105 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Микросхема uln2003 на стиралке wf6520s6

Выходной драйвер ULN2003 для микроконтроллеров. Описание, подключение, datasheet на русском

ULN2003 — это универсальная интегральная микросхема, состоящая из 7 идентичных и независимых драйверов, которые позволяют управлять с помощью микроконтроллера реле, небольшим двигателем постоянного тока, шаговым двигателем, низковольтными лампами или светодиодной лентой.

Каждый драйвер состоит из двух транзисторов подключенных в конфигурации Дарлингтона. Пара Дарлингтона, разработанная Сидни Дарлингтоном в 1953 году, состоит в каскадом соединении двух биполярных транзисторов, в результате чего получается очень высокий коэффициент усиления, равный произведению коэффициента усиления каждого из двух транзисторов. Благодаря этому мы можем управлять нагрузками определенной мощности с очень малыми входными токами.

Пара Дарлингтона не свободна от некоторых недостатков, которые мы рассмотрим далее. Транзистор NPN универсального назначения открывается, когда мы подаем на его базу напряжение около 0,6 В. Если мы используем небольшой ток, мы можем довести его до насыщения с очень низким напряжением коллектор-эмиттер (VCE), например, в случае BC337, это между 0,2 В и 0,5 В.

В паре Дарлингтона входное напряжение будет в два раза больше, чем 0,6 В, потому что базовые напряжения обоих транзисторов складываются, как мы это можем видеть на рисунке. Также падение напряжения на выходном транзисторе будет больше, потому что это будет сумма напряжения насыщения первого транзистора + напряжение база-эмиттер выходного транзистора.

В любом случае, эти недостатки не являются существенными, поскольку в целом выходы микроконтроллера составляют 3,3 В или 5 В, что значительно превышает порог срабатывания ULN2003.

На предыдущем рисунке мы видим внутреннюю схему одного из каналов драйвера ULN2003. Здесь мы видим входной резистор на 2,7кОм, и еще два дополнительных резистора которые улучшают характеристики драйвера. Входное сопротивление каждого канала освобождает нас от установки внешних резисторов при подключении ULN2003 к микроконтроллеру.

Во внутренней схеме мы также можем видеть защитный диод, подключенный к коллектору выходного транзистора. Данный диод предназначен для защиты транзистора от ЭДС самоиндукции, возникающей в момент отключения индуктивной нагрузки (реле или двигателей). Чтобы этот диод работал, необходимо подключить вывод 9 (COM) к положительному выводу нагрузки (см. Рисунок с примером подключения).

Коэффициент усиления каждого драйвера больше 500, поэтому для получения максимального выходного тока достаточно на вход подать ток менее 1 мА.

На рисунке мы видим ULN2003, подключенный к микроконтроллеру (это могут быть PIC, Atmel, Arduino, Raspberry PI) и с различными нагрузками (двигатели постоянного тока, светодиодная лента, реле и т. д.).

В верхней части примера (подключение двигателя) мы видим, что для получения большего выходного тока можно параллельно соединять более одного канала. Вывод (+ V) – это напряжение, необходимое для питания силовой части и не связано с питанием микроконтроллера. Необходимо только, чтобы масса их была общей.

Микросхема ULN2003 является частью семейства подобных драйверов: ULN2001, ULN2002, ULN2003, ULN2004, которые очень похожи. Различие в первую очередь в значении входного сопротивления для согласования с различной логикой.

В настоящее время микросхема ULN2003 является наиболее популярной, поскольку она хорошо работает с управляющими напряжениями 5 В (TTL) и 3,3 В (LTTL). Существует вариант с 8 каналами вместо 7 – это ULN2803. Из-за восьмого канала корпус имеет 18 выводов. В остальном он подобен ULN2003.

ULN2003 драйвер нагрузок на 7 каналов, ULN2803 — на 8 каналов

В 16-выводном корпусе ULN2003 размещены 7 транзисторов Дарлингтона, которые способны управлять нагрузками с током до 500 мА и напряжением до 50 В на канал.

Спектр применений ULN2003 весьма широк:

  • логические буферы,
  • управление реле и электромагнитными клапанами,
  • управление шаговыми двигателями и щеточными двигателями постоянного тока,
  • управление светодиодными и газоразрядными индикаторами.

Основные параметры ULN2003А, ULN2004А

  • напряжение коллектор-эмиттер выходного ключа — 50 В,
  • пиковый ток коллектора — 500 мА,
  • суммарный ток всех каналов протекающий через общий вывод — 2,5 А,
  • диапазон рабочих температур -60°C..150°C.

На самом деле существует несколько типов похожих транзисторных сборок начнем с самой распространенной 2003 серии.

Схема одного из каналов в микросхемах ULN2003A, ULQ2003A и ULN2003AI.

Каждый из семи каналов содержит по два биполярных транзистора, резистор 2,7 кОм ограничивающий базовый ток, и два резистора на 7,2 кОм и 3 кОм защищающие транзисторы от открывания обратным током коллектора. Кроме того к схеме добавлены три защитных диода: первый защищает вход от отрицательного напряжения, два других защищают выход от отрицательного напряжения и от превышения напряжения на транзисторах выше питающего.

Наличие защитных выходных диодов актуально при работе на индуктивную нагрузку: диод для шунтирования обмотки реле или обмотки шагового двигателя уже встроен в микросхему и не нужно устанавливать внешний диод. А при использовании 7 каналов – 7 внешних диодов.

Управление ULN2003

Входная часть сборок ULN2003A, ULN2003AI, ULQ2003A спроектирована так чтобы работать совместно с ТТЛ и 3,3 В и 5 В К-МОП логикой.

ULN2002A создана для p-МОП логики.
Во входных цепях ULN2002A добавлен стабилитрон на 7 В и увеличено сопротивление базового резистора до 10,5 кОм, благодаря этому сборка может работать с входными напряжениями от 14 до 25 В.

Сборка ULN2004A, ULQ2004A предназначена для К-МОП логики с уровнем напряжений от 6 до 15В.
По сравнению с ULN2003, у ULN2004 просто увеличено сопротивление базового резистора до 10,5 кОм.

Как можно видеть на структурной схеме, входы и выходы расположены напротив друг друга, что весьма удобно при разводке печатной платы.

ULN2003 выпускается как для объемного монтажа: PDIP, так и для поверхностного: SOIC, SOP и TSSOP.

Схема включения ULN2003.

Одной ULN2003 можно управлять сразу 7 нагрузками, но когда нету такого количества нагрузок, то для увеличения надежности можно объединять каналы. Например 1,2 каналы использовать для первой обмотки; 3,4 для второй обмотки, а 5,6,7 для третьей.

Аналоги ULN2003

Разные зарубежные производители выпускают свои аналоги ULN2003: L203, MC1413, SG2003, TD62003. Так же есть и отечественный аналог: К1109КТ22.

8-ми канальный драйвер нагрузки ULN2803A, ULN2804A

Для работы с микроконтроллерами может быть более удобнымы 8-ми канальные драйверы. И у семиканальных ULN2003, ULN2004 есть их восьмиканальные братья ULN2803, ULN2804.

Точно также как и ULN2003 — ULN2803 рассчитан на управление от ТТЛ-логики и низковольной К-МОП, а ULN2804 от К-МОП питающейся в диапазоне 6 .. 15 В. Отличия ULN280X от ULN200X только в дополнительном канале и 18-выводном корпусе.
У ULN2803А есть отечественный аналог: К1109КТ63.

Драйверы нагрузки ULN2023A, ULN2024A

Третья двойка в названии сборки вместо нуля означает, что выходное напряжение может достигать 95 В, в остальном параметры и схемотехника этих сборок повторяют своих собратьев.

Навигация по записям

14 thoughts on “ ULN2003 драйвер нагрузок на 7 каналов, ULN2803 — на 8 каналов ”

ULN2003A не только как драйвер микроконтроллера хороша (предполагаю, что в 1976 году её точно с микроконтроллерами никто не использовал ), но и например как драйвер для 74HC595. С помощью 3-х выводов микроконтроллера управляем 74HC595, и получаем масштабируемое решение по управлению реле, шаговыми двигателями, светодиодами т.е. там где не нужны большие частоты.

Ну, не знаю… я ее в первый раз увидел в конце 90_х ковыряя термоконтроллер изготовленный в Великобритании в конце 70_х годов прошлого века. Устройство было на микроконтроллере, а ULN2003A работали в нем драйверами семисегментного светодиодного индикатора. Децимальная точка там не отображалась, и для индикации нужной информации достаточно было семи ключей. Думаю, семь ключей в этой микросхеме только из-за ограничений выбранного для нее корпуса.

Назрел вопрос — что-то подобное в более многоногих корпусах существует? Так то я всегда пользовался логикой с открытым коллектором или транзисторными ключами, но чисто на перспективу хотелось бы знать. И еще немного не в тему — не выпускались ли импортные аналоги К155ИД1? Довольно актуально сейчас в любительской практике, когда вернулась мода на газоразрядные индикаторы.

Импортный аналог К155ИД1 — SN74141N от TI, можно взять на алиэкспрессе от полутора долларов за штучку. Я считаю что это дорого.

Если нужно управлять ровно байтом (например семисегментный индикатор и точка) то подойдет аналог ULN2003A в 18 выводном корпусе — ULN2803A. С большим числом каналов драйверы не попадались.

Спасибо за подсказку. Но да, цены совершенно негуманные. Дешевле 1,1 доллара за штуку не нашел, плюс пересылка. На ебее еще страшнее, от 150 руб за штуку. И главное, все в dip корпусах, а я рассчитывал найти импортный аналог в soic… В таком случае возьму наши ИД1, их от 25 руб продают с рук.

Упс! А я только что нашел способ нестандартного использования ULN2003 как драйвера клавиатуры на 7 кнопок. Уровни с кнопок на входы, защитные диоды в качестве шифратора с 7 на 1, а сигнал высокого уровня с вывода 9 будет сигналом разрешения или прерывания, по которому МК будет выполнять процедуру прерывания с опросом состояния клавиатуры. Конечно, 8 линий занятые клавиатурой не есть хорошо. Но при необходимости отправлять контроллер в спячку и быстрого опроса кнопок по прерыванию, да при наличии большого количества свободных выводов, думаю, идея может найти хотя бы ограниченное применение.

Получается, что ULN2003 используется как диодная сборка из 7 диодов с общим катодом, мне кажется что дешевле будет взять две диодных сборки BAV70S — в каждой по две пары диодов с общим катодом, итого получаем 8 входов в более компактных корпусах, да и дешевле выйдет.

Вот вот, насчет низких частот. Этот недостаток ULN2003 обусловлен включением транзисторов по схеме Дарлингтона. Он ее еще до 76-го запатентовал, в 53-м, если память не изменяет. Так, с тех пор, и тянутся за токовыми ключами такого включения все их недостатки: и малая частота, и низкое КПД, и искажения сигнала… А вот используют до сих пор. Мощность при простоте — решают все, по крайней мере для пром автоматики. Клапана, шаговики, реле, подача. Все мощное, грубое и медленное.

Медленное… Как сказать. Типовое время включения 0,1мкс,выключения 0,2мкс.В пору импульсным стабилизатором управлять.

Два защитных диода и на общий провод и на плюс, можно подключать к индуктивной нагрузки без проблем. Удобно контроллер всегда чем то управляет тут легко подключил эту микросхему, которая выдерживает достаточно большой ток. Плохо,что только семь каналов в контролере часто требуется задействовать порт целиком,а это 8 каналов. И добавил бы производитель еще один канал.

В те времена о байтной привязке особо не думали, делали, как в корпус ляжет. В 16-ножечный, минус питание — как раз семь элементов И-НЕ помещалось. Для других целей, можно и другие ключевики найти, их много разных, для разных целей.

В те времена были популярны 14 выводные корпуса DIP14. Два вывода на питание, остается 12: в повторителях и инверторах типа 155ЛН1 — 155ЛН3 по 6 элементов.

Эххх! Не попалась мне эта микросхема раньше. Сделал внуку игрушку — панели с выключателями , шпингалетами, разетками, рекуляторами, моторчиками и «лампочками».Управления сделал на дискретных элементах. Ничего — переделаю. А цена , нас радиолюбителей, не пугает.Работоспособность и удобство — вот главное.

Ничего, что цена не пугает. Особенно, если учесть цену кабеля от пульта управления к игрушке… если я правильно представил себе устройство управления. ЭТО — микросхема управления! А как вы будете ей, или чему другому передавать данное управление: последовательно или параллельно, аналоговым или цифровым методом — вот от чего зависит себестоимость и удобство изделия. А на чем собрана оконечная дискретика, на транзисторных ключах, их сборках или, даже, на банальных релюхах — дело десятое.

Для реле удобно использовать tpic6c595 (tpic6b595) — это 75HC595+ULN2803 выполненное в одном корпусе

Микросхема uln2003 на стиралке wf6520s6

В 16-выводном корпусе ULN2003 размещены 7 транзисторов Дарлингтона, которые способны управлять нагрузками с током до 500 мА и напряжением до 50 В на канал.

Спектр применений ULN2003 весьма широк:

  • логические буферы,
  • управление реле и электромагнитными клапанами,
  • управление шаговыми двигателями и щеточными двигателями постоянного тока,
  • управление светодиодными и газоразрядными индикаторами.

Основные параметры ULN2003А, ULN2004А

  • напряжение коллектор-эмиттер выходного ключа — 50 В,
  • пиковый ток коллектора — 500 мА,
  • суммарный ток всех каналов протекающий через общий вывод — 2,5 А,
  • диапазон рабочих температур -60°C..150°C.

На самом деле существует несколько типов похожих транзисторных сборок начнем с самой распространенной 2003 серии.

Схема одного из каналов в микросхемах ULN2003A, ULQ2003A и ULN2003AI.

Каждый из семи каналов содержит по два биполярных транзистора, резистор 2,7 кОм ограничивающий базовый ток, и два резистора на 7,2 кОм и 3 кОм защищающие транзисторы от открывания обратным током коллектора. Кроме того к схеме добавлены три защитных диода: первый защищает вход от отрицательного напряжения, два других защищают выход от отрицательного напряжения и от превышения напряжения на транзисторах выше питающего.

Наличие защитных выходных диодов актуально при работе на индуктивную нагрузку: диод для шунтирования обмотки реле или обмотки шагового двигателя уже встроен в микросхему и не нужно устанавливать внешний диод. А при использовании 7 каналов – 7 внешних диодов.

Управление ULN2003

Входная часть сборок ULN2003A, ULN2003AI, ULQ2003A спроектирована так чтобы работать совместно с ТТЛ и 3,3 В и 5 В К-МОП логикой.

ULN2002A создана для p-МОП логики.
Во входных цепях ULN2002A добавлен стабилитрон на 7 В и увеличено сопротивление базового резистора до 10,5 кОм, благодаря этому сборка может работать с входными напряжениями от 14 до 25 В.

Сборка ULN2004A, ULQ2004A предназначена для К-МОП логики с уровнем напряжений от 6 до 15В.
По сравнению с ULN2003, у ULN2004 просто увеличено сопротивление базового резистора до 10,5 кОм.

Как можно видеть на структурной схеме, входы и выходы расположены напротив друг друга, что весьма удобно при разводке печатной платы.

ULN2003 выпускается как для объемного монтажа: PDIP, так и для поверхностного: SOIC, SOP и TSSOP.

Схема включения ULN2003.

Одной ULN2003 можно управлять сразу 7 нагрузками, но когда нету такого количества нагрузок, то для увеличения надежности можно объединять каналы. Например 1,2 каналы использовать для первой обмотки; 3,4 для второй обмотки, а 5,6,7 для третьей.

Аналоги ULN2003

Разные зарубежные производители выпускают свои аналоги ULN2003: L203, MC1413, SG2003, TD62003. Так же есть и отечественный аналог: К1109КТ22.

8-ми канальный драйвер нагрузки ULN2803A, ULN2804A

Для работы с микроконтроллерами может быть более удобнымы 8-ми канальные драйверы. И у семиканальных ULN2003, ULN2004 есть их восьмиканальные братья ULN2803, ULN2804.

Точно также как и ULN2003 — ULN2803 рассчитан на управление от ТТЛ-логики и низковольной К-МОП, а ULN2804 от К-МОП питающейся в диапазоне 6 .. 15 В. Отличия ULN280X от ULN200X только в дополнительном канале и 18-выводном корпусе.
У ULN2803А есть отечественный аналог: К1109КТ63.

Драйверы нагрузки ULN2023A, ULN2024A

Третья двойка в названии сборки вместо нуля означает, что выходное напряжение может достигать 95 В, в остальном параметры и схемотехника этих сборок повторяют своих собратьев.

14 thoughts on “ ULN2003 драйвер нагрузок на 7 каналов, ULN2803 — на 8 каналов ”

ULN2003A не только как драйвер микроконтроллера хороша (предполагаю, что в 1976 году её точно с микроконтроллерами никто не использовал ), но и например как драйвер для 74HC595. С помощью 3-х выводов микроконтроллера управляем 74HC595, и получаем масштабируемое решение по управлению реле, шаговыми двигателями, светодиодами т.е. там где не нужны большие частоты.

Ну, не знаю… я ее в первый раз увидел в конце 90_х ковыряя термоконтроллер изготовленный в Великобритании в конце 70_х годов прошлого века. Устройство было на микроконтроллере, а ULN2003A работали в нем драйверами семисегментного светодиодного индикатора. Децимальная точка там не отображалась, и для индикации нужной информации достаточно было семи ключей. Думаю, семь ключей в этой микросхеме только из-за ограничений выбранного для нее корпуса.

Назрел вопрос — что-то подобное в более многоногих корпусах существует? Так то я всегда пользовался логикой с открытым коллектором или транзисторными ключами, но чисто на перспективу хотелось бы знать. И еще немного не в тему — не выпускались ли импортные аналоги К155ИД1? Довольно актуально сейчас в любительской практике, когда вернулась мода на газоразрядные индикаторы.

Импортный аналог К155ИД1 — SN74141N от TI, можно взять на алиэкспрессе от полутора долларов за штучку. Я считаю что это дорого.

Если нужно управлять ровно байтом (например семисегментный индикатор и точка) то подойдет аналог ULN2003A в 18 выводном корпусе — ULN2803A. С большим числом каналов драйверы не попадались.

Спасибо за подсказку. Но да, цены совершенно негуманные. Дешевле 1,1 доллара за штуку не нашел, плюс пересылка. На ебее еще страшнее, от 150 руб за штуку. И главное, все в dip корпусах, а я рассчитывал найти импортный аналог в soic… В таком случае возьму наши ИД1, их от 25 руб продают с рук.

Упс! А я только что нашел способ нестандартного использования ULN2003 как драйвера клавиатуры на 7 кнопок. Уровни с кнопок на входы, защитные диоды в качестве шифратора с 7 на 1, а сигнал высокого уровня с вывода 9 будет сигналом разрешения или прерывания, по которому МК будет выполнять процедуру прерывания с опросом состояния клавиатуры. Конечно, 8 линий занятые клавиатурой не есть хорошо. Но при необходимости отправлять контроллер в спячку и быстрого опроса кнопок по прерыванию, да при наличии большого количества свободных выводов, думаю, идея может найти хотя бы ограниченное применение.

Получается, что ULN2003 используется как диодная сборка из 7 диодов с общим катодом, мне кажется что дешевле будет взять две диодных сборки BAV70S — в каждой по две пары диодов с общим катодом, итого получаем 8 входов в более компактных корпусах, да и дешевле выйдет.

Вот вот, насчет низких частот. Этот недостаток ULN2003 обусловлен включением транзисторов по схеме Дарлингтона. Он ее еще до 76-го запатентовал, в 53-м, если память не изменяет. Так, с тех пор, и тянутся за токовыми ключами такого включения все их недостатки: и малая частота, и низкое КПД, и искажения сигнала… А вот используют до сих пор. Мощность при простоте — решают все, по крайней мере для пром автоматики. Клапана, шаговики, реле, подача. Все мощное, грубое и медленное.

Медленное… Как сказать. Типовое время включения 0,1мкс,выключения 0,2мкс.В пору импульсным стабилизатором управлять.

Два защитных диода и на общий провод и на плюс, можно подключать к индуктивной нагрузки без проблем. Удобно контроллер всегда чем то управляет тут легко подключил эту микросхему, которая выдерживает достаточно большой ток. Плохо,что только семь каналов в контролере часто требуется задействовать порт целиком,а это 8 каналов. И добавил бы производитель еще один канал.

В те времена о байтной привязке особо не думали, делали, как в корпус ляжет. В 16-ножечный, минус питание — как раз семь элементов И-НЕ помещалось. Для других целей, можно и другие ключевики найти, их много разных, для разных целей.

В те времена были популярны 14 выводные корпуса DIP14. Два вывода на питание, остается 12: в повторителях и инверторах типа 155ЛН1 — 155ЛН3 по 6 элементов.

Эххх! Не попалась мне эта микросхема раньше. Сделал внуку игрушку — панели с выключателями , шпингалетами, разетками, рекуляторами, моторчиками и «лампочками».Управления сделал на дискретных элементах. Ничего — переделаю. А цена , нас радиолюбителей, не пугает.Работоспособность и удобство — вот главное.

Ничего, что цена не пугает. Особенно, если учесть цену кабеля от пульта управления к игрушке… если я правильно представил себе устройство управления. ЭТО — микросхема управления! А как вы будете ей, или чему другому передавать данное управление: последовательно или параллельно, аналоговым или цифровым методом — вот от чего зависит себестоимость и удобство изделия. А на чем собрана оконечная дискретика, на транзисторных ключах, их сборках или, даже, на банальных релюхах — дело десятое.

Для реле удобно использовать tpic6c595 (tpic6b595) — это 75HC595+ULN2803 выполненное в одном корпусе

Микросхема ULN2003 (ULN2003a) по сути своей является набором мощных составных ключей для применения в цепях индуктивных нагрузок. Может быть применена для управления нагрузкой значительной мощности, включая электромагнитные реле, двигатели постоянного тока, электромагнитные клапаны, в схемах управления различными шаговыми двигателями и другие.

Микросхема ULN2003 — описание

Краткое описание ULN2003a. Микросхема ULN2003a — это транзисторная сборка Дарлингтона с выходными ключами повышенной мощности, имеющая на выходах защитные диоды, которые предназначены для защиты управляющих электрических цепей от обратного выброса напряжения от индуктивной нагрузки.

Каждый канал (пара Дарлингтона) в ULN2003 рассчитан на нагрузку 500 мА и выдерживает максимальный ток до 600 мА. Входы и выходы расположены в корпусе микросхемы друг напротив друга, что значительно облегчает разводку печатной платы.

ULN2003 относится к семейству микросхем ULN200X. Различные версии этой микросхемы предназначены для определенной логики. В частности, микросхема ULN2003 предназначена для работы с TTL логикой (5В) и логических устройств CMOS. Широкое применение ULN2003 нашло в схемах управления широким спектром нагрузок, в качестве релейных драйверов, драйверов дисплея, линейных драйверов и т. д. ULN2003 также используется в драйверах шаговых двигателей.

Сегодня вы узнаете о четырехфазном шаговом двигателе 28BYJ-48, работающим от постоянного напряжения 5 Вольт. Также существует его модификация на 12 Вольт. Двигатель потребляет значительный ток, а это значит, что мы не можем подключить его напрямую к выводам Arduino. Воспользуемся для этого драйвером двигателя на микросхеме ULN2003.

Технические параметры двигателя 28BYJ-48

  • Модель: 28BYJ-48
  • Тип двигателя: Униполярный
  • Напряжение питания: 5 Вольт, DC
  • Количество фаз: 4
  • Частота: 100 Гц
  • Сопротивление: 50Ω ± 7% (при 25 ℃)

Общие сведения о движке

4-х фазный шаговый двигатель 28BYJ-48 — это бесколлекторный двигатель, имеющий дискретное перемещение (вращение вала осуществляется шагами). На роторе (валу), расположен магнит, а вокруг него находятся катушки. Подавая поочередно ток на эти катушки, создается магнитное поле, которое отталкивает или притягивает магнитный вал, заставляя двигатель вращаться. Такая конструкция позволяет с большой точностью управлять валом, относительно катушек. Принципиальная схема четырехфазного шагового двигателя 28BYJ-48 приведена ниже.

Двигатель называется четырех фазным, из-за того, что в нем содержится две обмотки, которые, в свою очередь, разделены на четыре. (Это отражено на схеме выше). Центральные отводы катушек подключены вместе и служат для питания двигателя. Так как каждая обмотка подключена к питанию, такие двигатели называют униполярными. На роторе 28BYJ-48 расположено 8 магнитов, с чередующимися полюсами (то есть, четыре магнита с двумя полюсами).

На рисунке видно, что внутри расположен редуктор, с примерным передаточным числом в 1:64, если быть точнее 1:63,68395. Это значит, что двигатель за один оборот осуществляет 4075.7728395 шага. Данный двигатель поддерживает полушаговый режим и за один полный оборот может совершать 4076 шага, а точнее за 1° делает примерно 11,32 шага. (4076 / 360 = 11,32).

Режимы работы двигателя:

Чаще всего, при использовании шагового двигателя 28BYJ 48, используют два режима подключения.

  • Полушаговый режим — за 1 такт, ротор делает ½ шага.
  • Полношаговый режим — за 1 такт, ротор делает 1 шаг.

Ниже представлены таблицы последовательности тактов:

Модуль управления шаговым двигателем ULN2003:

Цифровой вывод микроконтроллера выдает ток до

40 мА, а одна обмотка 28BYJ-48 в пике потребляет

320 мА, то есть, если подключить двигатель напрямую, микроконтроллер сгорит. Для защиты был разработан модуль шагового двигателя ULN2003, в котором используется микросхема ULN2003A (состоящая из 7 ключей), которая позволяет управлять нагрузкой до 500 мА (один ключ). Данный модуль может работать с 5 Вольтовым и 12 Вольтовым двигателем 28BYJ-48. Для переключения необходимо установить или убрать перемычку (по умолчанию перемычка установлена на питание 5 Вольт).

С принципиальной схемой модуля ULN2003 можно ознакомиться на рисунке ниже

  • 1 — GND: «-» питание модуля
  • 2 — Vcc: «+» питание модуля (5В или 12В)
  • 3 — Vcc: «+» питание модуля (перемычка, только при 5В)
  • 4 — Vcc: «+» питание модуля (перемычка, только при 5В)

МС uln2003: схема подключения и управление шаговым двигателем

Каждый радиолюбитель сталкивался с проблемой управления шаговым двигателем, реле и прочими видами достаточно мощных нагрузок, строя при этом «бородатые» схемы сопряжения с логикой. Но все это в прошлом, потому что компания STMicroelectronics выпустила достаточно мощный коммутатор, который позволяет выполнять все задуманное, не опасаясь за полное отсутствие места в корпусе или постоянно выходящие из строя выходные транзисторы.

Интегральная схема позволяет без проектирования лишних схем и паразитных соединений минимизировать количество используемых деталей в готовом конструктивном решении. Потому что она представляет собой набор коммутаторов, построенный на биполярных транзисторах составного типа Дарлингтона.

Здесь видно соединение по привычной нам схеме усилителя эмиттерного повторителя. Из числа компонентов наблюдаются:

  • транзистор Дарлингтона;
  • 3 резистора, задающих напряжение и ток смещения;
  • обратный диод, позволяющий подключать индуктивные нагрузки без опасения для ключей;
  • диод в качестве температурной стабилизации, подключенный к базе и эмиттеру.

Мощные выходные транзисторы и наличие большого количества раздельных каналов управления позволяет использовать ее для управления шаговым двигателем. Также она применяется в релейных схемах, где может быть использован обычный двигатель, управляемый посредством коммутации выходных ключей, переключающих корректирующие цепи.

Характеристики микросхемы

Как показывает практика использования представленной микросхемы, она является достаточно мощной, потому что судя по datasheet uln2003ag технические характеристики позволяют коммутировать достаточно большой ток до 500 мА. Но не стоит давать работать ей на пределе, потому что выходной транзистор хоть и защищен обратным диодом, он может пострадать из-за банального перегрева.

Чтобы этого не происходило, правильно подходите к расчету потребляемой и рассеиваемой мощности. В данном случае при максимальном напряжении на CE равном 50 В максимальная мощность выходного транзистора составит не более 25 Вт, при этом он будет очень сильно греться. Поэтому номинальный коммутационный ток лучше поддерживать не более 300-400 мА. В таком режиме микросхема будет работать долго и стабильно.

Структурная схема микросхемы до боли проста и состоит всего из 7 ячеек стандартной ТТЛ-логики И-НЕ с подключенным обратным диодом на общий вывод питания COM . С топологией устройства также все просто, каждый вход расположен напротив выхода, что не даст спутать выводы при проектировании каких-либо устройств. Главное запомнить, что первый вывод является прямым входом.

Что касается характеристик, то они представлены для микросхем с ТТЛ-логикой, при котором управляющий сигнал не превышает 5 В. Но также выпускаются аналоги КМОП, которые могут работать от более низкого порога около 2 В до 9 В.

Аналоги микросхемы uln 2003

Как и любая друга, микросхема uln 2003 аналоги имеет как среди импортных, так и отечественных производителей. Например, самым популярным из них является ключ К1109КТ22, ITT 656, L 203, M 2003 P , NE 5603 N и другие. Выбирая аналог к этой микросхеме, необходимо обращать внимание на топологию. Если этот ТТЛ-логика, то и входное напряжение должно быть не более 5 В. Все представленные аналоги этого устройства имеют то же техническое исполнение и конструктив, поэтому могут быть заменены без внесения каких-либо изменений в схему.

Схема подключения

На uln 2003 схема подключения до боли проста и не включает никаких компонентов. Главное, не перепутать вход с выходом и общий вывод, в остальном все и так ясно. Но все же для наглядности стоит повторить схему на примере с шаговым двигателем с питанием от 12 до 24 В. Общий провод от +24В подключается на 9 вывод и к центральному отводу обмоток двигателя, все остальные оп порядку согласно полюсам. Управление двигателем осуществляется по аналогичным линиям, только со входа МС.

При работе в таком режиме вероятность спалить выходной транзистор достаточно большая, потому что короткое замыкание в двигателе никто еще не отменял, точно также, как и клин ротора, из-за чего ток может существенно возрасти. Поэтому в каждую линию управления по выходу можно поставить шунт и обрисовать его схемой защиты от КЗ. Это зависит от конкретной задачи и типа устройства, в котором эта микросхема применяется.

Зависимость входного напряжения и тока в нагрузке

При разработке схем с участием представленной микросхемы необходимо учитывать порог регулирования тока, который зависит нелинейной характеристикой от входного напряжения:

  • В ТТЛ-логике при входном напряжении 2,4 В ток коммутации составляет не более 200 мА.
  • При U вх.=2,7В, выходной ток не превышает 250 мА.
  • При величине входного напряжения не более 3 В, ток коллектора выходного транзистора составляет 300 мА.

Также в устройстве присутствует паразитная емкость, которая может достигать 25 pF в зависимости от частоты управляющего напряжения или создаваемых помех в непосредственной близости от нее. При этом минимальный порог паразитной емкости находиться на уровне 15 пФ. Что касается времени включения выходных транзисторов, то они являются достаточно быстрыми. Время перехода из одного состояния в другое лежит в пределах от 0,25 до 1 мкс, что говорит о возможности работы на достаточно высоких частотах.

Исходя из описания на микросхему, максимальный ток составляет 0,5 А, но в таком режиме она существенно нагревается до 70 и более градусов, что может быть критичным. Ведь максимальная температура, при которой микросхема еще нормально работает, составляет порядка 85 градусов. Также следует отметить, что максимальный входной ток управления при напряжении 3,85 В не должен превышать 1,35 мА. А это немаловажный факт, потому что именно по входу у многих схемотехников она выходит из строя.

На следующих диаграммах показана зависимость входного и выходного токов, которая является практически линейной, что позволяет более качественно подобрать элементы схемы, обеспечив нормальный температурный режим для стабильной работы устройства. Более подробно узнать о свойствах микросхемы можно из datasheet, который можно скачать на сайте.

Практическое применение

Сфера применения микросхемы uln 2003 достаточно широкая и охватывает как промышленность, так и детские игрушки с целью развлечения. Например, ее можно применить в устройстве переключения бегущих огней, собранных на мощных светодиодах или даже лампочках с общим питание не более 50 В. U ln2003 биполярный шаговый двигатель может вращать, потому что у нее достаточно выводов, чтобы выполнить целый оборот с позиционированием. Как пример, можно организовать управление вентиляторным шаговым двигателем посредством параллельного порта, собрав небольшую схему с подключением к цифровым выходам интерфейса из линии DATA .

А если использовать в составе с микроконтроллером, то можно организовать полноценное управление релейной схемой с током потребления по каждому из каналов не более 300 мА.

Как проверить микросхему?

Обычно на руках у радиолюбителя всяческие микросхемы появляются из других устройств, которые были разобраны очень давно, и уже нет никакой информации о состоянии его компонентов, поэтому вопрос, как проверить uln 2003a вполне актуален. А сделать это можно достаточно просто:

Прозвонить мультиметром. С его помощью можно выяснить пробит ли диод или сам транзистор. Если что-то пробито (звонится на КЗ или около), то в любом случае эта ячейка неисправна. Базу прозвонить таким способом не удастся, потому что на входе имеется резистор сопротивлением 2,7 кОм. Лучше попробовать включить открыть транзистор, подав на вход напряжение величиной не более 3,85 В.

Работа с шаговым мотором 28BYJ-48 и драйвером ULN2003

Сегодня вы узнаете о четырехфазном шаговом двигателе 28BYJ-48, работающим от постоянного напряжения 5 Вольт. Также существует его модификация на 12 Вольт. Двигатель потребляет значительный ток, а это значит, что мы не можем подключить его напрямую к выводам Arduino. Воспользуемся для этого драйвером двигателя на микросхеме ULN2003.

Технические параметры двигателя 28BYJ-48

  • Модель: 28BYJ-48
  • Тип двигателя: Униполярный
  • Напряжение питания: 5 Вольт, DC
  • Количество фаз: 4
  • Частота: 100 Гц
  • Сопротивление: 50Ω ± 7% (при 25 ℃)

Общие сведения о движке

4-х фазный шаговый двигатель 28BYJ-48 — это бесколлекторный двигатель, имеющий дискретное перемещение (вращение вала осуществляется шагами). На роторе (валу), расположен магнит, а вокруг него находятся катушки. Подавая поочередно ток на эти катушки, создается магнитное поле, которое отталкивает или притягивает магнитный вал, заставляя двигатель вращаться. Такая конструкция позволяет с большой точностью управлять валом, относительно катушек. Принципиальная схема четырехфазного шагового двигателя 28BYJ-48 приведена ниже.

Двигатель называется четырех фазным, из-за того, что в нем содержится две обмотки, которые, в свою очередь, разделены на четыре. (Это отражено на схеме выше). Центральные отводы катушек подключены вместе и служат для питания двигателя. Так как каждая обмотка подключена к питанию, такие двигатели называют униполярными. На роторе 28BYJ-48 расположено 8 магнитов, с чередующимися полюсами (то есть, четыре магнита с двумя полюсами).

На рисунке видно, что внутри расположен редуктор, с примерным передаточным числом в 1:64, если быть точнее 1:63,68395. Это значит, что двигатель за один оборот осуществляет 4075.7728395 шага. Данный двигатель поддерживает полушаговый режим и за один полный оборот может совершать 4076 шага, а точнее за 1° делает примерно 11,32 шага. (4076 / 360 = 11,32).

Режимы работы двигателя:

Чаще всего, при использовании шагового двигателя 28BYJ 48, используют два режима подключения.

  • Полушаговый режим — за 1 такт, ротор делает ½ шага.
  • Полношаговый режим — за 1 такт, ротор делает 1 шаг.

Ниже представлены таблицы последовательности тактов:

Модуль управления шаговым двигателем ULN2003:

Цифровой вывод микроконтроллера выдает ток до

40 мА, а одна обмотка 28BYJ-48 в пике потребляет

320 мА, то есть, если подключить двигатель напрямую, микроконтроллер сгорит. Для защиты был разработан модуль шагового двигателя ULN2003, в котором используется микросхема ULN2003A (состоящая из 7 ключей), которая позволяет управлять нагрузкой до 500 мА (один ключ). Данный модуль может работать с 5 Вольтовым и 12 Вольтовым двигателем 28BYJ-48. Для переключения необходимо установить или убрать перемычку (по умолчанию перемычка установлена на питание 5 Вольт).

С принципиальной схемой модуля ULN2003 можно ознакомиться на рисунке ниже

  • 1 — GND: «-» питание модуля
  • 2 — Vcc: «+» питание модуля (5В или 12В)
  • 3 — Vcc: «+» питание модуля (перемычка, только при 5В)
  • 4 — Vcc: «+» питание модуля (перемычка, только при 5В)

Ремонт стиральной машины Samsung WF6520S6V

Цены на популярные неисправности

    Не включается /не запускается

Текущие акции и скидки

1. Если результат работы вас не устроил…

Мы переделаем свою работу бесплатно.

2. Если вы не хотите повторного ремонта…

Мы вернем вам деньги.

Подробнее на странице — гарантии.

Сделайте перезагрузку, чтобы сбросить ошибки. Если это не поможет, значит, нужна замена электронного модуля. Возможно, мастер сможет его отремонтировать. Но в любом случае обратитесь к хорошему специалисту. Самостоятельно такую проблему не устранить.

Сделайте перезагрузку, чтобы сбросить ошибки. Если это не поможет, значит, нужна замена электронного модуля. Возможно, мастер сможет его отремонтировать. Но в любом случае обратитесь к хорошему специалисту. Самостоятельно такую проблему не устранить.

Осмотрите сетчатый фильтр: нет ли там засора. Подключите сливной шланг правильно.

  1. Проверьте уровень напряжения в сети. Если оно слишком низкое, дождитесь нормального или установите стабилизатор. Такая ошибка может возникать из-за скачков напряжения.
  2. Перезагрузите стиральную машину. Возможно, в электронном модуле случился сбой. Также не исключена поломка — в таком случае модуль придется заменить или перепрошить.
  3. Проверьте шнур питания машинки: нет ли повреждений. При обнаружении дефектов замените его.
  4. Прозвоните проводку двигателя, чтобы исключить повреждения контактов, которые соединяют двигатель с электронным модулем. Поврежденные участки нужно заменить.

Для использования сервиса начните вводить название кода ошибки, затем выберите нужный вариант из выпадающего списка. В результате Вы получите описание предполагаемой неисправности и советы по её устранению.

Стиральные машины Самсунг WF6520S6V надежные и удобные. А еще они очень долговечные, поэтому не стоит при первой же поломке искать себе новую технику. Лучше позаботиться о профессиональном ремонте неисправной стиралки. Если вы живете в Санкт-Петербурге, просто обратитесь в «Клуб Ремонта». Наш мастер сделает быстрый и качественный ремонт стиральной машины Samsung WF6520S6V с выездом на дом в любую точку СПб.

Что случилось с вашей стиралкой?

Машинки Самсунг WF6520S6V функциональные и высокотехнологичные. Но их поломки обычно такие же, как и у более простых моделей. Как правило, к неисправностям приводит неправильная эксплуатация, ошибки при установке или плохие условия работы (жесткая вода, скачки напряжения). Чаще всего у Samsung WF6520S6V выходят из строя:

  • двигатель;
  • блок управления;
  • переключатель;
  • сливной шланг или помпа;
  • ремни, щетки, подшипники.

Что делать при поломке?

Любая неисправность Самсунг WF6520S6V – это не приговор, а лишь повод обратиться к мастеру. Сделайте это как можно скорее, и ваша стиралка будет спасена:

  1. Наши специалисты умеют устранять как простые, так и самые сложные поломки машин Samsung.
  2. У нас есть все необходимые запчасти для WF6520S6V.
  3. Мастер приедет к вам на дом в любое удобное время и отремонтирует стиральную машину за пару часов.
  4. После ремонта вы получите гарантию и на работу, и на установленные запчасти (если придется выполнить замену).

Кроме того, у нас лучшие цены на ремонт стиральных машин Samsung WF6520S6V в Санкт-Петербурге. Звоните прямо сейчас – возможно, наш мастер отремонтирует вашу стиралку уже сегодня!

Отремонтировать Вашу технику можем уже сегодня!

0 0 голоса
Рейтинг статьи
Ссылка на основную публикацию
Яндекс.Метрика