Простой преобразователь напряжения своими руками схема
Обзор схем преобразователей напряжения с 12 В на 220 В
Преобразователи напряжения с 12 В на 220 В интересны всем, кто много ездит и проводит немало времени в машине. Приходится запитывать и заряжать ноутбук, коммуникатор, беспроводные наушники, сотовый телефон, порой нужен даже автомобильный холодильник (лучше, конечно, на 12 вольт, такие продаются). Такой преобразователь можно подключать к прикуривателю либо к аккумулятору. Подключать стоит к аккумулятору напрямую, поскольку в прикуривателе тоненькие провода, а при зарядке потребляется много тока. Для ноутбуков стоит иметь DC-DC инвертор, нет смысла преобразовывать 12 В в 220 В, включать в инвертор блок питания ноутбука, который опять 220 В преобразует в 19 В (питание ноутбука примерно такое). Но это вводная, перейдем к практике.
Простые маломощные схемы преобразователей на отечественной элементной базе
Надежная, но маломощная схема
Преимущества:
- схема проверена, не подведёт;
- если не нужна мощность, а зарядить телефон, и фонарики — то, что нужно;
- не каждый блок бесперебойного питания будет работать в таком режиме.
Недостатки:
- малая мощность (50 Вт);
- моральная старость.
Как работает схема преобразователя
В схеме три функциональные узла: задающий мультивибратор (вырабатывает импульсы 50 Гц, инвертор на выходе), двухтактный транзисторный ключевой усилитель мощности, повышающий трансформатор.
В основе мультивибратора — микросхема D1 (D1.1 + D1.2). Номиналы R1, С1 задают частоту мультивибратора. Инвертор — выход D1.4 микросхемы. Транзисторы VT3, VT4 усиливают мощность импульсов, которые принимает низковольтная обмотка транса Т1. Импульсным током низковольтной обмотки в высоковольтной обмотке наводится напряжение 220 В, его форма близка к синусоидальной. Повышающая обмотка и конденсатор С4 образуют контур, настроенный на частоту 50 Гц, это улучшает форму напряжения на выходе.
Микросхему К561ЛН2 можно заменить другими инверторами — микросхемами К561ЛА7, К561ЛЕ5. Серия К176 в этой схеме не рекомендуется.
Транзистор КТ973 может иметь любой буквенный индекс.
Транзистор КТ805, возможная замена – КТ819, буквенные индексы любые.
Повышающим трансформатором могут быть любые сетевые трансформаторы с мощностью 50-100 Вт, с первичной обмоткой 220 В, а две вторичные — 10-15 В в каждой (можно одну, имеющую в середине отвод на 20-30 В). При этом нужно помнить об обратном включении трансформатора!.
Транзисторам VT4 и VT3 нужны радиаторы для надежного теплоотвода
Источник: РадиоКонструктор №5/1999, стр. 27
Простая схема мощностью 110-130 Вт (75 Герц)
Преимущества:
- простая сборка;
- надежен, не боится перегрузок и КЗ;
- копеечная стоимость.
Недостатки: тяжелый и громоздкий.
В основе этой конструкции — схема простейшего преобразователя напряжения DC/AC, при соблюдении всех параметров налаживание не требуется, можно обойтись только паяльником. После подачи питания схема запускается сразу, не требует настройки (естественно, нужно замерить выходное напряжение). Используется общий коллектор, все транзисторы можно установить на один радиатор, изолирующие прокладки не нужны. Монтаж навесной.
Вариант 1:
- резисторы — 5-10 Ом, 0.5 Вт;
- резисторы силовой части — 5-10 Ом, 2 Вт;
- конденсатор на выходе инвертора — 0.3-0.8 мкФ 400 В (не электролитический и не полярный);
- транзисторы Т1 и Т2 — почти любые РпР структуры (КТ835, КТ837, КТ818, П213, П214, П215, П216, П217) или другие, близкие к ним по параметрам;
- транзисторы Т3-Т6. Т10 — также РпР структуры (П210, П213-П217, КТ835Б, КТ837, КТ818, КТ818ГМ.
От выбора типа транзисторов силовой части инвертора будет зависеть выходная мощность инвертора. Лучший вариант — полевые транзисторы, но нужно заменить резисторы на более высокое сопротивление, подходящее под тип отобранного транзистора.
Задающий генератор собран на транзисторах Т1-Т2, 2-х резисторах и трансформаторе Тр1.
- обмотки 1 и 4 – по 10 витков;
- обмотки 2 и 3 – по 30 витков;
- обмотки 5 и 6 – по 10 витков.
Все обмотки можно мотать проводом любой марки диаметром 0.4-0.5мм. Для лучшей синхронизации каналов желательно обмотки 1 и 4, 2 и 3, 5 и 6 мотать бифилярно, т.е. по 2 провода вместе.
Трансформатор ТР1 – ш-образный на железе с площадью сечения сердечника не менее 4см (если сечение окажется недостаточным,то задающий генератор запустится на высоких частотах,от 800Гц до 10-12Кгц,о чём подскажет высокочастотный писк трансформатора). Можно взять из чб лампового телевизора трансформатор ТВ-3Ш,он небольшого размера.
В зависимости от применяемых транзисторов и типа трансформатора частота и напряжение на обмотках 5 и 6 может измениться. Нормальным для работы силовой части инвертора будет напряжение 7-10 В.
При сборке задающего генератора номиналы элементов обоих каналов должны быть строго идентичны для обеспечения синхронной работы всего инвертора. Особое внимание нужно уделить правильной фазировке обмоток 1, 2, 3 и 4. Начала всех обмоток обозначены точками.
- обмотка 3 намотана проводом диаметром 0,5-0.8мм,содержит 600 витков;
- обмотки 1-2 – проводом диаметром 2мм, по 24 витка;
Можно использовать готовый сетевой трансформатор, имеющий 2 выхода по 12 вольт, просто подключив его «наоборот». Но в этом случае, возможно, придётся корректировать число витков вторичной обмотки 3. Выходная мощность будет зависеть от типа транзисторов, их количества и габаритной мощности трансформатора. Ну и номиналы элементов обоих каналов должны быть идентичны.
Осциллограмма импульсов инвертора на выходе:
Простой маломощный на двух транзисторах
Отечественная комплектация использована в следующей очень простой и надежной схеме преобразователя напряжения 12 В в 220 В (разрабатывалась для энергосберегающей лампы). Схема не требует наладки, в ней 2 транзистора, конденсатор, два резистора и трансформатор.
Транзисторы подобраны для минимального тока потребления (КТ814 и КТ940), под них определены сопротивления и емкость, номиналы которых указаны на схеме.
Эта конструкция оптимальна для питания энергосберегающей лампы 8,9,11 Вт, потребление тока колеблется от 0.5 до 0.54 А.
Трансформатор сделан из ферритовых чашек диаметром 35 мм, высотой 20мм. Вначале наматывается первичная обмотка — 14 витков, провод диаметром 0,5 мм, после намотки она оборачивается изолентой в один слой. Вторичная обмотка — провод диаметром 0.2 мм, 220 витков, поверху также обмотка изолентой в один слой. Затем каркас с намоткой помещается в ферритовые чашки и садится на болтик.
Ниже показаны фотографии.
Намотанные катушки индуктивности.
Преобразователь питает энергосберегающую лампу.
Для просмотра схем более мощных преобразователей щелкните на цифре 2.
Схемы устройств большей мощности
Преобразователь мощностью до 400 Вт
Схема состоит из задающего генератора (микросхема А1 — КР1211ЕУ1, зарубежного аналога не имеет — это задающий генератор с двумя выходами: прямым и инверсным, соответственно 4 и 6), двух ключей (полевики VT1 и VT2), трансформатора Т1 (повышающего).
Вывод 1, когда на него подается высокий уровень сигнала, останавливает генератор, в этой реализации не использован, в схеме на него подается сигнал постоянного низкого уровня.
Частота генерации определяется R1 – C1, надежный запуск генератора обеспечивают R2 – C2. Стабилизатор (элементы R3, VD1, C3, стабилизация 8-10 В) питает микросхему.
На выходе — двухтактный каскад: два мощных полевых транзистора IRL2505 (при нагрузке до 200 Вт радиаторы не требуются, если возможна большая нагрузка — радиаторы обязательны).
Трансформатором может быть какой-угодно сетевой с двумя обмоткми на 12 В требуемой мощности, лучше тороидальный, можно другой, но должно соблюдаться следующее условие: по мощности трансформатор должен превышать предполагаемую нагрузку в 2 (это если тороидальный сердечник) – 2.5 раза. Пример: если нагрузкой будут 100 Вт – нужна мощность 250 Вт, если тороидальный — 200 Вт.
Конденсатором С6 (он сглаживает импульс) — может быть К-73-17 либо подобный, напряжением 400 В или выше. Когда мощность потребления большая, ток с 12 В может превышать 40 А, вот почему на сечение и длину шины питания необходимо обратить внимание.
Мощный преобразователь напряжения с 12 В на 220 В
Предназначен для нагрузки до 1000 Вт, требующей переменного напряжения 220В. Использованы старые транзисторы П216, которые радиолюбители еще могут найти в своем хозяйстве.
В качестве задающего генератора здесь используются транзисторы VT1, VT2 и трансформатор Т1 – задается частота 200 Гц. Вторичная обмотка Т1 сигнал через конденсаторы отправляет к электродам тиристоров VD1, VD2, которые создают импульсное напряжение в первой обмотке трансформатора Т2.
Неполярный конденсатор С4 (его емкость) подобран так, что его напряжение поочередно закрывает тиристоры. Резистором R3 защищаются цепи 12 В от перегрузки во время открывания тиристора.
У трансформатора Т1:
- у сердечника – пластина Ш16Х10;
- в обмотке 1 – 40+40 витков ПЭЛ 0.8;
- в обмотке 2 – 10+10 витков ПЭЛ 0.3;
- в обмотке 3 – 20+20 витков ПЭЛ 0.3.
В трансформаторе Т2:
- в сердечнике – пластина Ш50Х60;
- в обмотке 1 – 40+40 витков проводом 3 мм в диаметре;
- в обмотке 2 – 460 витков, провод ПЭЛ 0.8.
Использование тиристоров КУ202 позволит собрать подобный преобразователь меньшей мощности.
Также можно применить новые кремниевые транзисторы, в этом случае требуется корректировка режима постоянного тока.
Схема инвертора мощностью 300 Вт
Ниже приведена уменьшенная схема, полноразмерная схема для более комфортного просмотра здесь.
Достоинства:
- беспроблемная работа при нагрузке до 300 Вт;
- возможна нагрузка до 650 Вт (при сильном нагреве проводов и падении напряжения до 190 В).
Недостатки:
- сложность, требуется импортная комплектация;
- более высокая стоимость.
Трансформатором может послужить импульсный блок питания (нерабочий советский телевизор в самый раз). Нужно перемотать, сточить зазор на феррите (если из двух таких трансформаторов взять по одной половинке феррита, ничего точить не придется).
В трансформаторе преобразователя возможно использование двух колец, оба 40х25х11, склеенных вместе. Первичная – та же, что в ТПИ-3, вторичная – на 60 витков.
Первичная – в двух обмотках 3 повода на 0.8 у плеча – в одном плече 5 витков и во втором плече 5 витков.
Вторичная – два провода на 0.8. При наматывании используется метод проверки. Вначале половину вторичной — два провода 0.8 + изоляция, затем первичную два плеча, опять изоляция, еще раз вторичная – ее подгоняем для нужного вольтажа (230 В).
В качестве корпуса лучше использовать компьютерный блок питания АТХ, в нем есть кулер, который лучше оставить и применить для охлаждения при повышенной нагрузке.. Ниже показаны фотографии сделанного устройства.
Поделки своими руками для автолюбителей
Простой преобразователь напряжение 12 — 220 схема
Наш инвертор или преобразователь предназначен для получения переменного тока 220 вольт с частотой 50 герц с автомобильного аккумулятора или любой батареи 12 вольт. Мощность инвертора составляет 150 Ватт и может быть увеличена до 300, но об этом поговорим попозже.
Схема крайне проста, я уверен, что справится любой, работает схема точно так, как любой двухтактный преобразователь типа «push pull», сердцем инвертора является микросхема CD4047, которая служит в качестве задающего генератора и одновременно управляет полевыми транзисторами.
Транзисторы работают в ключевом режиме, переключаясь, то есть в каждый момент времени открыт только один из транзисторов.
Если вдруг по каким-то причинам оба ключа откроются одновременно, то образуется короткое замыкание и оба транзистора сгорят моментально, это может случиться из-за неверного управления.
Микросхема CD4047 разумеется не заточена для высокоточного управления полевиками, но справляется с этой задачей достаточно неплохо.
Трансформатор в моем случае был взят от старого бесперебойника, если честно от этого бесперебойника уцелел только один трансформатор, он как раз для таких целей, поэтому домотывать или перематывать ничего не нужно.
Трансформатор в моём случае на 250-300 Ватт, имеет первичную обмотку со средней точкой, куда подключается плюс от источника питания.
Вторичных обмоток много и нам нужно найти именно сетевую обмотку на 220 вольт, с помощью мультиметра измеряем сопротивление всех отводов, которые имеются на вторичной цепи и находим отводы или контакты между которыми самое большое сопротивление.
В моём случае это около 17 Ом, как раз эти два контакта и есть выводы вторичной или сетевой обмотки, все остальные выводы можно откусить.
После того, как разобрались с трансформатором переходим к сборки схемы, это занимает очень малое время, особенно когда есть печатная плата. (скачать её можно в конце статьи)
Настоятельно рекомендую проверять все компоненты перед пайкой, подберите транзисторы аналогичных параметров из одной партии. Конденсатор в частотно-задающей цепи должен иметь малую утечку и узкий допуск.
Теперь собираем и паяем саму схему.
Пару слов о возможных заменах в схеме…
К сожалению микросхема CD4047 советских аналогов не имеет, поэтому нужно купить именно её. Полевые транзисторы можно заменить на любые -м- канальные с напряжением от 60 вольт и с током от 35 Ампер.
Если использовать ключи типа IRF 3205, то с инвертора можно стянуть 250-300 ватт чистой выходной мощности.
Кстати схема прекрасно работает также с биполярным транзисторами на выходе, правда мощность будет в разы меньше, чем с полевыми транзисторами.
Затворные, ограничительные резисторы могут иметь сопротивление от 10 до 100 Ом, советую ставить от 22 до 47 Ом, мощность 0,25 ватт.
Частотно-задающую цепь лучше не трогать, она настроена на частоту в 50 герц.
Несколько слов насчёт настройки…. В принципе правильно собранный инвертор заработает сразу, но первый запуск обязательно нужно делать со страховкой, то есть вместо предохранителя на схеме подключить резистор Ом на 5-10 или лампочку на 12 вольт 5 Ватт, чтобы в случае проблем не взорвать транзисторы.
Если инвертор работает нормально, то трансформатор издает своеобразный звук, при этом ключи не должны нагреваться вообще.
Если это так, то можно убрать резистор и питание уже подаём напрямую, но разумеется через предохранитель.
Среднее потребление инвертора может составлять от 150 до 300 миллиампер, но это будет зависеть конкретно от источника питания и от вашего трансформатора, это разумеется холостой ход без выходной нагрузки.
Дальше, нам нужно измерить выходное напряжение предварительно поставив мультиметр в режиме замера переменки на уровне 750 вольт.
В моём случае получилось 220-250 вольт, это в пределах нормы поскольку инвестор не стабилизированной и выходное напряжение может гулять в этом пределе.
Дальше уже можно подключать нагрузку, в моем случае это сетевая лампочка на 60 ватт.
Гоняем инвертор с такой нагрузкой примерно 10 секунд, при этом ключи чуток должны нагреваться, они без теплоотводов и нагрев на обеих ключах должен быть равномерным. Если один ключ нагревается гораздо сильнее ищите свой косяк.
Несколько слов о монтаже…
Корпус был позаимствован у компьютерного блока питания, вся начинка просто отлично в него влезла.
Транзисторы в моем случае были установлены на отдельные радиаторы
В случае использования общего теплоотвода не забываем изолировать корпуса транзисторов от радиатора.
Кулер был подключен непосредственно к шине 12 вольт.
Самый большой недостаток нашего инвертора — это отсутствие защиты в случае короткого замыкания на выходе, транзисторы сгорят. поэтому чтобы такого не случилось, на выход я поставил предохранитель на 1 Ампер.
Мало мощная кнопка подаёт плюс от источника питания на плату, то есть запускает инвертор в целом.
Силовые шины от трансформатора цепляются непосредственно к радиатором транзисторов, поэтому радиаторы нужно изолировать от общего корпуса.
Частота в пределах нормы, если же частота отличается от пятидесяти герц, то ее можно подстроить с помощью оборотного, переменного резистора R4, который присутствует на плате.
Пробуем сделать преобразователь напряжения самостоятельно
Первой и основной целью моей работы было сделать повышающий преобразователь напряжения с 12 на 220 вольт. То есть, усложнять себе задачу я не собирался, поэтому предлагаемый мной вариант сборки имеет одно неоспоримое достоинство: он крайне прост.
Рис.1: Импульсный преобразователь напряжения.
Прибор строится по двухтактной схеме. Для воплощения данной схемы мне понадобилось только два полевых транзистора без задающих генераторов. По этой причине, даже при отсутствии соответствующего опыта, вам не составит труда собрать преобразователь напряжения своими руками.
К тому же, все необходимые для этого элементы всегда есть под рукой у любого радиолюбителя. Если говорить о выходной частоте, предлагаемого мной устройства, то она, к сожалению, является переменной. Но это очень просто можно поправить, если на выходе установить диодный выпрямитель и конденсатор, с расчётной ёмкостью на 100 мкФ при напряжении 400 Вольт. Хотя, если ёмкость будет слегка меньше, никакими проблемами это вам не грозит.
Тот преобразователь напряжения, который собирал я, можно, пожалуй, отнести к категории резонансных, поскольку рабочая частота зависит от колебательного (LC) контура. А в качестве катушки используется первичная обмотка трансформатора, параллельно которой установлен конденсатор небольшой ёмкости на 2,2 мкФ (400 Вольт). Но в любом случае, даже при самом плохом стечении обстоятельств вы сможете настроить ваш прибор на необходимую частоту экспериментальным путём. Кроме того, частоту преобразователя напряжения можно отрегулировать затворными ограничительными резисторами.
В качестве силовых ключей использовал довольно мощные канальные полевые транзисторы высоковольтного типа (примерно 200 Вольт). Но вы, в случае со своим собственным устройством, вполне можете заменить их на низковольтные.
Не забывайте, что мощность конечно же, в первую очередь определяется трансформатором и полевыми транзисторами. Точно могу сказать, что по выполненной мной схеме можно получать до 0,5 кВт выходной мощности. По-моему, неплохо, если собираешь простенький преобразователь напряжения своими руками.
На самом деле, я при сборке данной схемы был далеко не оригинален, подобные преобразователи и схемы к ним встречаются везде и их трудно не заметить, и не опробовать.
К самой плате генератора помимо транзистора подсоединяются также стабилитроны , которые стабилизируют затворное напряжение. Для этой цели подходят элементы мощностью 0,5 ватт, 1 ватт, 1,3 ватт. Они не имеют склонности перегреваться, хотя конечно будет лучше, если вы возьмёте более мощные экземпляры. Напряжение стабилизации у стабилитрона должно быт от 10 вольт до 15 вольт. Сам я воспользовался стабилитронами на 15 вольт.
Конкретные параметры данного элемента нет необходимости учитывать. По сути, и сами эти элементы можно просто изъять из схемы преобразователя напряжения. Конечно, цепь будет работать не так хорошо, как если бы все составляющие были на месте, но всё же функционировать она от этого не перестанет.
Существуют затворные ограничители на 470 Ом, я брал на 390 Ом, и здесь возможны отклонения от 100 до 470 Ом. Также мною были применены диоды ультрабыстрого типа. Подойдут сюда также и просто быстродействующие диоды с током минимум в 1А 9при желании можно использовать и более мощные экземпляры.
Если использовать один общий теплоотвод для транзисторов, обязательно нужно изолировать их специальными слюдяными прокладками и изолирующими шайбами.
Я сделал два раздельных теплоотвода для транзисторов преобразователя напряжения, поэтому они не будут сильно нагреваться даже к тех случаях, когда задействована максимальная мощность. Возможен небольшой перегрев входного дросселя, поэтому его необходимо будет обмотать проводом диаметром до двух миллиметров.
Брал дроссель от компьютерных блоков питания на порошковом железе. Количество витков на дросселе не принципиально, определяется по своему усмотрению (примерно от 7 до 15).
Чтобы получить 220 Вольт, я применил уже готовый трансформатор. Первичная обмотка (когда она делается без отвода) состоит из восьми витков толстого провода (8мм или больше) в 3-4 шины.
Если говорить конкретно про напряжение в 500 вольт, то первичная обмотка содержит 7-8 витков по 10 жил провода на 0,7 мм. Вторичная обмотка составляет всего 48 витков провода с диаметром в 1 мм. Можно мотать и более тонкими проводами, например 2 жилы по 0,5 мм. Возможно, что так вам будет удобнее.
Используемая мной схема хороша тем, что в неё можно включить уже готовые трансформаторы и применять их в уже готовом блоке питания. При этом нет необходимости что-то перематывать. Сетевая обмотка, которая в компьютерном блоке являлась первичной, в вашем устройстве станет уже вторичной.
Пара выводов на 12 Вольт должна быть подключена к силовым выводам транзистора. Проверку на рабочесть я проводил с помощью лампы на 100 Ватт. По результатам этой проверки стало очевидно, что цепь совершенно не перегружена.
Конечно, для использования такого инвертора в реальной жизни потребуется обеспечить выпрямление тока. С этой целью можно применить такие же диоды, как и те, что использовались на плате.
А далее, получившееся устройство можно спокойно использовать для зарядки телевизора, ноутбука, телефона. Но не стоить соединять инверторы к приборам с сетевым трансформатором или электродвигателем, это ни к чему хорошему не приведёт.
Дополнительная информация
Вычисление количества витков первичной и вторичной обмотки
Для расчёта вторичной обмотки при сборке преобразователя напряжения своими руками потребуется:
- Выявить, сколько вольт даёт каждый дополнительный виток (для этого питающее напряжение следует поделить на количество витков первичной обмотки);
- Нужное значение напряжение поделить на показатель виток/вольт, если получившееся число оказалось дробным (и дробная часть при этом не менее половины единицы), то округлить его в сторону большего значения.
Для расчёта первичной обмотки потребуется:
- Вычислить максимальный потребляемый ток первичной обмотки: Pmax/12=Imax, где Pmax – максимально потребляемая мощность;
- Ориентируясь на силу и плотность (ампер на мм2) тока вычислить необходимую площадь или подходящее сечение провода.
Поскольку движение тока происходит не по всему проводу, а только по его поверхности, то скорее всего придётся заменить один толстый провод на несколько тонких. К тому же это позволит снизить степень нагревания.
Трансформатор
Когда уже вычислено необходимое количество витков для первичной обмотки, можно взяться за намотку трансформатора.
Для этого нужно взять все провода холостого хода, скрутить в косичку и начать делать обмотку. То же самое нужно проделать со второй частью первичной обмотки. Принципиально, чтобы распределение витков от обеих обмоток было равномерным. В противном случае может произойти, перегрев трансформатора, особенно в том случае, если мощность будет максимальной или близкой к таковой, а уровень напряжения вторичной обмотки будет проседать всё с большей силой.
Дроссель
Дросселя для преобразователя напряжения наиболее удобно мотать с помощью жёлтых колец, которые можно изъять из компьютерного блока питания. Изначально они изготавливаются на 5-6 витков, но согласно практике, лучше всего, если мотается по 2-3 витка на вольт. К сожалению, из-за подобной модернизации дроссель становится весьма громоздким. Желательно, чтобы используемый для обмотки дросселя провод в сечении был не менее 2 мм, в противном случае вся мощность уйдёт в никуда
Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта Электронщик , буду рад если вы найдете на моем сайте еще что-нибудь полезное. Делитесь информацией в соцсетях, ставьте лайки, если вам понравилось — это поможет развитию канала
Преобразователь напряжения с 12 на 220В своими руками
В последнее время рыбаки, дачники, охотники, пчеловоды и любители культурного отдыха на природе используют преобразователи напряжения с 12 на 220В для освещения палаток, вагончиков, дачных домиков или как, источник аварийного освещения на случай внештатного отключения электроэнергии на даче, в доме, гараже, квартире. И по этому, в каждом доме желательно иметь, это очень полезное и нужное в хозяйстве устройство.
Недавно у меня появилась идея самостоятельно разработать и собрать компактный и очень экономичный импульсный инвертор с 12 на 220В, для питания светодиодной лампы на 220В, из минимального количества радиодеталей, способный работать до 14 часов от небольшого 7А/ч 12В аккумулятора и имеющий защиту от полного разряда аккумуляторной батареи. После долгих бессонных ночей мне все таки удалось создать инвертор потребляющий всего 0,5А/ч и способный питать супер яркую светодиодную лампу на 220В.
На этом рисунке изображена схема импульсного однотактного преобразователя напряжения с 12 на 220В. Генератор импульсов собран на широко распространенной микросхеме NE555 или советском аналоге КР1006ВИ1.
Импульсный преобразователь напряжения с 12 на 220В с защитой от разряда аккумулятора.
Стабилизатор напряжения L7809CV поддерживает постоянное напряжение на микросхеме 9В и тем самым разряд аккумулятора не влияет на рабочую частоту микросхемы. Благодаря тщательно подобранному сопротивлению резисторов R2 и R3 микросхема выдает идеально прямоугольные импульсы, режим работы микросхемы duty 50%, рабочая частота 11,6 кГц. При работе генератора в таком режиме транзистор T2 MJE13009 почти не греется, его достаточно разместить на небольшом радиаторе размером 30х50х10 мм.
Защита от разряда аккумулятора собрана на транзисторе Т1 BD139, подстроечном резисторе Р1, резисторе R1 и реле Rel1 SRD-12VDC-SL-C. Как работает защита? После включения выключателя S1 нажимаем кнопку S2. Через резистор R1 и подстроечный Р1 подается питание на базу транзистора Т1 и реле Rel1, происходит блокировка контактов реле. Подстроечный резистор P1 ограничивает ток протекающий через транзистор Т1. Как только напряжение аккумуляторной батареи снижается до 10В ток на базе транзистора Т1 понижается и транзистор закрывается, контакты реле Rel1 размыкаются, инвертор выключается.
Настройка защиты заключается в правильной установке тока удержания реле. Подключите инвертор к регулируемому блоку питания с установленным напряжением 12В. Понизив напряжение питания до 9,5 — 10В подстроечным резистором Р1 подберите момент срабатывания защиты от разряда аккумулятора.
На этом рисунке изображена печатная плата импульсного преобразователя напряжения с 12 на 220В. Размер платы 52х24 мм. Скачайте плату в формате lay, распечатайте и перенесите на текстолит с помощью лазерно утюжной технологии. Ничего зеркалить не нужно, все нарисовано как, надо.
Печатная плата импульсного преобразователя напряжения с 12 на 220В с защитой от разряда аккумулятора
А, теперь я расскажу о самой важной и трудоемкой в изготовлении для начинающих радиолюбителей детали, импульсном трансформаторе, который вам, дорогие друзья, придется наматывать самостоятельно. На самом деле ничего сложного в этом деле нет, стоит только начать, а дальше все пойдет, как по маслу.
И, так… Вам понадобится импульсный трансформатор от компьютерного блока питания или от импортного цветного телевизора. Размер каждой половинки «Ш» образного магнитопровода 35х21х11мм, размер собранного магнитопровода 35х42х11мм. Трансформатор вы достали, но прежде чем перемотать, читайте здесь о том как разобрать импульсный трансформатор от компьютерного блока питания или импортного цветного телевизора.
Для намотки импульсного трансформатора я использую самодельный станок, можно мотать и в ручную но это очень долго. Обмотки мотаем в одну сторону, виток к витку, концы обмоток тщательно зачищаем от лака лезвием строительного ножа.
Каждый слой провода во избежание пробоя изолируем тремя слоями канцелярского скотча. Первой наматываем выходную обмотку содержащую 220 витков медного провода в лаковой изоляции d=0.5mm. Второй наматываем коллекторную обмотку содержащую 50 витков медного провода в лаковой изоляции d=0.5mm. Да, да именно так первая 220 витков, вторая 50 витков. Как, показала практика и многочисленные эксперименты с количеством витков и последовательностью намотки обмоток, это самый оптимальный вариант и соответственно максимальная мощность импульсного преобразователя напряжения.
Да, еще одна важная деталь для однотактного инвертора, которым является это устройство необходимо установить немагнитный зазор между двумя частями ферритового магнитопровода 1.2 мм. Обратите внимание! На этом рисунке изображено два разных магнитопровода, с немагнитным зазором и без.
Почему они такие разные?
Все потому, что слева находится магнитопровод от трансформатора из блока питания импортного цветного телевизора построенного по однотактной схеме, а с права магнитопровод от трансформатора компьютерного блока питания построенного по двухтактной схеме. Поэтому если у вас трансформатор от импортного цветного телевизора с немагнитным зазором 1.2 мм, смело мажьте половинки магнитопровода клеем и собирайте трансформатор.
А, вот с трансформатором от компьютерного блока питания придется повозиться. Надо вырезать из плотного картона два кружочка и приклеить к центральному пальцу ферритового магнитопровода, зазор между половинками должен быть 1.2 мм.
Какие лампы можно подключать к инвертору?
Импульсный преобразователь напряжения рассчитан для питания одной светодиодной лампы Feron 230V 7W E14 6400K, он также отлично работает с другими лампами например Saffit 230V 7W E14 6400K, Онлайт 230V 7W E14 6400K и аналогичными лампами с потребляемой мощностью не более 7W. Кроме лампочек фирмы Navigator, эти лампы во время эксперимента отказались работать на частоте 11.6 кГц, похоже в них имеется защита. Я не рекламирую производителей светодиодных ламп а, просто пишу о результатах своего эксперимента.
Категорически запрещается подключать к инвертору другие бытовые электроприборы, телевизоры, компьютеры, пылесосы, потому, что из за высокой частоты генератора они могут выйти из строя!
Сколько потребляет этот чудо инвертор?
Благодаря очень низкому потреблению электроэнергии всего 0.5А/ч инвертор способен работать от 12В 7А/ч аккумулятора до 14 часов. Автомобильного 12В аккумулятора емкостью 60А/ч хватит примерно на 120 часов непрерывной работы преобразователя напряжения. Если после сборки инвертор потребляет более или менее 0.5А/ч, тогда надо подобрать сопротивление резистора R2.
Рабочая частота импульсного инвертора 11,6 кГц, duty 50%, в таком режиме микросхема NE555 генерирует идеально прямоугольные импульсы.
Все детали инвертора легко помещаются в небольшой пластиковой распределительной коробке размером 75х75х45 мм.
Яркости лампы достаточно, для комфортного чтения интересной книги.
Импульсный преобразователь незаменимый помощник для автолюбителей. Заменить колесо, выполнить мелкий ремонт двигателя, все это легко сделать в ночное время суток или в гараже «ракушке» без электричества.
Список радиодеталей необходимых для сборки импульсного инвертора
- Микросхема NE555 или КР1006ВИ1
- Стабилизатор напряжения L7809CV
- Резисторы R1 10К, R2 1K, R3 5.1K, R4 100R, P1 10K
- Конденсатор C1 10nf, C2 1mf
- Транзисторы T1 BD139, T2 MJE13009, КТ819
- Реле Rel1 SRD-12VDS-SL-C
- Трансформатор Tr1 от импортного цветного телевизора или компьютерного блока питания с ферритовым магнитопроводом 35х42х11мм
- Провод медный в лаковой изоляции d=0.5 мм
- Светодиодная лампа Feron 230V 7W E14 6400K, Saffit 230V 7W E14 6400K, Онлайт 230V 7W E14 6400K и другие, кроме лампочек фирмы Navigator
- Провод медный, многожильный, в двойной изоляции 2х0.5 мм
- Патрон E14
- Выключатель S1
- Кнопка с нормально разомкнутыми контактами S2
- Кусок текстолита 52х24 мм
- Коробка пластиковая распределительная 75х75х45 мм
- Радиатор для транзистора Т2 30х50х10 мм
- Провода соединительные
- Комплект прямых рук для сборки
Друзья, желаю вам удачи и хорошего настроения! До встречи в новых статьях!
Рекомендую посмотреть видеоролик о том, как работает преобразователь напряжения с 12 на 220В собранный своими руками.
Схема простого преобразователя напряжения своими руками
Схема преобразователя напряжения 12–220 В
Данная схема работает по принципу преобразователей типа Push-Pull. Сердцем устройства будет служить плата CD-4047. Именно она будет выполнять роль задающего генератора, а также управлять полевыми транзистор ами, которые работают в режиме ключей.
Стоит учитывать, что открыт может быть всего один транзистор. В случае, если в одно время будут открыты 2 транзистора, случится замыкание, в результате которого транзисторы сгорят. Также это может произойти в случае неправильного управления.
Рекомендации по подбору радиоэлементов для преобразователя напряжения 12–220 В
Плата CD-4047 не рассчитана на высокоточное управление полевыми транзисторами, но с данным заданием справляется отлично. Также для работы устройства потребуется трансформатор из старого ИБП на 250 или 300 Вт с первичной обмоткой и средней точкой подключения плюса от источника питания.
Трансформатор имеет достаточно большое количество вторичных обмоток. Нужно будет с помощью вольтметра измерять все отводы и найти сетевую обмотку на 220В. Нужные провода будут выдавать наибольшее электросопротивление приблизительно 17 Ом, лишние отводки можете удалить.
Перед тем, как начать паять, желательно все еще раз перепроверить. Рекомендуется выбирать транзисторы с одной партии и одинаковыми характеристиками. Их можно определить специальным тестером.
Поскольку у платы CD-4047 нет аналогов, необходимо приобрести именно ее, а вот полевые транзисторы можно при необходимости поменять на n-канальные с напряжением от 60В и током минимум 35А. Подходят из серии IRFZ.
- Читайте также, как создать своими руками преобразователь на 5В
Также схема может работать с использованием биполярных транзисторов на выходе, но следует учесть, что мощность устройства станет намного меньше, если сравнивать со схемой, на которой используются «полевики».
Ограничительно затворные резисторы должны обладать сопротивлением 10–100 Ом, но предпочтительнее использовать резисторы на 22–47 Ом, мощность которых составляет 250 мВт.
Часто задающая цепь собирается исключительно из элементов, указанных на схеме, которая имеет точные настройки на 50 Гц.
Монтаж преобразователя напряжения 12–220 В своими руками
Все элементы устанавливаем в корпус блока питания для компьютеров, транзисторы следует установить на раздельные радиаторы.
Если будет установлен общий теплоотвод, обязательно изолируйте корпус транзисторов от радиатора. Кулер подключаем к шине на 12В.
Одним из существенных недостатков данного инвертора считается отсутствие защиты от замыкания. Если КЗ произойдет, то все транзисторы сгорят. Чтобы этого не допустить, на выходе обязательно нужно установить предохранитель на 1А.
Для запуска инвертора используется кнопка, через которую будет подаваться плюс на плату. Силовые шины трансформатора следует прикрепить прямо к радиаторам транзисторов.
Если подключить к выходу преобразователя энергометр, то на нем можно увидеть, что исходящая частота и напряжение в рамках допустимого. Если получилось больше или меньше 50 Гц, то частоту нужно настроить, используя многооборотный переменный резистор, он установлен на плате.
Без нагрузки устройство издает достаточно сильный шум, который с нагрузкой существенно уменьшается, это норма.
Получившееся устройство не стабилизировано, но практически все бытовые приборы могут работать с напряжением 90–280В. В случае если на выходе у вас получается больше 300В, необходимо на выход в дополнение к основной нагрузке подключать лампочку на 25 Вт, чтобы снизить напряжение до необходимого предела.
Первый запуск и тестирование простого преобразователя напряжения с 12 на 220 В
Если вы правильно соберете прибор, он будет работать с первых секунд, но при первом запуске важно подстраховаться. Для этого вместо предохранителя (смотреть схему) нужно установить резистор номинал которого составляет 5–10 Ом или лампочку на 12 В, чтоб избежать взрыва транзисторов, если были допущены ошибки.
Если устройство работает стабильно, то трансформатор будет издавать звук, но ключи греться не будут. Если все работает правильно, резистор (лампочку) нужно убрать. Питание подается через предохранитель.
В среднем при работе на холостых преобразователь потребляет энергии от 150 до 300 мА в зависимости, какой источник питания и тип трансформатора.
- Ознакомьтесь также с материалами создания повышающего преобразователя напряжения на TL494
Затем нужно замерить выдаваемое напряжение, на выходе должно быть около 210–260 В. Это считается нормальным показателем, поскольку данный преобразователь не имеет стабилизации. Далее нужно проверить устройство под нагрузкой, подключив лампочку на 60 Ватт и дав ей поработать 10–15 секунд. Учтите, что ключи за это время немного нагреются, так как на них нет теплоотводов. Также важно отметить, что ключи должны греться равномерно. При неравномерном нагреве нужно искать, где допущены ошибки.
- Смотрите также схему ещё одного преобразователя напряжения 12-220
Снабжаем наш преобразователь напряжения функцией Remote Control.
Главный плюсовой провод следует подключить к средней точке трансформатора, но чтобы устройство начало работать, к плате нужно подключить слаботочный плюс. Благодаря этому запустится генератор импульсов.
К данному простому преобразователю напряжения 12–220В не рекомендуется подключать асинхронные двигатели.
Видео о монтаже ещё одного простого преобразователя напряжения своими руками:
Сборка самодельного преобразователя с 12В на 220В
Для подключения электрического прибора в домашнюю сеть хватит одного сетевого фильтра или блока бесперебойного питания. Эти приборы уберегут технику от скачков напряжения. Но как быть в случае сильного провисания напряжения в сети, либо в том случае, если электросеть предполагает использования более высокого ил низкого вольтажа. Для таких ситуаций можно собрать самодельный преобразователь электрического тока с 12В на 220В. Чтобы его сделать, необходимо разобраться в базовых принципах работы данного устройства.
Преобразователи и их типы
Преобразователем называют устройство, которое способно повышать или понижать напряжение электрической цепи. Так можно изменить вольтаж цепи с 220В на 380В, и наоборот. Рассмотрим принцип построения преобразователя с 12В на 220В.
Данные устройства можно разбить на несколько классов/типов, в зависимости от их функционального предназначения:
- Выпрямители. Работают по принципу преобразования переменного в постоянный ток.
- Инверторы. Работают в обратном порядке, преобразовывая постоянный ток в переменный.
- Преобразователи частоты. Изменяют частотные характеристики тока в цепи.
- Преобразователи напряжения. Изменяют напряжения в большую или меньшую сторону. Среди них различают:
- Импульсные блоки питания.
- Источники бесперебойного питания (ИБП).
- Трансформаторы напряжения.
Также все устройства делятся на две группы — по принципу управления:
Распространенные схемы
Чтобы преобразовать напряжение одного уровня в другое, используют импульсные преобразователи с установленными индуктивными накопителями энергии. Исходя из этого, различают три типа схем преобразования:
Во всех перечисленных схемах используются электрические компоненты:
- Основной коммутирующий компонент.
- Источник питания.
- Конденсатор фильтра, который подключают параллельно сопротивлению нагрузки.
- Индуктивный накопитель энергии (дроссель, катушка индуктивности).
- Диод для блокировки.
Комбинирование данных элементов в определенной последовательности позволяет построить любую из вышеперечисленных схем.
Простой импульсный преобразователь
Самый элементарный преобразователь можно собрать из ненужных деталей от старого системного блока компьютера. Существенный недостаток данной схемы — выходное напряжение 220В далеко от идеала по своей форме синусоиды, имеет частоту, превышающую стандартные 50 Гц. Не рекомендуется подключать к такому аппарату чувствительную электронику.
В данной схеме применено интересное техническое решение. Для подключения к преобразователю техники с импульсными блоками питания (например, ноутбук) используют выпрямители со сглаживающими конденсаторами на выходе из устройства. Единственный минус — адаптер будет работать только в случае совпадения полярности выходного напряжения розетки с напряжением выпрямителя, встроенного в адаптер.
Для простых потребителей энергии подключение можно осуществить напрямую к выходу трансформатора TR1. Рассмотрим основные компоненты данной схемы:
- Резистор R1 и конденсатор C2 — задают частоту работы преобразователя.
- ШИМ-контролер TL494. Основа всей схемы.
- Силовые полевые транзисторы Q1 и Q2 — используются для большей эффективности. Размещаются на алюминиевых радиаторах.
- Транзисторы IRFZ44 можно заменить близким по характеристикам IRFZ46 или IRFZ48.
- Диоды D1 и D2 также можно заменить на FR107, FR207.
Если в схеме предполагается использование одного общего радиатора, необходимо установить транзисторы через изоляционные прокладки. По схеме, выходной дроссель наматывают на ферритовое кольцо от дросселя, которое также извлекают из блока питания компьютера. Первичную обмотку изготавливают из провода 0,6 мм. Она должна иметь 10 витков с отводом от середины. Поверх нее наматывают вторичную обмотку, состоящую из 80 витков. Выходной трансформатор можно также изъять из ненужного ИБП.
Схема очень проста. При правильной сборке она начинает работать сразу, не требует точной настройки. Отдавать в нагрузку она сможет ток до 2,5 А, но оптимальным режимом работы будет ток не более 1,5 А — а это более 300 Вт мощности.
ИНТЕРЕСНО: В магазине подобный преобразователь стоит в районе 3-4 тысяч рублей.
Схема преобразователя с выходом переменного тока
Данная схема известна еще радиолюбителям СССР. Однако это не делает ее неэффективной. Наоборот, она очень хорошо себя зарекомендовала, а главный ее плюс — получение стабильного переменного тока с напряжением 220В и частотой 50 Гц.
В качестве генератора колебаний выступает микросхема К561ТМ2, представляющая из себя D-тригер сдвоенного типа. Этот элемент можно заменить зарубежным аналогом CD4013.
Сам преобразователь имеет два силовых плеча, построенных на биполярных транзисторах КТ827А. Они имеют один существенный недостаток по сравнению с новыми полевыми транзисторами — данные компоненты сильно нагреваются в открытом состоянии, что происходит из-за высоких показателей сопротивления. Преобразователь работает на низкой частоте, поэтому в трансформаторе используют мощный стальной сердечник.
В данной схеме используется старый сетевой трансформатор TC-180. Он, как и остальные инверторы на основе несложных ШИМ-схем, выдает значительно отличающуюся синусоидальную форму напряжения. Однако этот недостаток немного сглаживается большой индуктивностью обмоток трансформатора и выходным конденсатором С7.
ВАЖНО: Иногда трансформатор может издавать ощутимый гул во время работы. Это говорит о неполадках в работе схемы.
Простой инвертор на транзисторах
Эта схема не сильно отличается от представленных выше. Основное отличие — использование генератора прямоугольных импульсов, построенного на биполярных транзисторах.
Главное преимущество данной схемы заключается в способности преобразователя сохранять работоспособность даже на сильно посаженном аккумуляторе. При этом диапазон входного напряжения может находиться в пределах от 3.5 до 18В. Но есть и минусы подобного инвертора. Так как в схеме отсутствует какой-либо стабилизатор на выходе, то возможны просадки напряжения, например, при разрядке аккумулятора. Так как данная схема также является низкочастотной, трансформатор для нее подбирают, аналогичный установленного в инверторе на основе микросхемы К561ТМ2.
Усовершенствования схем инверторов
Указанные выше схемы не идут в сравнение с заводскими изделиями. Они просты и слабо функциональны. Для улучшения их характеристик можно прибегнуть к довольно несложным переделкам, повышающим показатели устройства.
ВНИМАНИЕ: Любой монтаж электрики и электроники производится при отключенном источнике питания. Перед проверкой схемы прозвоните все входы и выходы мультиметром — это позволит избежать неприятных последствий.
Увеличение выходной мощности
Рассмотренные выше схемы базируются на одной основе — первичная обмотка трансформатора подключается через ключевой компонент (выходной транзистор плеча). Она соединяется с входом источника питания на время, заданное частотой и скважностью задающего генератора. При этом генерируются импульсы магнитного поля, возбуждающие во вторичной обмотке трансформатора синфазные импульсы с напряжением, равным напряжению в первичной обмотке, умноженному на отношение числа витков в обмотках.
Соответственно, ток проходит через выходной транзистор. При этом он равен току нагрузки, помноженному на обратное соотношение витков (коэффициент трансформации). Получается, что тот максимальный ток, который может пропускать через себя транзистор, задает максимальную мощность преобразователя.
Для увеличения выходной мощности используют два метода:
- Установка более мощного транзистора.
- Использование параллельного подключения нескольких маломощных транзисторов в одно плечо.
Для самодельного преобразователя предпочтительней использование второго способа, так как он позволяет сохранять работоспособность устройства при выходе из строя одного из транзисторов. К тому же, подобные транзисторы стоят меньших денег.
При условии отсутствии внутренней защиты от перегрузки, данный способ значительно повышает живучесть преобразователя. Также уменьшается общий нагрев внутренних компонентов при работе на прежней нагрузке.
Автоматическое отключение при разряде аккумулятора
Указанные схемы имеют один существенный недостаток. В них не предусмотрен компонент, который сможет автоматически отключить преобразователь в случае критического падения напряжения. Но решить данную проблему довольно просто. Достаточно установить обычной автомобильное реле в качестве автоматического выключателя.
Реле имеет собственное критическое напряжение, при котором происходит замыкание его контактов. При помощи подбора сопротивления резистора R1, которое будет составлять примерно 10% от сопротивления обмотки реле, настраивают момент разрыва контактов. Этот вариант продемонстрирован на схеме.
Данный вариант довольно примитивен. Для стабилизации работы преобразователь дополняют простой схемой управления, поддерживающей порог отключения намного лучше и точнее. Настройка порога срабатывания в этом случае рассчитывается методом подбора резистора R3.
Обнаружение неисправностей инвертора
Описанные выше схемы часто имеют два специфических дефекта:
- Отсутствие напряжения на выходе трансформатора.
- Малое напряжение на выходе трансформатора.
Рассмотрим способы диагностики данных неисправностей:
- Отказ в работе всех плечей преобразователя или отказ ШИМ-генератора. Проверить поломку можно при помощи диода. Рабочий ШИМ будет показывать пульсацию на диоде при подключении его к затворам транзисторов. Также стоит проверить целостность обмотки трансформатора «на обрыв» при наличии управляющего сигнала.
- Сильная просадка в напряжении — главный признак того, что одно силовое плечо престало работать. Найти поломку не сложно. На отказавшем транзисторе будет холодный радиатор. Для починки потребуется заменить ключ инвертора.
Заключение
Сделать преобразователь в домашних условиях не сложно. Главное — соблюдать последовательность соединений и грамотно подбирать компоненты. Лучше всего собирать преобразователь со встроенными механизмами защиты, которые обезопасят устройство при падении напряжения в аккумуляторе.