю рабочую поверхность сварных соединений.
Одним из методов борьбы с горячими трещинами при сварке является применение присадочных материалов, позволяющих получить сварные швы, обладающие аустенитно-ферритной структурой с содержанием ферритной фазы более 2 %.
Для предотвращения горячих трещин, особенно в соединениях толщиной 10 мм и белее, стабильно аустенитных сталей и сплавов рекомендуется:
ручную дуговую сварку выполнять при минимальной длине дуги, без поперечных колебаний усиленными валиками;
автоматическую сварку под флюсом производить на пониженных скоростях с минимальным числом проходов;
кратеры швов тщательно заплавлять до получения выпуклого мениска или вышлифовать, выводить кратеры на основной металл запрещается;
в случае вынужденного обрыва дуги до ее повторного возбуждения обязательно убедиться в отсутствии горячей кратерной трещины, при наличии трещины кратер удалить механическим способом;
при проектировании сварных конструкций из стабильноаустенитных сталей во всех возможных случаях заменять угловые и тавровые соединения стыковыми;
применять комбинированный способ сварки соединений большой толщины, при котором внутренние и внешние не соприкасающиеся с агрессивной средой слои шва выполняются электродами, обеспечивающими меньшую коррозионную стойкость, но повышенную стойкость металла шва против горячих трещин ( в том числе и за счет наличия ферритной фазы); при этом толщина слоя, обра¬щенного к коррозионной среде, равноценного по коррозионной стоикости основному металлу, должна быть не менее 3 мм.
Сварщики, допускаемые к сварке стабильноаустенитных сталей, должны иметь навыки по борьбе с горячими трещинами.
Для уменьшения сварочных деформаций рекомендуется:
— производить сварку на режимах, которые характеризуются большими скоростями сварки, короткой дугой и минимально возможными токами;
— при ручной сварке корня шва, швы разбивать на участки и сваривать их в последовательности, чтобы коробление было минимальным.
Во избежание образования трещин в сталях марок 08Х17Т и 15Х25Т сварку, гибку, правку и все операции, связанные с приложением ударных нагрузок’, следует выполнять с подогревом до 15С -250°С.
Чтобы не допустить растрескивания в зоне термического влияния, шлак обивают при температуре 100 -150°С.
Температура подогрева (охлаждения) сварных конструкций контролируется приварными термопарами ( термощуцами), тэрмо-карандашамм и термокрасками. Замеры температуры производятся в пределах зоны равномерна го нагрева на расстоянии не менее 100 мм от свариваемых кромок.
Ручную дуговую сварку нержавейки выполняют на короткой дуге без поперечных колебаний электрода.
Полуавтоматическую сварку нержавейки рекомендуется выпонять на синергетических установках, позволяющим настройку специальных режимов сварки (перенос металла, импульс, скорость сварки и др.), так же желательно применение порошковых проволок вместо сплошных.
Технология и режимы сварки нержавейки в среде аргона
Сварка нержавейки аргоном – востребованная технология, которая позволяет получить соединение данного сплава наивысшего качества, по сравнению с прочими методами работы.
Трудности
Легирующие добавки, которые входят в состав нержавейки, повышают ее качественные характеристики, придавая коррозионностойкие свойства, однако негативно влияют на сварочный процесс.
По сравнению с прочими сортами стали, теплопроводность нержавейки ниже в 2 раза. Это значит, при температурном воздействии на поверхность тепло будет концентрироваться в точке контакта, а не равномерно распределяться по плоскости, отводя излишки энергии. По этой причине у начинающих сварщиков не получается качественно проварить сплав без перегревов и прожогов. Технические пособия рекомендуют устанавливать меньшие амперные характеристики сварочного оборудования при сваривании данного сплава.
Важным фактором, который необходимо учитывать на стадии планирования, является высокий показатель линейного расширения. Избыточное температурное воздействие легко деформирует околошовную зону, поэтому необходимо оставлять зазор, достаточный для предотвращения образования трещин.
Высокое электрическое сопротивление также негативно влияет на качество сварки. Расходные материалы очень быстро нагреваются. Через некоторое время они начинают плавиться не сварочной ванне, а на конце дуги.
Существуют и температурные ограничения сварочного процесса. При температуре 500 Сº в межкристаллическом пространстве начинают образовываться соединения, ухудшающие качество шва – карбид хрома и железа. Для предотвращения данного процесса, деталь необходимо охладить сразу же по окончании работ.
Подготовительные работы
Аргонную сварку нержавейки следует начинать с качественной подготовки поверхности. Процедура подготовки рассматриваемого сплава не отличается от прочих сортов металла и включает в себя следующие действия:
- Поверхность очищается от посторонних элементов. При этом кромки должны быть зачищены до металлического блеска. Сварка нержавеющей стали ГОСТ 14771-76 не указывает, каким именно способом будут проводиться подготовительные работы. Из этого следует, что возможно применение как ручного инструмента, так и механизированного способа.
- Следующий этап включает в себя обезжиривание поверхности любой подходящей жидкостью.
- Завершает подготовку установка зазора, компенсирующего деформационные процессы.
Следует заранее озаботиться подготовкой присадочного материала, тип которого будет соответствовать свойствам свариваемого металла. Наиболее распространенными марками сварочной проволоки являются:
Сварочная проволока для нержавейки и ее классификация.
Аргонодуговая сварка неплавящимися электродами
Технологию использования неплавящегося электрода в среде аргона используют для сварки нержавеющих труб. Отличительная особенность данного метода – качественные и аккуратные швы с привлекательным внешним видом. Аргонодуговая сварка применяется также при ответственных работах с баками и прочими сосудами, которые эксплуатируются под давлением.
Работы можно выполнять как на постоянном, так и на переменном токе прямой полярности. Источником тепла выступает горелка с вольфрамовым электродом, через которую подается защитный газ. Шов формируется за счет плавления присадочного материала, в качестве которых выступают прутки, подающиеся в зону расплава.
Сварка в режиме TIG имеет некоторые особенности:
- При попадании в зону расплава частиц вольфрама качество шва ухудшается. Для розжига дуги применяют специальную угольную пластину, после чего переносят ее на рабочую плоскость.
- По окончании работ необходимо продолжать подачу защитного газа до полного остывания электрода и горячего шва – это позволит избежать окисления рабочей зоны и электрода горелки.
С помощью полуавтомата
Начинающие мастера часто задаются вопросом: «Как сварить нержавейку полуавтоматом?» Данный метод отличается высокой производительностью, благодаря непрерывной подаче электродной проволоки. Визуальные качества шва при этом не такие привлекательные, как при аргонодуговой сварке, однако надежность соединения не уступает предыдущему методу.
Аргоновую сварку полуавтоматом относят к универсальным технологиям, поскольку она позволяет работать с заготовками различной толщины. С ее помощью можно выполнить любые работы – от сварки перил в загородном доме до соединения сложной конструкции по предоставленным чертежам.
К расходным материалам предъявляют особые требования. Обязательное условие – наличие никеля в составе проволоки. В противном случае ее считают несоответствующей действующим нормам.
Основными режимами выполнения работ являются:
- Короткой дугой. При дуговой сварке температура воздействия зависит от длины разряда. Короткое расстояние между горелкой и поверхности идеально подходит для тонкостенных изделий.
- Импульсный. В этом случае проволоку подают в зону расплава с короткими промежутками, что снижает вероятность разбрызгивания, минимизирует температурное воздействие на деталь и снижает расход проволоки.
- Струйный. Применяют для сварки деталей, толщиной от сантиметра.
Соединение тонкого материала
Сварку тонкой нержавейки аргоном следует выполнять с большой осторожностью. Опытные специалисты рекомендуют применять специальные подкладки из металла с высокой теплопроводностью. Это преследует несколько целей:
- подкладка будет выполнять функции отвода тепла, снижая риск образования карбидов;
- расплавленный металл не будет вытекать с обратной стороны шва;
- выполняется фиксация рабочей плоскости.
При соблюдении всех правил, качество соединения будет выше, по сравнению с использованием инвертора.
В некоторых случаях будет целесообразно использовать станок для точечной сварки. При этом также необходимо правильно настроить рабочие параметры: при завышенных амперных характеристиках нержавейка после контактной сварки ржавеет, за счет образования карбидов.
Трубы
Качественный сварочный аппарат для нержавейки способен соединить трубы из соответствующего сплава, которые используются в системах домашнего водоснабжения. Обладая определенными навыками, можно без проблем справиться с этой задачей своими руками.
Особенностью технологии является необходимость в защите внутренней поверхности трубы. Для этого необходимо заглушить отверстие с одной из сторон с помощью подручных материалов:
Затем в заглушку устанавливают трубку, которая будет служить проводником защитного газа. Важно, чтобы она была герметично заизолирована, во избежание утечек.
Рабочее давление газа устанавливают, в зависимости от условий выполнения работ. Требование одно – газ не должен выдавливать расплав на поверхность. В этом случае качество шва гарантировано.
Режим Pulse
Современное оборудование оснащено функцией выполнения работ в импульсном режиме. Его основное предназначение – соединение элементов различной толщины.
Как было сказано выше, данная технология помогает экономить расходный материал. Кроме того, сокращается время финишной очистки поверхности, благодаря низкому количеству брызг расплавленного металла.
Таким образом, можно сократить промежуточный этап механической шлифовки изделия, переходя к обработке кислотами и гелями, с целью удаления оксидного слоя и придания шву необходимой стойкости.
С инородным металлом
У малоопытных сварщиков часто возникают трудности, поскольку они не знают, как сваривать нержавейку с черным металлом.
Аргонодуговая сварка зарекомендовала себя лучше всего, поскольку аргон надежно защищает зону расплава от контактов с окружающей средой.
Во избежание появления горячих трещин необходимо использовать прутки на основе хрома и никеля.
Плюсы и минусы такого способа
К достоинствам использования аргона относят:
- Газ надежно защищает расплавленный металл, исключая его контакт с атмосферным воздухом, что повышает качество соединения.
- Низкая теплопроводность помогает сваривать сложные детали, не влияя на их конструкцию.
- Высокая температура сварочной дуги положительно влияет на скорость процесса.
Недостатками являются высокая стоимость сварочного оборудования, что не всегда позволяет использовать его при выполнении домашних работ. Кроме того, работа с аргоном имеет свои особенности, которые требуют специфических навыков.
Заключение
Сварка нержавейки в среде аргона – лучший способ соединений данного сплава, независимо от его габаритов. Сварку труб лучше всего выполнять в режиме TIG, хотя использование полуавтомата предоставляет исполнителю больше свободы в действиях.
ГОСТ 11068-81 Трубы нержавеющие электросварные
Корзина пуста
Корзина
ГОСТ 11068-81 регламентирует производство труб электросварных из нержавеющей стали, которые предназначены для изготовления трубопроводов и различных конструкций. В нем определен сортамент, технические требования, правила приемки, методы испытаний, маркировку и другие аспекты, которые касаются данного вида металлопроката. Если вы желаете приобрести сварные трубы, ознакомление с этим нормативным документом обязательно.
Обращаем ваше внимание на то, что на этой странице представлен переработанный текст стандарта. Оригинальный текст можно скачать по ссылке.
Сортамент
Первым и одним из важнейших разделов данного ГОСТа является сортамент выпускаемы изделий. Документ разрешает выпуск труб следующих размеров: диаметр от 8 до 102 мм, толщина стенки от 0,8 до 4 мм. Таблица ниже содержит подробный список доступных размеров.
К данной таблице есть важное примечание: трубы диаметром 17 и 19 мм, а так же трубы с толщиной стенки 2.8 и 3.2 мм не рекомендуется использовать при проектировании новых объектов. Лучше подобрать другие диаметр и толщину.
Размеры, указанные в таблице выше, не являются исчерпывающими. Трубы могут быть изготовлены также промежуточных размеров. При этом допуски должны браться для близлежащих больших размеров. Например, труба 23х2,1 в стандарте не значится, но это не значит, что ее нельзя изготавливать. Просто допуски должны быть соответствующими.
Изделия могут быть изготовлены со смещенным или односторонним допуском. При этом величина поля допуска не должна превышать суммы двусторонних отклонений.
Длина
При изготовлении, трубы могут быть нарезаны на отрезки. Ниже представлен список всех возможных длин:
- Мерная – от 5 до 9 метров;
- Мерная с остатком – в партии допускается не более 10% по массе труб немерной длины.
- Кратная мерной – до 9 метров с припуском на каждый рез по 5 мм (в случае, если в заказе не оговорен другой припуск), который входит в каждую кратную длину.;
- Кратная с остатком – не более 10% по массе труб немерной длины;
- Немерная – от 1,5 до 9 метров.
При этом, в случае если трубы изготавливаются мерной или кратной мерной длин, предельные отклонения по длине не должны быть больше +15 мм.
Предельные отклонения
На любом производстве возможны погрешности. Изготовление электросварных труб – не исключение. В процессе изгибания и сваривания стального листа возможны незапланированные отклонения размеров реальной трубы от того, что указано в документации. ГОСТ 11068-81 допускает следующие величины отклонений, которые являются допустимыми:
Как видите, сварные трубы выпускаются обычной и повышенной точности. Реальные размеры первых в меньшей степени соответствуют номинальным, чем размеры вторых. При этом, если сравнить отклонения по диаметру для сварных и холоднокатаных труб, то окажется, что требования к сварным несколько жестче.
Потребитель и изготовитель могут договориться на производство изделий размером 38×1,5 и 43×1,5 с отклонениями по диаметру +0,3 / -0,2 мм.
Что касается овальности, то здесь все также, как и в других похожих стандартах: овальность не должна приводить к тому, что размеры трубы выходят за предельные отклонения по диаметру. Разностенность не должна выводить размер за отклонения по толщине.
Полученная труба должна соответствовать требованиям по прямолинейности: отклонение не должно быть более 1,5 мм на 1 метр длины.
Отдельно хочется отметить один важный момент: указанные выше отклонения являются допустимыми и разрешенными. Если несоответствие по размерам находится в пределах указанных выше отклонений, это не является основанием для признания изделия браком. Превышение отклонений является основанием для дальнейших разбирательств. Однако при этом учтите, что возможен выпуск труб со смещенным или односторонним допуском. Внимательно изучайте документацию к заказу.
Вес электросварной трубы
У потребителя часто возникает необходимость рассчитать, сколько будет весить сварная труба определенного размера и длины. Для этих вычислений можно воспользоваться калькулятором на нашем сайте. Он рассчитывает вес метра по формуле, указанной в ГОСТе. Калькулятором очень удобно пользоваться и он дает точный результат.
Учтите, что формула для расчета веса э/с трубы полностью совпадает с формулой расчета массы бесшовной. Вот она:
Масса=3,14/1000*(Диаметр – Толщина)*Толщина*Плотность
Марки стали
В соответствии со стандартом 11068-81 электросварные трубы производят из стали марок 08Х18Н10Т, 08Х18Т1, 08X18H10, 12Х18Н10Т, 10Х17Н13М2Т, 10Х17Н13М3Т, 08Х22Н6Т, 08Х21Н6М2Т, 06ХН28МДТ, 08Х17Н13М2Т, 03Х17Н14М3, 03Х18Н10Т, при этом их химический состав должен соответствовать ГОСТ5632-72: Стали высоколегированные и сплавы коррозионно-стойкие, жаростойкие и жаропрочные. Это основной российский нормативный документ, который регламентирует химический состав нержавеющих сталей.
Также для производства используются стали 10Х18Н10Т и 04Х17Т. В этом случае их химический состав должен соответствовать тому, что указано в таблице ниже.
Изделия из сталей 08Х18Н10Т, 08Х18Т1, 10Х18Н10Т, 12Х18Н10Т, 04Х17Т производят термически обработанными. Механические свойства для них указаны в таблице ниже. В случае, если трубы произведены из сталей 08Х18Т1 или 04Х17Т и толщина стенок превышает 1,5 мм механические свойства устанавливают по согласованию изготовителя и потребителя.
Внешний вид
Стандарт устанавливает требования не только к размерам, маркам стали и другим параметрам, но и к тому, как должна выглядеть труба после всех производственных этапов. Прежде всего это касается поверхности. Она не должна содержать непроваренные места, не должна иметь трещины, поры, плены, окалины, рванины и следы перетрава. Однако, стандарт допускает наличие царапин, следов правки, рисок, следов, оставшиеся после зачистки дефектов (если они не выводят стенку трубы за отклонения по толщине), а так же цветов побежалости.
Часто нержавеющие электросварные трубы используют для изготовления лестниц и других декоративных элементов. При этом внешний вид играет очень важную роль. Именно для таких целей возможен выпуск изделий со шлифованной поверхностью. Размер абразива, который будет использован для шлифовки, оговаривается отдельно.
Изготовитель и покупатель могут договориться о поставке труб из стали 08Х18Т1 и 04Х17Т с оксидной пленкой на поверхности. Такая пленка образуется в результате обработки трубы под высокой температурой.
В тех местах, где труба соприкасалась с прокладкой, на поверхности возможны участки непротрава. Они образуются из-за особенностей технологии травления и поэтому считаются допустимыми.
Так, как труба производится с использованием сварки, образование грата неизбежно. Стандарт 11068-81 регламентирует и этот важный параметр. Высота грата с внутренней стороны не должна превышать 0,7 мм для труб общего назначения и 0,1 для изделий, предназначенных для производства трубчатых нагревательных элементов.
В случае договоренности с изготовителем, возможен выпуск труб общего назначения внутренним диаметром свыше 20 мм с высотой грата не более 0,3. Во всех без исключения случаях не должно быть резких переходов от грата к стенке.
Концы труб
Готовая труба должна иметь не только приемлемый внешний вид, но и обработанные торцы. На них не должно быть заусенцев и они должны быть обрезаны под углом 90 градусов. Так, как в процессе удаления заусенцев может образоваться фаска, это считается нормальным.
Покупатель может попросить производителя снять фаску и убрать заусенцы только с одного конца трубы. При этом зачищенные концы будут ориентированы в одну сторону.
Правила приемки партий и оценка качества
После того, как завершены все основные технологические этапы, наступает время приема. В соответствии с ГОСТ 11068-81 трубы сварные принимают партиями по 500 штук при диаметре менее 30 мм и 300 штук при диаметре свыше 30 мм. Состав партии должен быть однородным: трубы должны иметь одинаковые диаметр и толщину, быть изготовленными их одной марки стали и иметь одинаковый вид термообработки. Документ о качестве выдается на всю партию целиком.
- Так, как трубы производятся из готовой рулонной стали, химический состав принимают по документу о качестве этой стали. Если возникают разногласия, для экспертизы выбирается одна труба.
- Контролю подвергается не только химический состав, но и качество поверхности, соответствие размерам (диаметр и толщина) и прочность (проверка гидравлическим давлением или неразрушающими методами). Этим проверкам подвергается каждая труба! В случае, если прочность проверяется неразрушающими методами, потребитель может запросить дополнительные испытания гидравлическим давлением всей партии или от 10 до 100% ее.
- Соответствие требованиям по высоте внутреннего грата проверяется не на всей партии. Для этих целей отбирается 2% труб и на них проводят измерения.
- Также проводят испытания на коррозию, растяжение, бортование, раздачу, загиб и сплющивание. Для этого берется две трубы и проводятся нужные замеры. Для определения величины зерна требуется всего одна труба.
- Определение предела текучести металла производят не всегда. Эта характеристика интересна не всем покупателям и ее проверку проводят по требованию.
Если не прошли проверку?
В случае, если хотя бы по одному из показателей, получены неудовлетворительные результаты, проверка проводится повторно. Для этого отбирают новые трубы, но уже в удвоенном количестве. Повторная проверка является последней, и ее результат распространяется на всю партию.
Отличие от бесшовных
Основное отличие электросварных труб от бесшовных (ГОСТ 9940-81 и ГОСТ 9941-81) состоит в технологии, которая применяется для изготовления. Бесшовную трубу вытягивают из металлической болванки на прокатном станке. Это требует громоздкого оборудования и специально устроенных цехов.
Производство электросварной трубы гораздо проще. Берется стальной лист, нарезается, изгибается до нужной формы и сваривается специальным сварочным аппаратом. После этого сварной шов проверяется на целостность и прочность через испытание гидравлическим давлением. Оборудование, применяемое для данной технологии, гораздо проще и дешевле.
Казалось бы, раз сварные трубы обходятся дешевле, зачем тогда нужны бесшовные? Ответ как всегда кроется в деталях. Электросварные имеют продольный сварочный шов, который идет по всей длине. Это следствие технологии производства и именно этот шов делает изделие менее однородным. Из-за него трубы не способны выдерживать транспортировку жидкостей и других веществ под высоким давлением. Их просто разорвет по шву.
Как видите, для разных ситуаций подойдут разные виды труб. На каких то объектах понадобятся бесшовные, а где-то будет экономически выгодно применить электросварные. Они, как правило, обходятся дешевле.
История
Данный стандарт был введен в действие 20 октября 1981 г. постановлением Государственного комитета СССР по стандартам номер 4629. Ограничение срока действия было снять по протоколу №2-92 Межгосударственного совета по стандартизации, метрологии и сертификации. После распада СССР и образования Российской Федерации стандарт был принят в России и действует до сих пор.
МЕТАЛЛОТЕНДЕР — металлоторговая система для покупателей и продавцов. Вся информация на сайте носит ознакомительный характер. Для получения точных данных обращайтесь к соответствующим ГОСТ.
На нашем веб-сайте используются файлы cookies, которые позволяют улучшить Ваше взаимодействие с сайтом. Когда вы посещаете данный веб-сайт, Вы даете согласие на использование файлов cookies в соответствии с настоящим уведомлением об их использовании.
Добавить металлопрокат в заявку
Чем подробнее Вы заполните данную форму, тем меньше дополнительных вопросов возникнет у наших специалистов и тем легче будет найти нужный металлопрокат.
ГОСТ 16037-80 Соединения сварные стальных трубопроводов. Основные типы, конструктивные элементы и размеры
Текст ГОСТ 16037-80 Соединения сварные стальных трубопроводов. Основные типы, конструктивные элементы и размеры
СОЕДИНЕНИЯ СВАРНЫЕ СТАЛЬНЫХ ТРУБОПРОВОДОВ
ОСНОВНЫЕ ТИПЫ, КОНСТРУКТИВНЫЕ ЭЛЕМЕНТЫ
ИПК ИЗДАТЕЛЬСТВО СТАНДАРТОВ
Группа В05 СТАНДАРТ
СОЕДИНЕНИЯ СВАРНЫЕ СТАЛЬНЫХ ТРУБОПРОВОДОВ
Основные типы, конструктивные элементы и размеры
Welded joints in steel pipelines.
Main types, design elements and dimensions
Постановлением Государственного комитета СССР по стандартам от 24 апреля 1980 г. № 1876 дата введения установлена
Ограничение срока действия снято по протоколу 5—94 Межгосударственного Совета по стандартизации, метрологии и сертификации (ИУС 11-12—94)
1. Настоящий стандарт распространяется на сварные соединения трубопроводов из сталей и устанавливает основные типы, конструктивные элементы и размеры сварных соединений труб с трубами и арматурой.
Стандарт не распространяется на сварные соединения, применяемые для изготовления самих труб из листового или полосового материала.
Требования настоящего стандарта являются обязательными.
2. В стандарте приняты следующие обозначения способов сварки:
ЗП — дуговая сварка в защитном газе плавящимся электродом;
ЗН — дуговая сварка в защитном газе неплавящимся электродом;
Р — ручная дуговая сварка;
Ф — дуговая сварка под флюсом;
Г — газовая сварка.
Для конструктивных элементов труб, арматуры и сварных соединений приняты следующие обозначения:
s; 5, — толщины стенок свариваемых деталей;
Ь — зазор между кромками свариваемых деталей после прихватки; е — ширина сварного шва; g — выпуклость сварного шва;
5 — толщина подкладного кольца; а — толщина шва; с — притупление кромки;
В — ширина нахлестки;
К — катет углового шва;
Кг — катет углового шва со стороны разъема фланца;
DH — наружный диаметр трубы;
1, 2. (Измененная редакция, Изм. № 1).
Издание официальное Перепечатка воспрещена
* Переиздание (май 1999 г.) с Изменением № 1, утвержденным в декабре 1990 г. (ИУС 3—91)
© Издательство стандартов, 1980 © ИПК Издательство стандартов, 1999 Переиздание с Изменениями
3. Основные типы сварных соединений должны соответствовать указанным в табл. 1.
Характер сварного шва
Форма поперечного сечения
Толщина стенки и минимальный наружный диаметр трубы, мм, для способов сварки
Стыковое соединение трубы с трубой или с арматурой
Без скоса кромок
Односторонний на съемной подкладке
Односторонний на остающейся цилиндрической подкладке
Со скосом одной кромки
Односторонний на остающейся цилиндрической подкладке
Со скосом кромок
Односторонний на съемной подкладке
Односторонний на остающейся цилиндрической подкладке
Форма аготовле ных кромок
Характер сварного шва
Форма поперечного сечения
Толщина стенки и минимальный наружный диаметр трубы, мм, для способов сварки
Со скосом кромок
Односторонний с расплавляемой вставкой
Стыковое соединение трубы с трубой или с арматурой
С криволинейным скосом кромок
сом кромок с расточкой
Со скосом кромок с ра-
Односторонний на остающейся цилиндрической подкладке
Со скосом кромок с раздачей
Односторонний на остающейся конической подкладке
сом кромок с расточкой
Односторонний на остающейся цилиндрической подкладке
Характер сварного шва
Форма поперечного сечения
Толщина стенки и минимальный наружный диаметр трубы, мм, для способов сварки
Стыковое соединение секторов
Со скосом кромок
Односторонний на съемной подкладке
Стыковое соединение фланца с трубой
С двумя не-симметрич-
Нахлесточное соединение промежуточного штуцера или ниппеля с тру-
Без скоса кромок
Наметочное соединение труб с раздачей орто конца трубы
П p и м e ч а н и e, В графе «Толщина стенки и минимальный наружный диаметр трубы для способов сварки» в числителе приведены предельные толщины стенок, а в знаменателе — минимальные наружные диаметры труб за исключением угловых соединений, для которых приведены предельные толщины стенок и минимальные наружные диаметры ответвлений (отростков, ответвительных штуцеров и приварышей); для соединений, выполненных газовой сваркой, в знаменателе приведены предельные значения наружных диаметров,
4. Конструктивные элементы и их размеры должны соответствовать указанным в табл. 2—33.
подготовленных кромок свариваемых деталей
Конструктивные элементы и размеры
подготовленных кромок свариваемых деталей
Примечание. При способе сварки ЗН зазор b = 0 +05 .
Конструктивные элементы и размеры
подготовленных кромок свариваемых деталей
2. Длина протачиваемой части приварыша, входящей в трубу, устанавливается при проектировании
3. Величина s2 приведена после расточки.
Примечание. При способе сварки НЗ зазор Ъ = 2 +0 * 5 .
Для угловых швов в таблицах приведен расчетный катет.
5. При изготовлении тройников и крестовин из труб должны применяться типы сварных соединений, установленные для отростков с трубами, а при сварке тройников, крестовин и переходов с трубами или фланцами — соответственно типы сварных соединений труб с трубами или труб с фланцами.
6. Сварка стыковых соединений деталей неодинаковой толщины при разнице, не превышающей значений, указанных в табл. 34, должна производиться так же, как деталей одинаковой толщины; конструктивные элементы подготовленных кромок и размеры сварного шва следует выбирать по большей толщине.
Для осуществления плавного перехода от одной детали к другой допускается наклонное расположение поверхности шва (черт. 1).
Толщина тонкой детали
Разность толщин деталей
При разнице в толщине свариваемых деталей свыше значений, указанных в табл. 34, на детали, имеющей большую толщину st, должен быть сделан скос до толщины тонкой детали s, как указано на черт. 2 и 3. При этом конструктивные элементы подготовленных кромок и размеры сварного шва следует выбирать по меньшей толщине.
7. Шероховатость обрабатываемых под сварку поверхностей — Rz не более 80 мкм по ГОСТ 2789-73.
8. Остающиеся подкладки и муфты должны изготовляться из стали той же марки, из которой изготовлены трубы.
Для труб из углеродистой стали допускается изготовлять остающиеся подкладки и муфты из сталей марок 10 и 20 по ГОСТ 1050—88.
9. Зазор между остающейся подкладкой и трубой для сварных соединений, контролируемых радиографическим методом, должен быть не более 0,2 мм, а для соединений, не контролируемых радиографированием, — не более 0,5 мм.
Местные зазоры для указанных соединений допускаются до 0,5 мм и 1,0 мм соответственно.
10. Зазор между расплавляемой вставкой и торцевой или внутренней поверхностью трубы должен быть не более 0,5 мм.
11. В сварных соединениях отростков с трубами допускается присоединение отростков под углом до 45° к оси трубы.
12. В соединениях У 18 и У19 размеры е и g в сечении А—А должны устанавливаться при проектировании, при этом размер е должен перекрывать утонение стенки трубы, образуемое при вырезке отверстия, на величину до 3 мм, а размер а должен быть не менее минимальной толщины стенки свариваемых деталей.
13. Швы с привал очной стороны фланцев допускается заменять развальцовкой конца трубы.
14. Предельные отклонения катета углового шва К, Кх от номинального в случаях, не оговоренных в таблицах, должны соответствовать:
+2 мм — при К 12 мм.
15. Допускается выпуклость углового шва до 2 мм при сварке в нижнем положении и до 3 мм при сварке в других пространственных положениях. Вогнутость углового шва до 30 % величины катета, но не более 3 мм,
(Измененная редакция, Изм. № 1).
16. Для сварных соединений труб с толщиной стенки более 4 мм допускается сварка корня шва способом, отличным от основного способа сварки.
Редактор Р. Г. Говердовская Технический редактор В. Н. Прусакова Корректор Н. И. Гаврищук Компьютерная верстка А. П. Финогеновой
Изд. лиц. № 021007 от 10.08.95. Сдано в набор 19.05.99. Подписано в печать 10.06.99. Уел. печ. л. 2,79. Уч.-изд. л. 2,60.
Тираж 255 экз. С 3061. Зак. 1292
ИПК Издательство стандартов, 107076, Москва, Колодезный пер., 14. Набрано в Калужской типографии стандартов на ПЭВМ. Калужская типография стандартов, ул. Московская, 256.