981 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...
Затеяли ремонт? Вам сюда ⬇️

Компьютерные блоки питания схемы принцип работы ремонт

Схемотехника блоков питания персональных компьютеров. Часть 1.

Принцип работы импульсного блока питания

Один из самых важных блоков персонального компьютера — это, конечно, импульсный блок питания. Для более удобного изучения работы блока есть смысл рассматривать каждый его узел по отдельности, особенно, если учесть, что все узлы импульсных блоков питания различных фирм практически одинаковые и выполняют одни и те же функции. Все блоки питания рассчитаны на подключение к однофазной сети переменного тока 110/230 вольт и частотой 50 – 60 герц. Импортные блоки на частоту 60 герц прекрасно работают и в отечественных сетях.

Основной принцип работы импульсных блоков питания заключается в выпрямлении сетевого напряжения с последующим преобразованием его в переменное высокочастотное напряжение прямоугольной формы, которое понижается трансформатором до нужных значений, выпрямляется и фильтруется.

Таким образом, основную часть схемы любого компьютерного блока питания, можно разделить на несколько узлов, которые производят определённые электрические преобразования. Перечислим эти узлы:

Сетевой выпрямитель. Выпрямляет переменное напряжение электросети (110/230 вольт).

Высокочастотный преобразователь (Инвертор). Преобразует постоянное напряжение, полученное от выпрямителя в высокочастотное напряжение прямоугольной формы. К высокочастотному преобразователю отнесём и силовой понижающий импульсный трансформатор. Он понижает высокочастотное переменное напряжение от преобразователя до напряжений, требуемых для питания электронных узлов компьютера.

Узел управления. Является «мозгом» блока питания. Отвечает за генерацию импульсов управления мощным инвертором, а также контролирует правильную работу блока питания (стабилизация выходных напряжений, защита от короткого замыкания на выходе и пр.).

Промежуточный каскад усиления. Служит для усиления сигналов от микросхемы ШИМ-контроллера и подачи их на мощные ключевые транзисторы инвертора (высокочастотного преобразователя).

Выходные выпрямители. С помощью выпрямителя происходит выпрямление — преобразование переменного низковольного напряжения в постоянное. Здесь же происходит стабилизация и фильтрация выпрямленного напряжения.

Это основные части блока питания компьютера. Их можно найти в любом импульсном блоке питания, начиная от простейшего зарядника для сотового телефона и заканчивая мощными сварочными инверторами. Отличия заключаются лишь в элементной базе и схемотехнической реализации устройства.

Довольно упрощённо структуру и взаимосвязь электронных узлов компьютерного блока питания (формат AT) можно изобразить следующим образом.

О всех этих частях схемы будет рассказано в дальнейшем.

Рассмотрим принципиальную схему импульсного блока питания по отдельным узлам. Начнём с сетевого выпрямителя и фильтра.

Сетевой фильтр и выпрямитель.

Отсюда, собственно, и начинается блок питания. С сетевого шнура и вилки. Вилка используется, естественно, по «евростандарту» с третьим заземляющим контактом.

Следует обратить внимание, что многие недобросовестные производители в целях экономии не ставят конденсатор С2 и варистор R3, а иногда и дроссель фильтра L1. То есть посадочные места есть, и печатные дорожки тоже, а деталей нет. Ну, вот прям как здесь.

Как говорится: «No comment «.

Во время ремонта желательно довести фильтр до нужной кондиции. Резисторы R1, R4, R5 выполняют функцию разрядников для конденсаторов фильтра после того как блок отключен от сети. Термистор R2 ограничивает амплитуду тока заряда конденсаторов С4 и С5, а варистор R3 защищает блок питания от бросков сетевого напряжения.

Стоит особо рассказать о выключателе S1 («230/115»). При замыкании данного выключателя, блок питания способен работать от сети с напряжением 110. 127 вольт. В результате выпрямитель работает по схеме с удвоением напряжения и на его выходе напряжение вдвое больше сетевого.

Если необходимо, чтобы блок питания работал от сети 220. 230 вольт, то выключатель S1 размыкают. В таком случае выпрямитель работает по классической схеме диодный мост. При такой схеме включения удвоения напряжения не происходит, да это и не нужно, так как блок работает от сети 220 вольт.

В некоторых блоках питания выключатель S1 отсутствует. В других же его располагают на тыльной стенке корпуса и помечают предупреждающей надписью. Нетрудно догадаться, что если замкнуть S1 и включить блок питания в сеть 220 вольт, то это кончится плачевно. За счёт удвоения напряжения на выходе оно достигнет величины около 500 вольт, что приведёт к выходу из строя элементов схемы инвертора.

Поэтому стоит внимательнее относиться к выключателю S1. Если предполагается использование блока питания только совместно с сетью 220 вольт, то его можно вообще выпаять из схемы.

Вообще все компьютеры поступают в нашу торговую сеть уже адаптированными на родные 220 вольт. Выключатель S1 либо отсутствует, либо переключен на работу в сети 220 вольт. Но если есть возможность и желание то лучше проверить. Выходное напряжение, подаваемое на следующий каскад составляет порядка 300 вольт.

Можно повысить надёжность блока питания небольшой модернизацией. Достаточно подключить варисторы параллельно резисторам R4 и R5. Варисторы стоит подобрать на классификационное напряжение 180. 220 вольт. Такое решение сможет уберечь блок питания при случайном замыкании выключателя S1 и включении блока в сеть 220 вольт. Дополнительные варисторы ограничат напряжение, а плакий предохранитель FU1 перегорит. При этом после несложного ремонта блок питания можно вернуть в строй.

Конденсаторы С1, С3 и двухобмоточный дроссель на ферритовом сердечнике L1 образуют фильтр способный защитить компьютер от помех, которые могут проникнуть по сети и одновременно этот фильтр защищает сеть от помех, создаваемых компьютером.

Возможные неисправности сетевого выпрямителя и фильтра.

Характерные неисправности выпрямителя, это выход из строя одного из диодов «моста» (редко), хотя бывают случаи, когда выгорает весь диодный мост, или утечка электролитических конденсаторов (гораздо чаще). Внешне это характеризуется вздутием корпуса и утечкой электролита. Подтёки очень хорошо заметны. При пробое хотя бы одного из диодов выпрямительного моста, как правило, перегорает плавкий предохранитель FU1.

При ремонте цепей сетевого выпрямителя и фильтра имейте в виду то, что эти цепи находятся под высоким напряжением, опасным для жизни ! Соблюдайте технику электробезопасности и не забывайте принудительно разряжать высоковольные электролитические конденсаторы фильтра перед проведением работ!

Ремонт компьютерного блока питания — пошаговые фото и видео

Проверка входного сопротивления компьютерного блока питания

Первым делом проводим внешний и внутренний осмотр. Смотрим «начинку». Нет ли каких-то сгоревших радиоэлементов? Может где-то обуглена плата или взорвался конденсатор, либо пахнет горелым кремнием? Все это учитываем при осмотре. Обязательно смотрим на предохранитель. Если он сгорел, ставим вместо него временную перемычку примерно на столько же Ампер, а потом замеряем входное сопротивление через два сетевых провода. Это можно сделать на вилке блока питания при включенной кнопке «ВКЛ». Оно не должно быть слишком маленькое, иначе при включении блока питания еще раз произойдет короткое замыкание.

Ремонт блока питания компьютера своими руками — замер напряжения

Если все хорошо, включаем наш блок питания в сеть с помощью комплектного сетевого кабеля, не забываем про кнопку включения, если она была в выключенном состоянии.

Далее меряем напряжение на фиолетовом проводе.

На фиолетовом проводе отобразило 0 Вольт. Берем мультиметр и прозваниваем фиолетовый провод на землю. Земля — это провода черного цвета с надписью СОМ (сокращенно от «common», что значит «общий»). Есть также некоторые виды «земель»:

Как только мы коснулись земли и фиолетового провода, мультиметр издал показал нули на дисплее. Короткое замыкание, однозначно.

Ремонта блока питания — поиск схемы и замена стабилитрона

Далее ищем схему на этот блок питания. В Сети мы нашли схему Power Man 300 Ватт. Отличия в схеме лишь в порядковых номерах радиодеталей на плате. Если уметь анализировать печатную плату на соответствие схеме, это не будет большой проблемой.

Вот сама схема на Power Man 300W. Щелкните по ней для увеличения в натуральный размер.

Как мы видим, дежурное питание (дежурка) обозначается как +5VSB:

Прямо от него идет стабилитрон номиналом в 6,3 Вольта на землю. А как вы помните, стабилитрон — это тот же самый диод, но подключается в схемах наоборот. У стабилитрона используется обратная ветвь ВАХ. Если бы стабилитрон был живой, то у нас провод +5VSB не коротил бы на массу. Предполагаем, что стабилитрон сгорел и PN переход разрушен.

  • Смотрите также, как собрать простой тестер для проверки стабилитрона

Что происходит при сгорании разных радиодеталей с физической точки зрения? Во-первых, изменяется их сопротивление. У резисторов оно становится бесконечным или, иначе говоря, уходит в обрыв. У конденсаторов оно иногда становится очень маленьким или, иначе говоря, уходит в короткое замыкание. С полупроводниками возможны оба этих варианта — как короткое замыкание, так и обрыв.

В нашем случае мы можем проверить это только одним способом, выпаяв одну или сразу обе ножки стабилитрона, как наиболее вероятного виновника короткого замыкания. Далее будем проверять пропало ли короткое замыкание между дежуркой и массой или нет. Почему так происходит?

Вспоминаем простые подсказки:

    При последовательном соединении работает правило больше большего. Иначе говоря, общее сопротивление цепи больше, чем сопротивление большего из резисторов.

  • При параллельном соединении работает обратное правило, меньше меньшего. Иначе говоря, итоговое сопротивление будет меньше, чем сопротивление резистора меньшего из номиналов.
  • Можно взять произвольные значения сопротивлений резисторов, самостоятельно посчитать и убедиться в этом. Попробуем логически поразмыслить, если у нас одно из сопротивлений параллельно подключенных радиодеталей будет равно нулю, какие показания мы увидим на экране мультиметра? Правильно, тоже равное нулю.

    До тех пор, пока мы не устраним это короткое замыкание путем выпаивания одной из ножек детали, которую мы считаем проблемной, мы не сможем определить, в какой детали у нас короткое замыкание. Дело все в том, что при звуковой прозвонке все детали, параллельно соединенные с деталью в коротком замыкании, будут у нас звониться накоротко с общим проводом!

    Пробуем выпаять стабилитрон. В ходе работы он просто развалился надвое.

    Проверяем, устранилось ли у нас короткое замыкание по цепям дежурки и массы, либо нет. Действительно, короткое замыкание пропало. Запаиваем новый стабилитрон.

    После первого включения блока питания новый стабилитрон начал пускать дым. Здесь надо бы вспомнить одно из главных правил ремонтника:

    Перекусываем сгоревший стабилитрон бокорезами и снова включаем блок питания. Так и есть, дежурка завышена: 8,5 Вольт. Конечно в этот момент мы забеспокоились о ШИМ контроллере. Однако после скачивания даташита на микросхему было выявлено, что предельное напряжение питания для ШИМ контроллера равно 16 Вольт.

    Читать еще:  Лифт для фрезера своими руками чертежи

    Наше предположение оказалось неверным, дело не в стабилитроне. Идём дальше.

    Ремонт блока питания пошагово — проверка и замена конденсаторов

    Проблема завышенного напряжения дежурки заключается в банальном увеличении ESR электролитических конденсаторов в цепях питания. Ищем эти конденсаторы на схеме и проверяем их. Нам понадобится ESR метр.

    Проверяю первый конденсатор в цепи дежурного питания.

    ESR в пределах нормы. Проверяем второй.

    Ждем, когда на экране мультиметра появится какое-либо значение, но ничего не меняется.

    По крайней мере, один из виновников проблемы найден. Перепаиваем конденсатор на точно такой же по номиналу и рабочему напряжению, взятый с донорской платы блока питания. Здесь остановимся подробнее.

    Итак, включаем блок питания и снова замеряем напряжение на дежурке. Наученные горьким опытом уже не торопимся ставить новый защитный стабилитрон и замеряем напряжение на дежурке, относительно земли. Напряжение 12 вольт и раздается высокочастотный свист.

    Далее мы попробовали поменять конденсатор емкостью 10 мкФ. Это одна из типичных неисправностей данного блока питания

    Замеряем ESR на конденсаторе.

    Результат, как и в первом случае: прибор зашкаливает.

    Некоторые говорят, мол зачем собирать какие-то приборы, типа вздувшиеся нерабочие конденсаторы итак видно — они припухшие или вскрывшиеся розочкой.

    С одной стороны, мы согласны с этим. Но это касается только конденсаторов большого номинала. Конденсаторы относительно небольших номиналов не вздуваются. В их верхней части нет насечек, по которым они могли бы раскрыться. Поэтому их просто невозможно определить на работоспособность визуально. Остается только менять их на заведомо рабочие.

    Итак, мы нашли второй нужный конденсатор и на всякий случай измерили его ESR. Оно оказалось в норме. После впаивания второго конденсатора в плату, включаем блок питания клавишным выключателем и измеряем дежурное напряжение. То, что и требовалось — 5,02 вольта.

    Измеряем все остальные напряжения на разъеме блока питания. Все соответствуют норме. Отклонения рабочих напряжений менее 5 %. Осталось впаять стабилитрон на 6,3 Вольта.

    К слову, мы долго думали, почему стабилитрон именно на 6,3 Вольта, когда напряжение дежурки равно +5 Вольт? Логичнее было бы поставить на 5,5 вольт или аналогичный, если бы он стоял для стабилизации напряжения на дежурке. Скорее всего этот стабилитрон стоит здесь как защитный, чтобы в случае повышения напряжения на дежурке выше 6,3 Вольт, он сгорел и замкнул накоротко цепь дежурки, отключив тем самым блок питания и сохранив материнскую плату от сгорания.

    Вторая функция этого стабилитрона, скорее всего, защита ШИМ-контроллера от поступления на него завышенного напряжения. Так как дежурка соединена с питанием микросхемы через достаточно низкоомный резистор, на 20 ножку питания микросхемы ШИМ поступает почти то же самое напряжение, что и на дежурке.

    Ремонт блока питания компьютера — выводы

    Итак, какие можно сделать выводы из этого ремонта:

      Все параллельно подключенные детали при измерении влияют друг на друга. Их значения активных сопротивлений считаются по правилу параллельного соединения резисторов. В случае короткого замыкания на одной из параллельно подключенных радиодеталей такое же короткое замыкание будет на всех остальных деталях, которые подключены параллельно этой.

    Для выявления неисправных конденсаторов одного визуального осмотра мало и необходимо либо менять все неисправные электролитические конденсаторы в цепях проблемного узла устройства на заведомо рабочие, либо отбраковывать путем измерения прибором ESR-метром.

  • Если вы нашли какую-либо сгоревшую деталь, не торопитесь менять её на новую, а ищите причину, которая привела к её сгоранию, иначе рискуете получить еще одну сгоревшую деталь.
  • Видео о ремонте блока питания компьютера:


    Ремонт блока питания компьютера.

    Неисправный блок питания при ремонте компьютера зачастую просто заменяют новым. Это быстрое решение проблемы, но цена такого ремонта высока, да и хорошо заработать мастеру при этом не получится – просто замена блока больших денег не стоит. В любом сервисном центре, как правило, гора неисправных блоков питания, которые могут быть отремонтированы или послужить «неиссякаемым» источником запасных элементов. Сам ремонт блока задача, вполне решаемая и по плечу даже среднему ремонтнику.

    Основные узлы блока питания

    Состоит блок питания компьютера из двух основных половин. Первая часть гальванически связана с питающей сетью и содержит фильтр, выпрямитель, схему источника питания дежурного режима, транзисторные ключи преобразователя. При ремонте этой половины нужно соблюдать необходимые меры безопасности!

    Также, здесь подключается схема коррекции фактора мощности (PFC), если предусмотрено ее использование.

    Вторая часть включает в себя выпрямители и фильтры выходных напряжений, схему управления и стабилизации на микросхеме ШИМ-контроллера, выпрямитель и стабилизатор напряжения дежурного режима. Эта часть схемы развязана от питающей сети, поэтому работа с ее элементами безопасна.

    Отделяют части три импульсных трансформатора. Силовые элементы схемы размещены на двух радиаторах охлаждения.

    Общее представление о компьютерном блоке питания получили, переходим к практике.

    Поиск неисправности в блоке питания компьютера лучше производить в определенном порядке. Поэтому разделим действия на шаги, которые в результате приведут к определению и устранению поломки. Даже если на одном из этапов будет найдена неисправная деталь, нужно пройти все шаги до последнего, на котором и включим блок для проверки.

    Разберите блок, снимите плату и разрядите конденсаторы сетевого выпрямителя лампой накаливания.

    Начинаем с внешнего осмотра. На этом этапе выявляются вздутые конденсаторы, сгоревшие элементы схемы – варисторы, резисторы. Также нужно внимательно осмотреть плату с обратной стороны для выявления плохой пайки или подгоревших участков. Обнаруженные детали заменяются, плата очищается и пропаивается. Соблюдайте полярность при установке элементов.

    Проверьте, насколько легко вращается вентилятор охлаждения, зачастую именно он является причиной перегрева блока.

    Проверяем сетевой предохранитель, диоды моста выпрямителя. Если предохранитель сгоревший, в цепи есть короткое замыкание, которое нужно найти и устранить. Для этого проверяем отдельно каждый диод моста выпрямителя. Помните, диод может быть не только пробит, но и иметь незначительную утечку в обратном направлении – при проверке отпаивайте один контакт элемта.

    Исправный мост должен иметь бесконечное сопротивление на входе. На выходе моста, при подключении тестера, сопротивление должно измениться от низкого до высокого. Это происходит из-за заряда подключенных параллельно конденсаторов.

    Шаг 3, если есть схема активного PFC

    Транзисторы ключей схемы PFC (см. схему в первой части) подключены через дроссель параллельно выпрямителю напряжения сети. При пробое транзисторов вход оказывается закороченным и сгорает предохранитель. Как правило, вместе с ключами выходят из строя резисторы, подключенные к затворам и микросхема PWM-контроллера. Как проверить работу схемы PFC, рассмотрим ниже.

    Проверяем транзисторы ключей преобразователя. Транзисторы подключены таким образом, что пробой одного из них может не вызвать замыкания питания и сгорания предохранителя, при этом блок питания просто не запускается.

    Причиной неисправности в этом узле часто служат электролитические конденсаторы, подключенные к базе. При их утечке или потере емкости, транзистор переходит из ключевого режима работы в усилительный, что вызывает перегрев элемента.

    Эти элементы и конденсатор, обозначенный синим кругом на схеме выше, также являются причиной потери выходной мощности блока питания компьютера. При этом подключенный к системной плате блок не запускается, а без нагрузки работает. Из-за неисправности этих конденсаторов повышаются пульсации на выходе блока питания, что приводит к перезагрузкам и сбоям в работе системы. Эти элементы нужно обязательно выпаивать и проверять.

    Если пробиваются транзисторы ключей, резисторы и диоды, подключенные к базе, часто также сгорают.

    Неисправность, рассмотренная в предыдущем шаге, зачастую вызвана завышенным напряжением питающей сети. Источник питания +5в дежурного режима работает постоянно и из-за скачков напряжения страдает первым. Наступила очередь его проверки.

    При пробое силового транзистора нужно проверить, а лучше вообще заменить на заведомо исправные все полупроводниковые элементы схемы – транзисторы, диоды, оптопару. Затем проверяем все резисторы и конденсаторы, выпаивая их по очереди. Почему все?

    Это очень капризная и важная часть блока питания, от нее запитана микросхема ШИМ-контроллера и схема включения материнской платы. При выходе источника из режима стабилизации, на эти узлы подается завышенное напряжение, что в лучшем случае приводит к сгоранию ШИМ-контроллера блока, а в худшем – потере материнской платы.

    Второй случай, когда источник не запускается, +5 дежурного на выходе просто нет. Начальное напряжение для запуска схема получает через резисторы, подключенные к +310в. Зачастую они подгорают, изменяя значение своего сопротивления на гораздо большее, хотя внешне выглядят исправными. Учитывая высокие значения сопротивления резисторов при проверке детали нужно обязательно выпаивать.

    Схема также может не запускаться из-за замыкания или перегрузки выходных цепей. Виновником этого может быть пробитый диод выпрямителя, сгоревший ШИМ-контроллер или устанавливаемый в качественных блоках питания защитный стабилитрон.

    Всегда проверяйте конденсатор, обозначенный на схеме выше восклицательными знаками. От его исправности зависит значение выходного напряжения блока питания, а расположен он в зоне с повышенной рабочей температурой. Если в схеме блока не установлен защитный стабилитрон, именно из-за этого конденсатора выходит из строя материнская плата.

    Переходим к выпрямителям выходных напряжений. Выпрямители собраны на спаренных диодах, проверяем от центрального вывода оба крайних на наличие пробоя. Нужно обязательно проверить все элементы схемы стабилизатора 3.3в, потому что блоки с микросхемой ШИМ-контроллера TL494 не имеют обратной связи для контроля этого выхода. Блок питания будет запускаться вхолостую, но не работать под нагрузкой.

    Также проверьте диоды выпрямителей для напряжений -5в, -12в. Учитывайте, что каждый выход блока нагружен низкоомным резистором, если появились сомнения в исправности одного из диодов, элемент лучше выпаять.

    Добрались до микросхемы ШИМ-контроллера. Возможности проверки исправности микросхемы без включения блока питания ограничены. Но, если в шаге 5, были обнаружены какие либо неисправности, а тем более, если при внешнем осмотре найден сгоревший резистор в цепи питания ШИМ-контроллера, микросхему нужно заменить заведомо исправной.

    Выходы микросхемы подключены к двум транзисторам (C945 или 2N2222), если меняете микросхему, проверьте их также.

    После устранения всех неисправностей обнаруженных в предыдущих шагах, блок можно подключить к питающей сети, конечно при соблюдении всех мер предосторожности.

    Если при подключении сгорел сетевой предохранитель – возвращаемся к шагу 1 и следующим, чтобы найти пропущенную неисправность.

    Читать еще:  Схема установки циркуляционного насоса в систему отопления

    Измеряем значение напряжения дежурного режима +5в на 9 (фиолетовый) контакте разъема. Подключаем нагрузку, подойдет резистор сопротивлением 3-4Ом мощностью около 7Ватт. Снова измеряем напряжение.

    Если блок питания выдает заниженное значение (4.3в — 4.8в) нужно заменить оптопару, TL431 и электролитические конденсаторы схемы стабилизатора. Напряжения нет вообще, повторяем шаг 5.

    При нормальной работе источника дежурного питания, напряжение на входе PS ON (14,зеленый) в пределах 2.3-5в, на остальных– 0в. Замыкаем 14 и 15 контакты перемычкой, блок должен запуститься.

    Если старта не произошло, возвращаемся к шагу 4. Возможна ситуация, когда блок питания запустился на короткий промежуток времени, при этом дернулся вентилятор. Это происходит при неисправности выходных выпрямителей или микросхемы ШИМ-контроллера, снова проходим шаги 6 и 7.

    Для блоков с системой активной PFC на этом этапе нужно проверить работоспособность схемы. Измеряем напряжение на конденсаторе сетевого выпрямителя, схема PFC поддерживает его значение в пределах 380-400в, если прибор показывает 310в – схема не работает и нужно повторить шаг 3.

    У запущенного блока измеряем напряжение на выходе PG (8, серый), правильное значение +5в. Затем проверяем все выходные напряжения — +12в, -12в, +5в, -5в, +3.3в. Нагружать при тестировании все выходы блока было бы правильно, но часто проблематично. Поэтому можно ограничиться нагрузкой каждого выхода по-отдельности. Для нагрузки можно использовать автомобильные лампы накаливания подходящей мощности.

    Компьютер после ремонта блока питания обязательно нужно тестировать в течение 3-6 часов.

    В заключение дадю несколько советов по доработке БП, что позволит сделать его работу более стабильной:

    во многих недорогих блоках производители устанавливают выпрямительные диоды на два ампера, их следует заменить более мощными (4-8 ампер);

    диоды шоттки на каналах +5 и +3,3 вольт также можно поставить помощнее, но при этом у них должно быть допустимое напряжение, такое же или большее;

    выходные электролитические конденсаторы желательно поменять на новые с емкостью 2200-3300 мкФ и номинальным напряжением не менее 25 вольт;

    бывает, что на канал +12 вольт вместо диодной сборки устанавливаются спаянные между собой диоды, их желательно заменить на диод шоттки MBR20100 или аналогичный;

    если в обвязке ключевых транзисторов установлены емкости 1 мкФ, замените их на 4,7-10 мкФ, рассчитанные под напряжение 50 вольт.

    Такая незначительная доработка позволит существенно продлить срок службы компьютерного блока питания.

    ЗАПОМНИТЕ. Измерять непосредственно на контактах БП с нагрузкой и не доверять программам мониторинга! (у прибора должны быть надлежащего качества и напряжения элементы питания (не аккумы!))

    ЗЫ: Взял где взял, обобщил и добавил немного.

    ЗЫ2: Кому не нужно — проходим мимо.

    ЗЫ3: LF! ,kzl rjgbgfcnf!

    Простите за качество некоторых картинок (чем богаты).

    Ремонт блока питания компьютера своими руками

    Если блок питания вашего компьютера вышел из строя, не спешите расстраиваться, как показывает практика, в большинстве случаев ремонт может быть выполнен своими силами. Прежде чем перейти непосредственно к методике, рассмотрим структурную схему БП и приведем перечень возможных неисправностей, это существенно упростит задачу.

    Структурная схема

    На рисунке показано изображение структурной схемы типичной для импульсных БП системных блоков.

    Устройство импульсного БП ATX

    Указанные обозначения:

    • А – блок сетевого фильтра;
    • В – выпрямитель низкочастотного типа со сглаживающим фильтром;
    • С – каскад вспомогательного преобразователя;
    • D – выпрямитель;
    • E – блок управления;
    • F – ШИМ-контроллер;
    • G – каскад основного преобразователя;
    • H – выпрямитель высокочастотного типа, снабженный сглаживающим фильтром;
    • J – система охлаждения БП (вентилятор);
    • L – блок контроля выходных напряжений;
    • К – защита от перегрузки.
    • +5_SB – дежурный режим питания;
    • P.G. – информационный сигнал, иногда обозначается как PWR_OK (необходим для старта материнской платы);
    • PS_On – сигнал управляющий запуском БП.

    Распиновка основного коннектора БП

    Для проведения ремонта нам также понадобится знать распиновку главного штекера БП (main power connector), она показана ниже.

    Штекеры БП: А – старого образца (20pin), В – нового (24pin)

    Для запуска блока питания необходимо провод зеленого цвета (PS_ON#) соединить с любым нулевым черного цвета. Сделать это можно при помощи обычной перемычки. Заметим, что у некоторых устройств цветовая маркировка может отличаться от стандартной, как правило, этим грешат неизвестные производители из поднебесной.

    Нагрузка на БП

    Необходимо предупредить, что включение импульсных БП без нагрузки существенно сокращает их срок службы и даже может стать причиной поломки. Поэтому мы рекомендуем собрать простой блок нагрузок, его схема показана на рисунке.

    Схема блока нагрузки

    Схему желательно собирать на резисторах марки ПЭВ-10, их номиналы: R1 – 10 Ом, R2 и R3 – 3,3 Ом, R4 и R5 – 1,2 Ом. Охлаждение для сопротивлений можно выполнить из алюминиевого швеллера.

    Подключать в качестве нагрузки при диагностике материнскую плату или, как советуют некоторые «умельцы», HDD и СD привод нежелательно, поскольку неисправный БП может вывести их из строя.

    Перечень возможных неисправностей

    Перечислим наиболее распространенные неисправности, характерные для импульсных БП системных блоков:

    • перегорает сетевой предохранитель;
    • +5_SB (дежурное напряжение) отсутствует, а также больше или меньше допустимого;
    • напряжения на выходе блока питания (+12 В, +5 В, 3,3 В) не соответствуют норме или отсутствуют;
    • нет сигнала P.G. (PW_OK);
    • БП не включается дистанционно;
    • не вращается вентилятор охлаждения.

    Методика проверки (инструкция)

    После того, как блок питания снят с системного блока и разобран, в первую очередь, необходимо произвести осмотр на предмет обнаружения поврежденный элементов (потемнение, изменившийся цвет, нарушение целостности). Заметим, что в большинстве случаев замена сгоревшей детали не решит проблему, потребуется проверка обвязки.

    Визуальный осмотр позволяет обнаружить «сгоревшие» радиоэлементы

    Если таковы не обнаружены, переходим к следующему алгоритму действий:

    • проверяем предохранитель. Не стоит доверять визуальному осмотру, а лучше использовать мультиметр в режиме прозвонки. Причиной, по которой выгорел предохранитель, может быть пробой диодного моста, ключевого транзистора или неисправность блока, отвечающего за дежурный режим;

    Установленный на плате предохранитель

    • проверка дискового термистора. Его сопротивление не должно превышать 10Ом, если он неисправен, ставить вместо него перемычку крайне не советуем. Импульсный ток, возникающий в процессе заряда конденсаторов, установленных на входе, может стать причиной пробоя диодного моста;

    Дисковый термистор (обозначен красным)

    • тестируем диоды или диодный мост на выходном выпрямителе, в них не должно быть обрыва и КЗ. При обнаружении неисправности следует подвергнуть проверке установленные на входе конденсаторы и ключевые транзисторы. Поступившее на них в результате пробоя моста переменное напряжение , с большой вероятностью, вывело эти радиодетали из строя;

    Выпрямительные диоды (обведены красным)

    • проверка входных конденсаторов электролитического типа начинается с осмотра. Геометрия корпуса этих деталей не должна быть нарушена. После этого измеряется емкость. Нормальным считается, если она не меньше заявленной, а расхождение между двумя конденсаторами в пределах 5%. Также проверке должны быть подвергнуты запаянные параллельно входным электролитам варисторы и выравнивающие сопротивления;

    Входные электролиты (обозначены красным)

    • тестирование ключевых (силовых) транзисторов. При помощи мультиметра проверяем переходы база-эмиттер и база-коллектор (методика такая же, как при проверке диодов).

    Показано размещение силовых транзисторов

    Если найден неисправный транзистор, то прежде, чем впаивать новый, необходимо протестировать всю его обвязку, состоящую из диодов, низкоомных сопротивлений и электролитических конденсаторов. Последние рекомендуем поменять на новые, у которых большая емкость. Хороший результат дает шунтирование электролитов при помощи керамических конденсаторов 0,1 мкФ;

    • Проверка выходных диодных сборок (диоды шоттки) при помощи мультиметра, как показывает практика, наиболее характерная для них неисправность – КЗ;

    Отмеченные на плате диодные сборки

    • проверка выходных конденсаторов электролитического типа. Как правило, их неисправность может быть обнаружена путем визуального осмотра. Она проявляется в виде изменения геометрии корпуса радиодетали, а также следов от протекания электролита.

    Не редки случаи, когда внешне нормальный конденсатор при проверке оказывается негодным. Поэтому лучше их протестировать мультиметром, у которого есть функция измерения емкости, или использовать для этого специальный прибор.

    Видео: правильный ремонт блока питания ATX.
    https://www.youtube.com/watch?v=AAMU8R36qyE

    Заметим, что нерабочие выходные конденсаторы – самая распространенная неисправность в компьютерных блоках питания. В 80% случаев после их замены работоспособность БП восстанавливается;

    Конденсаторы с нарушенной геометрией корпуса

    • проводится измерение сопротивления между выходами и нулем, для +5, +12, -5 и -12 вольт этот показатель должен быть в пределах, от 100 до 250 Ом, а для +3,3 В в диапазоне 5-15 Ом.

    Доработка БП

    В заключение дадим несколько советов по доработке БП, что позволит сделать его работу более стабильной:

    • во многих недорогих блоках производители устанавливают выпрямительные диоды на два ампера, их следует заменить более мощными (4-8 ампер);
    • диоды шоттки на каналах +5 и +3,3 вольт также можно поставить помощнее, но при этом у них должно быть допустимое напряжение, такое же или большее;
    • выходные электролитические конденсаторы желательно поменять на новые с емкостью 2200-3300 мкФ и номинальным напряжением не менее 25 вольт;
    • бывает, что на канал +12 вольт вместо диодной сборки устанавливаются спаянные между собой диоды, их желательно заменить на диод шоттки MBR20100 или аналогичный;
    • если в обвязке ключевых транзисторов установлены емкости 1 мкФ, замените их на 4,7-10 мкФ, рассчитанные под напряжение 50 вольт.

    Такая незначительная доработка позволит существенно продлить срок службы компьютерного блока питания.

    Очень интересно прочитать:

    Ремонт блока питания ПК своими руками.

    Модуль питания стационарного компьютеров, да и любой другой техники не вечны, и рано или поздно выходят из строя. Сегодня мы с вами разберем методику ремонта компьютерных блоков питания. А именно те неисправности которые можно локализовать и устранить своими руками, не имея большого опыта в ремонте импульсных схем. Для начала ознакомимся со структурной схемой импульсного БП, затем обозначим типичные неисправности.
    На данном рисунке вы сможете ознакомиться со структурной схемой компьютерных БП:

    Структура блока питания

    1. Модуль сетевого фильтра;
    2. Выпрямитель напряжения и НЧ фильтр;
    3. Модуль усилителя преобразователя;
    4. Выпрямитель напряжения;
    5. Блок управления ключевыми каскадами;
    6. ШИМ-контроллер;
    7. Ключи основного преобразователя;
    8. ВЧ выпрямитель со сглаживающим фильтром
    9. Охлаждение и управление им. (кулер)
    10. Модуль контролирующий выходные напряжения;
    11. Блок защиты БП от перегрузки по току;
    • +5_SB – Дежурное питание.
    • P.G – Выход дающий “добро” на запуск материнской платы.
    • PS_On – Управление с материнки на включение основного БП.

    Распиновка штеккера БП.

    Для того чтобы знать где какое напряжение, сигнал и каким цветом обозначен провод, нам необходимо иметь распиновку:

    Читать еще:  Регулятор для паяльника 220в на симисторе схема

    Коннектор питания 20 и 24 pin БП ATX

    Для того чтобы перевести блок питания из дежурки в рабочий режим и запустить на полную катушку, необходимо зеленый провод – PS-on закоротить на общий провод. В данном случае – соединить перемычкой с одним из черных проводов. Вращающийся кулер блока питания подскажет о том что БП запустился.

    Эквивалент нагрузки

    Должен вам сказать что импульсные модули питания не особо любят когда их включают без нагрузки. Кратковременные включения особо не навредят – когда необходимо удостовериться что блок питания запускается, а вот когда приходится искать неисправность с включенным на постоянку БП, то здесь уже без нагрузки работать опасно. Блок может выйти из строя окончательно, особенно если у этого блока питая неисправность в цепях обратной связи, контроля напряжений или модуле защиты. Поэтому при ремонте желательно использовать эквивалент нагрузки. Можно собрать простенький на проволочных резисторах по этой схеме:

    Схему эквивалента можно собрать на 10-ти ваттных проволочных резисторах 5-10 Ом. Резисторам необходимо обеспечить охлаждение, прикрепив их к алюминиевому радиатору. Использовать в качестве нагрузки части самого компьютера – материнку, жесткий диск и тд. не следует! Если у неисправного блока питания завышены выходные напряжения, то он выведет из строя и свои нагрузки.

    Перечень неисправностей

    Характерные неисправности импульсных модулей питания стационарных ПК

    • обрывается предохранитель по сетевому напряжению, его замена приводит к очередному перегоранию.
    • +5_SB – Дежурное напряжение либо отсутствует, либо отличается от номинала 5 вольт.
    • Основные выходные каналы питания +12,+5,+3,3 или отсутствуют или отклоняются от номинала.
    • Не поступает сигнал P.G. он же PW_OK
    • Блок питания не переходит из дежурного в рабочий режим.
    • Не вращается кулер охлаждения.

    Методичка – инструкция диагностики.

    После извлечения блока из системника его необходимо вскрыть, отвернув винты на корпусе. Также открутив винты, вынуть плату.
    После чего необходимо взяться за визуальный осмотр. Это очень ответственная и важная часть диагностики.

    При помощи визуального осмотра мы определяем неисправные элементы.

    Осматриваем плату на предмет механических повреждений электронных компонентов, а так же потемнения-обгорания силовых элементов. Это могут быть вздутые электролитические конденсаторы, обуглившиеся резисторы, лопнувшие микросхемы и транзисторы.

    Мы также оцениваем на сколько пострадал блок питания.

    После осмотра электронных компонентов на целостность переходим на осмотр печатного монтажа. Здесь нам не помешает хороший свет и хорошая увеличительная лупа. Необходимо визуально, дотошно, пайку за пайкой просмотреть её качество. Дело в том что припой со временем деградирует, становится рассыпчатым и места пайки теряют контакт. Так же образуются так-называемые “колечки” – это кольцевые трещины в месте пайки элемента. Чаще такие колечки можно встретить в силовых частях БП – на транзисторах, выходных диодах Шоттки. А так же на всех элементах которые греются и стоят на радиаторе. Хотя от колечек не застрахован ни один элемент даже в низковольтной части, например микросхема ШИМ-контроллера.

    Кольцевые трещины

    Если при визуальном осмотре ничего не обнаружилось, то переходим к следующему этапу действий:

    Далее следует проверить предохранитель. Проверять его следует мультиметром в режиме прозвонки, потому как внешне он может выглядеть как исправный.

    Предохранители просто так не сгорают. Причина может крыться в коротком замыкании диодного моста или ключевых каскадов как основного так дежурного источника питания.

    Проверяем далее термистор Обычно его сопротивление 5-10 Ом. Если он в обрыве, то меняем его. В маломощных блоках питания его можно заменить перемычкой. В блоках питания ПК это может привести к пробою диодного моста во время заряда конденсатора фильтра, поэтому заменяем таким же.

    Внимание. Не путайте термистор с варистором! Термистор обычно черного цвета и стоит в разрыв цепи переменного тока, а варистор чаще синего,зеленого или желтого цвета и стоит параллельно сети (чаще его раскалывает на две-три части) у исправного варистора наоборот сопротивление бесконечно большое. И если у позистора задача смягчить ток заряда электролитического конденсатора, то целью варистора является защитить БП на входе от перенапряжения переменного тока, перекоса фаз, попадания грозового разряда в электропроводку.

    На рисунке изображен предохранитель, термистор и варистор.

    Следующим на очереди у нас диодный мост. Выпрямитель на диодном мосту может быт собран как из 4-х отдельных диодов, так и в монолитном корпусе. У диодов не должно быть короткого замыкания, а также обрывов. Если вы обнаружили неисправный диод или весь мост – это не значит что его замена решит все проблемы.

    Диодный мост из отдельных диодов и в виде сборки.

    Поступающий переменный ток через неисправный выпрямитель мог вывести из строя ключевые транзисторы и ШИМ. Кроме того, ситуация могла быть прямо-противоположная: Вышедший из строя транзистор (встав на к.з.) в инверторе БП мог перегрузить диодный мост и он мог коротнуть именно из-за этого. Поэтому после замены выпрямителя необходимо убедиться – нет ли короткого замыкания дальше по цепи. Проверить это можно при выпаянных диодах – на электролитическом конденсаторе фильтра не должно быть короткого, а в силовой части источника питания разорванных транзисторов, сопротивлений и других элементов.

    Проверка электролитов по входу (конденсаторов по фильтру питания) требуется начать с осмотра.

    Входные электролитические конденсаторы фильтра питания.

    Они не должны быть вздутыми или иметь еще какие-то нарушения своей формы. Не должно быть наличия электролита на печатной плате. Конденсаторы нужно проверить на емкость, она должна быть не менее 10% от номинальной. Кроме этого цепи электролитических конденсаторов стоят варисторы и резисторы, которые также нужно протестировать.

    Проверка ключевых транзисторов.

    На фото два ключевых транзистора.

    Для того чтобы удостовериться в целостности силовых ключевиков следует прозвонить переходы база – эмиттер, база – коллектор, коллектор – эмиттер. Первые два перехода должны звониться как диод. Коллектор-эмиттер как бесконечное сопротивление, но только в том случае если в данном транзисторе нет встроенного демпферного диода. Если найдены транзисторы с коротким замыканием, то радоваться рано – замена на новые ни к чему хорошему не приведет. Транзисторы не выгорают по-одиночке! Тестируем всю обвязку – низкоомные
    резисторы, диоды, стабилитроны, электролитические конденсаторы. Ключевики БП меняем парой, даже если пробой найден у одного.

    Тестируем сборки диодов Шоттки с помощью мультиметра.

    В основном они встают на пробой, то есть на короткое замыкание.
    Если есть подозрение на какую-либо сборку, то лучше выпаять и проверить её отдельно, чтобы другие элементы выходной цепи не вносили погрешности и не вводили в заблуждение. Диода в сборке нужно измерять в режиме прозвонки. Прямое напряжение падения у диодов Шоттки 120-160 мВ. по прибору.

    Проверка электролитических конденсаторов (выходных) Зачастую по внешнему виду можно определить что конденсатор необходимо заменить.

    Вздутые конденсаторы.

    Чаше их вздувает, вскрывается верхняя часть с насечками или вытекает электролит (видны следы на плате). Бывает что нормально выглядевший при визуальном осмотре конденсатор, оказывается с большой утечкой ёмкости. Определить это можно только измерив емкость мультиметром с данной функцией или отдельным прибором для проверки конденсаторов.
    В основном именно электролитические конденсаторы становятся причиной поломки импульсного модуля питания. В 75% случаев простая замена электролитов как в выходной части так и в задающей может вернуть БП к жизни, при условии что не пострадали ключи, ШИМ, выпрямители.

    Проверка выходных цепей питания включает в себя еще проверку сопротивления выхода. Для цепи +3,3 оранжевый провод сопротивление составляет от 4 до 20 Ом. Для других напряжений от 90 до 300 Ом. Измерять нужно мультиметром в режиме измерения сопротивления относительно общего провода COM (GND)- черный провод.

    Советы по доработке:

    • Многие производители источников питания в целях экономии ставят слабые диоды (мосты) в выпрямители. Следует заменить как минимум в 2 раза больше по току: Диоды можно поставить на 4 ампера, диодную сборку на 5-7 ампер.
    • Выходные диоды (Шоттки) желательно тоже поставить помощнее
    • Электролитические конденсаторы по выходным цепям тоже необходимо поменять на ёмкость вдвое больше вместо 1000 мкФ. смело можно ставить 2200 мкФ. Вместо 1500 и 2200 соответственно 3300 мкФ. и 4700 мкФ. Думаю логика вам понятна. Напряжение на новых конденсаторах должно быть не ниже 25 вольт.
    • Часто можно встретить в цепи +12 вольт два диода на радиаторе – необходимо поставить MBR20100 или подобный.
    • В цепях ключевых транзисторов стоят маленькие электролиты на 1 мкФ. – причина многих проблем. Стоит их заменить на 4,7 мкФ. 50 вольт.

    Доработав таким образом компьютерный блок питания вы продлите его жизнь и обезопасите его от ряда непредвиденных неисправностей, которые, как мину замедленного действия заложили производители.

    Cхемы компьютерных блоков питания ATX

    Дата: 26.04.2016 // 0 Комментариев

    Не редко при ремонте или переделке блока питания ATX в автомобильное зарядное устройство необходима схема этого блока. С учетом того, что на данный момент, моделей блоков огромное количество, мы решили собрать небольшую подборку из сети, где будут размещены типовые схемы компьютерных блоков питания ATX. На данном этапе подборка далеко не полная и будет постоянно пополняться. Если у Вас есть схемы компьютерных блоков питания ATX, которые не вошли в данную статью и желание поделиться, мы всегда будем рады добавить новые и интересные материалы.

    Cхемы компьютерных блоков питания ATX

    Схема JNC LC-250ATX

    Схема JNC LC-B250ATX

    Схема JNC SY-300ATX

    Схема JNC LC-B250ATX

    Схема Enlight HPC-250 и HPC-350

    Схема Linkworld 200W, 250W и 300W

    Схема Green Tech MAV-300W-P4

    Схема AcBel API3PCD2 ATX-450P-DNSS 450W

    Схема AcBel API4PC01 400W

    Схема Maxpower PX-300W

    Схема PowerLink LPJ2-18 300W

    Схема Shido LP-6100 ATX-250W

    Схема Sunny ATX-230

    Схема KME PM-230W

    Схема Delta Electronics DPS-260-2A

    Схема Delta Electronics DPS-200PB-59

    Схема InWin IW-P300A2-0

    Схема SevenTeam ST-200HRK

    Схема SevenTeam ST-230WHF

    Схема DTK PTP-2038

    Схема PowerMaster LP-8

    Схема PowerMaster FA-5-2

    Схема Codegen 200XA1 250XA1 CG-07A CG-11

    Схема Codegen 300X 300W

    Схема PowerMan IP-P550DJ2-0

    Схема Microlab 350w

    Схема Sparkman SM-400W (STM-50CP)

    Схема GEMBIRD 350W (ShenZhon 350W)

    Схема блока питания FSP250-50PLA (FSP500PNR)

    Схема блока ATX Colorsit 330U (Sven 330U-FNK) на SG6105

    Ссылка на основную публикацию
    Adblock
    detector