140 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Импульсное зарядное устройство калибр уз 10а схема

РЕМОНТ ЗАРЯДНОГО УСТРОЙСТВА «КАЛИБР» УЗ-10А

05.11.2018 . Опубликовано в Новости

Снова скоро зима. Начало ноября, а температуры уже минусовые, и ничего не остается больше, как ждать морозов. Пора проверить свой 75-й аккумулятор, сделать ему ТО, что бы зимой никаких проблем не было, при любых морозах. Делаю я это теперь всегда, потому что есть на то две веских причины. Во-первых, предыдущий аккумулятор у меня отработал почти 5 лет, но, честно говоря, я в него вообще не заглядывал, и, более того, один раз (оставил подсветку салона включенной на неделю) даже разрядил его почти до нуля.

Во-вторых, с тех пор, как я начал заниматься солнечной энергетикой, я наконец-то узнал, что такое свинцово-кислотный аккумулятор, чего он боится, что он любит, и самое главное – как его нужно заряжать.

Вообще, тема аккумуляторов – это отдельная тема. Коротко могу здесь сказать только о том, что установленный на автомобиль, он, как правило, не заряжается на 100% никогда. Т.е., всегда находится в немного разряженном состоянии, что, собственно и сказывается на его сроке службы и емкости. А емкость напрямую связана с максимальным отдаваемым аккумулятором током, который, ко всему прочему, при температурах ниже -20, начинает стремительно падать.

Уже несколько лет пользуюсь импульсным зарядным устройством УЗ-10А. Сразу стоит сказать, что претензий к данному устройству у меня нет. Отказы были всего два раза, как раз по причине того, что я (мягко говоря), пытался выжать из него больше возможного, в процессе реанимации нескольких старых аккумуляторов, которые у меня предназначены для чисто научных, экспериментальных исследований.

Первый раз, вышел из строя MOSFET, который, как я понял, с помощью ШИМ (широтно-импульсная модуляция) управляет током зарядки. Подгорел бедолага немножко, даже изоляция оплавилась на разъёме, с которого как раз и идет «+».

Сейчас уже точно не помню, какой транзистор там стоял, но, я на место сгоревшего поставил IRF1404. По даташит, у него напряжение пробоя сток-исток 40 В, а ток стока — 162 А. Хотя, можно было и IRF1405 (55 В, 133 А) всё равно там больше 10-15 А физически быть не может. Тем не менее, я к этому транзистору прикрутил «радиатор» — кусок какой-то железки, на всякий случай.

Теперь задымилась микросхема LM358P — двухканальный операционный усилитель с питанием от 3В до 32В. Но, изначально проблема как раз и заключалась в том, чтобы определить эту микросхему, что там на ней написано. Она просто треснула и вспучилась как раз там, где она и обозначена. Пришлось поискать в интернете, и, схему, конечно я не нашел, зато нашел руководство по эксплуатации и сборочный чертеж . Спасибо компании-бренду КАЛИБР!

Еще одна приятная деталь обнаружилась после того, как я выпаял сгоревшую микросхему. Как раз под ней, на печатной плате была надпись — LM358P.

Не знаю, чем отличается LM358P от LM358N, ибо по даташит никакой разницы абсолютно нет. У меня в наличии было несколько LM358N, оставалось еще с тех времен, как я делал PWM-контроллер для системы уличного освещения , её я и поставил.

Далее, раз уж разобрал агрегат, решил поставить нормальный радиатор, так сказать, для внутренней красоты. Собственно, я бы его поставил и раньше, но, на плате вообще нет даже 3-5 мм свободного места, к чему бы радиатор можно было закрепить. Поэтому, закрепил я его к одной из четырех стоек, посредством которых вся плата крепится к корпусу. Вместо гайки вкрутил еще одну стойку, а из алюминиевого уголка удерживающий кронштейн.

В принципе, сток транзистора можно было и не изолировать от радиатора, но, тогда он, как раз «+», окажется на корпусе зарядного устройства. Мало ли что может произойти, уж лучше не полениться, положить диэлектрическую теплопроводящую прокладку.

Кстати, еще об одной модернизации. В прошлый раз (когда менял IRF1404), провода «+» и «-» я заменил, на более солидные провода, большего сечения и длиннее, уж слишком жиденькие были штатные.

Подсоединил разъемы (перепутать можно провода к амперметру), проверил работоспособность и собрал. Подключил к аккумулятору, поставил ток 0,1С (7,5 А), пусть заряжается. Как зарядится до положенных 14,4 В, автоматически отключится.

Тиристорное импульсное зарядное устройство 10А на КУ202

Здравствуйте ув. читатель блога «Моя лаборатория радиолюбителя».

В сегодняшней статье речь пойдет о давно «заюзаной», но очень полезной схеме тиристорного фазоимпульсного регулятора мощности, которое мы будем использовать как зарядное устройство для свинцовых аккумуляторных батарей.

Начнем с того, что зарядное на КУ202 имеет целый ряд преимуществ:
— Способность выдерживать ток заряда до 10 ампер
— Ток заряда импульсный, что, по мнению многих радиолюбителей, помогает продлить жизнь аккумулятору
— Схема собрана с не дефицитных, недорогих деталей, что делает ее очень доступной в ценовой категории
— И последний плюс- это легкость в повторении, что даст возможность ее повторить, как новичку в радиотехнике, так и просто владельцу автомобиля, вообще не имеющего знания в радиотехнике, которому нужна качественная и простая зарядка.

Со временем попробовал доработанную схему с автоматическим отключением аккумулятора, рекомендую почитать Зарядное для автомобильного аккумулятора
В свое время я собирал эту схему на коленке за 40 минут вместе с травкой платы и подготовкой компонентов схемы. Ну хватит рассказов, давайте рассмотрим схему.

Схема тиристорного зарядного устройства на КУ202

Перечень используемых компонентов в схеме
C1 = 0,47-1 мкФ 63В

R1 = 6,8к — 0,25Вт
R2 = 300 — 0,25Вт
R3 = 3,3к — 0,25Вт
R4 = 110 — 0,25Вт
R5 = 15к — 0,25Вт
R6 = 50 — 0,25Вт
R7 = 150 — 2Вт
FU1 = 10А
VD1 = ток 10А, желательно брать мост с запасом. Ну на 15-25А и обратное напряжение не ниже 50В
VD2 = любой импульсный диод, на обратное напряжение не ниже 50В
VS1 = КУ202, Т-160, Т-250
VT1 = КТ361А, КТ3107, КТ502
VT2 = КТ315А, КТ3102, КТ503

Как было сказано ранее схема является тиристорным фазоимпульсным регулятором мощности с электронным регулятором тока зарядки.
Управление электродом тиристора осуществляется цепью на транзисторах VT1 и VT2. Управляющий ток проходит через VD2, необходимый для защиты схемы от обратных скачков тока тиристора.

Резистором R5 определяется ток зарядки аккумулятора, который должен быть 1/10 от емкости АКБ. К примеру АКБ емкостью 55А надо заряжать током 5.5А. Поэтому на выходе перед клемами зарядного устройства желательно поставить амперметр, для контроля за током зарядки.

По поводу питания, для данной схемы подбираем трансформатор с переменным напряжением 18-22В, желательно по мощности без запаса, ведь используем тиристор в управлении. Если напряжение больше- R7 поднимаем до 200Ом.

Так же не забываем что диодный мост и управляющий тиристор надо ставить на радиаторы через теплопроводящую пасту. Так же если вы используете простые диоды типа как Д242-Д245, КД203, помните что их надо изолировать от корпуса радиатора.

На выход ставим предохранитель на нужные вам токи, если вы не планируете заряжать АКБ током выше 6А, то предохранителя на 6,3А вам хватит с головой.
Так же для защиты вашего аккумулятора и зарядного устройства, рекомендую поставить мою схему защиты от переполюсовки на реле или схему на компараторе, которая помимо защиты от переполюсовки защитит зарядное от подключения дохлых аккумуляторов с напряжением менее 10,5В.
Ну вот в принципе рассмотрели схемку зарядного на КУ202.

Печатная плата тиристорного зарядного устройства на КУ202

В собранном виде от Сергея

Удачи вам с повторением и жду ваших вопросов в комментариях

Для безопасной, качественной и надежной зарядки любых типов аккумуляторов, рекомендую универсальное зарядное устройство

Что бы не пропустить последние обновления в мастерской, подписывайтесь на обновления в Вконтакте или Одноклассниках, так же можно подписаться на обновления по электронной почте в колонке справа

Не хочется вникать в рутины радиоэлектроники? Рекомендую обратить внимание на предложения наших китайских друзей. За вполне приемлемую цену можно приобрести довольно таки качественные зарядные устройства

Зарядное устройство 12В 1.3А

Простенькое зарядное устройство с светодиодным индикатором зарядки, зеленый батарея заряжается, красный батарея заряжена.

Есть защита от короткого замыкания, есть защита от переполюсовки. Отлично подойдет для зарядки Мото АКБ емкостью до 20Ач, АКБ 9Ач зарядит за 7 часов, 20Ач — за 16 часов. Цена на это зарядное всего 403 рубля,доставка бесплатна

Этот тип зарядного способен автоматически заряжать практически любые типы автомобильных и мото аккумуляторов 12В до 80АЧ. Имеет уникальный способ зарядки в три этапа: 1. Зарядка постоянным током, 2. Зарядка постоянным напряжением, 3. Капельная дозарядка до 100%.
На передней панеле два индикатора, первый указывает напряжение и процент зарядки, второй указывает ток зарядки.
Довольно качественный прибор для домашних нужд, цена всего 781,96 руб, доставка бесплатна. На момент написания этих строк количество заказов 1392, оценка 4,8 из 5. При заказе не забудьте указать Евровилку

Читать еще:  Чудо лопата для копки земли чертеж

Зарядное устройство для самых разнообразных типов аккумуляторов 12-24В с током до 10А и пиковым током 12А. Умеет заряжать Гелиевые АКБ и САСА. Технология зарядки как и у предыдущего в три этапа. Зарядное устройство способно заряжать как в автоматическом режиме, так и в ручном. На панеле есть ЖК индикатор указывающий напряжение, ток заряда и процент зарядки.

Хороший прибор если вам надо заряжать все возможные типы АКБ любых емкостей, аж до 150Ач

Цена на это чудо 1 625 рублей, доставка бесплатна. На момент написания этих строк количество заказов 23, оценка 4,7 из 5. При заказе не забудьте указать Евровилку

Если какой то товар стал недоступен, пожалуйста напишите в комментарий внизу страницы.
С ув .Admin-чек

Конструкция зарядного устройства от шуруповёрта

Схема, устройство, ремонт

Без сомнений, электроинструмент значительно облегчает наш труд, а также сокращает время рутинных операций. В ходу сейчас и всевозможные шуруповёрты с автономным питанием.

Рассмотрим устройство, принципиальную схему и ремонт зарядного устройства для аккумуляторов от шуруповёрта фирмы «Интерскол».

Для начала взглянем на принципиальную схему. Она срисована с реальной печатной платы зарядного устройства.

Печатная плата зарядного устройства (CDQ-F06K1).

Силовая часть зарядного устройства состоит из силового трансформатора GS-1415. Мощность его около 25-26 Ватт. Считал по упрощённой формуле, о которой уже говорил здесь.

Пониженное переменное напряжение 18V со вторичной обмотки трансформатора поступает на диодный мост через плавкий предохранитель FU1. Диодный мост состоит из 4 диодов VD1-VD4 типа 1N5408. Каждый из диодов 1N5408 выдерживает прямой ток 3 ампера. Электролитический конденсатор C1 сглаживает пульсации напряжения после диодного моста.

Основа схемы управления – микросхема HCF4060BE, которая является 14-разрядным счётчиком с элементами для задающего генератора. Она управляет биполярным транзистором структуры p-n-p S9012. Транзистор нагружен на электромагнитное реле S3-12A. На микросхеме U1 реализован своеобразный таймер, который включает реле на заданное время заряда – около 60 минут.

При включении зарядника в сеть и подключении аккумулятора контакты реле JDQK1 разомкнуты.

Микросхема HCF4060BE запитывается от стабилитрона VD6 – 1N4742A (12V). Стабилитрон ограничивает напряжение с сетевого выпрямителя до уровня 12 вольт, так как на его выходе около 24 вольт.

Если взглянуть на схему, то не трудно заметить, что до нажатия кнопки «Пуск» микросхема U1 HCF4060BE обесточена – отключена от источника питания. При нажатии кнопки «Пуск» напряжение питания от выпрямителя поступает на стабилитрон 1N4742A через резистор R6.

Далее пониженное и стабилизированное напряжение поступает на 16 вывод микросхемы U1. Микросхема начинает работать, а также открывается транзистор S9012, которым она управляет.

Напряжение питания через открытый транзистор S9012 поступает на обмотку электромагнитного реле JDQK1. Контакты реле замыкаются, и на аккумулятор поступает напряжение питания. Начинается заряд аккумулятора. Диод VD8 (1N4007) шунтирует реле и защищает транзистор S9012 от скачка обратного напряжения, которое образуется при обесточивании обмотки реле.

Диод VD5 (1N5408) защищает аккумулятор от разряда, если вдруг будет отключено сетевое питание.

Что будет после того, когда контакты кнопки «Пуск» разомкнутся? По схеме видно, что при замкнутых контактах электромагнитного реле плюсовое напряжение через диод VD7 (1N4007) поступает на стабилитрон VD6 через гасящий резистор R6. В результате микросхема U1 остаётся подключенной к источнику питания даже после того, как контакты кнопки будут разомкнуты.

Сменный аккумулятор.

Сменный аккумулятор GB1 представляет собой блок, в котором последовательно соединено 12 никель-кадмиевых (Ni-Cd) элементов, каждый по 1,2 вольта.

На принципиальной схеме элементы сменного аккумулятора обведены пунктирной линией.

Суммарное напряжение такого составного аккумулятора составляет 14,4 вольт.

Также в блок аккумуляторов встроен датчик температуры. На схеме он обозначен как SA1. По принципу действия он похож на термовыключатели серии KSD. Маркировка термовыключателя JJD-45 2A. Конструктивно он закреплён на одном из Ni-Cd элементов и плотно прилегает к нему.

Один из выводов термодатчика соединён с минусовым выводом аккумуляторной батареи. Второй вывод подключен к отдельному, третьему разъёму.

Алгоритм работы схемы довольно прост.

При включении в сеть 220V зарядное устройство ни как не проявляет свою работу. Индикаторы (зелёный и красный светодиоды) не светятся. При подключении сменного аккумулятора загорается зелёный светодиод, который свидетельствует о том, что зарядник готов к работе.

При нажатии кнопки «Пуск» электромагнитное реле замыкает свои контакты, и аккумулятор подключается к выходу сетевого выпрямителя, начинается процесс заряда аккумулятора. Загорается красный светодиод, а зелёный гаснет. По истечении 50 – 60 минут, реле размыкает цепь заряда аккумулятора. Загорается светодиод зелёного цвета, а красный гаснет. Зарядка завершена.

После зарядки напряжение на клеммах аккумулятора может достигать 16,8 вольт.

Такой алгоритм работы примитивен и со временем приводит к так называемому «эффекту памяти» у аккумулятора. То есть ёмкость аккумулятора снижается.

Если следовать правильному алгоритму заряда аккумулятора для начала каждый из его элементов нужно разрядить до 1 вольта. Т.е. блок из 12 аккумуляторов нужно разрядить до 12 вольт. В заряднике для шуруповёрта такой режим не реализован.

Вот зарядная характеристика одного Ni-Cd аккумуляторного элемента на 1,2V.

На графике показано, как во время заряда меняется температура элемента (temperature), напряжение на его выводах (voltage) и относительное давление (relative pressure).

Специализированные контроллеры заряда для Ni-Cd и Ni-MH аккумуляторов, как правило, работают по так называемому методу дельта -ΔV. На рисунке видно, что в конце зарядки элемента происходить уменьшение напряжения на небольшую величину – порядка 10mV (для Ni-Cd) и 4mV (для Ni-MH). По этому изменению напряжения контроллер и определяет, зарядился ли элемент.

Так же во время зарядки происходит контроль температуры элемента с помощью термодатчика. Тут же на графике видно, что температура зарядившегося элемента составляет около 45 0 С.

Вернёмся к схеме зарядного устройства от шуруповёрта. Теперь понятно, что термовыключатель JDD-45 отслеживает температуру аккумуляторного блока и разрывает цепь заряда, когда температура достигнет где-то 45 0 С. Иногда такое происходит раньше того, как сработает таймер на микросхеме HCF4060BE. Такое происходит, когда емкость аккумулятора снизилась из-за «эффекта памяти». При этом полная зарядка такого аккумулятора происходит чуть быстрее, чем за 60 минут.

Как видим из схемотехники, алгоритм заряда не самый оптимальный и со временем приводит к потере электроёмкости аккумулятора. Поэтому для зарядки аккумулятора можно воспользоваться универсальным зарядным устройством, например, таким, как Turnigy Accucell 6.

Возможные неполадки зарядного устройства.

Со временем из-за износа и влажности кнопка SK1 «Пуск» начинает плохо срабатывать, а иногда и вообще отказывает. Понятно, что при неисправности кнопки SK1 мы не сможем подать питание на микросхему U1 и запустить таймер.

Также может иметь место выход из строя стабилитрона VD6 (1N4742A) и микросхемы U1 (HCF4060BE). В таком случае при нажатии кнопки включение зарядки не происходит, индикация отсутствует.

В моей практике был случай, когда стабилитрон пробило, мультиметром он «звонился» как кусок провода. После его замены зарядка стала исправно работать. Для замены подойдёт любой стабилитрон на напряжение стабилизации 12V и мощностью 1 Ватт. Проверить стабилитрон на «пробой» можно также, как и обычный диод. О проверке диодов я уже рассказывал.

После ремонта нужно проверить работу устройства. Нажатием кнопки запускаем зарядку АКБ. Приблизительно через час зарядное устройство должно отключиться (засветится индикатор «Сеть» (зелёный). Вынимаем АКБ и делаем «контрольный» замер напряжения на её клеммах. АКБ должна быть заряженной.

Если же элементы печатной платы исправны и не вызывают подозрения, а включения режима заряда не происходит, то следует проверить термовыключатель SA1 (JDD-45 2A) в аккумуляторном блоке.

Схема достаточно примитивна и не вызывает проблем при диагностике неисправности и ремонте даже у начинающих радиолюбителей.

Поделки своими руками для автолюбителей

Импульсное зарядное устройство для авто, схема, описание

К вашему вниманию простая схема импульсного ЗУ для автомобильного акб, компактная, проверенная в работе и со всеми защитами.

Электронный трансформатор немного дорабатываем, чтобы в конечном итоге выход был 14 вольт, то есть если нет 14 вольт, то нужно немного домотать вторичную обмотку. Затем мы добавим (тут по желанию) сетевой фильтр. Сделаем обязательно диодный выпрямитель и схемы защиты от короткого замыкания, переполюсовки и перегрузки. Ну и добавим индикацию.

Я взял китайский электронный трансформатор на 80 ватт. Частота задаётся динистором DB3 в районе 30 кГц. Имеется 2 трансформатора, один ОС, второй (основной) понижающий.

3 обмотки содержит тран-тор ОС, две базовые обмотки ключей и саму обмотку ОС. Были взяты ключи MJE 13005.

Чтобы использовать наше зарядное устройство можно было ещё и в качестве БП, реализуем включение без нагрузки.

Итак, что для этого надо….

1) Выпаять обмотку ОС и вместо неё сделать перемычку.
2) Мотаем 2 витка проводом 0.4 мм на основном трансе и подключаем всё это дело как показано на схеме ниже. Это делать не обязательно, если данное устройство будет работать только как зарядное для аккумуляторов.

Читать еще:  Маркировка проводов в электрических схемах

Резистор нужно взять мощностью 5-10 ватт и то он всегда будет тёплый, но это нормально.

Такая переделка даёт нам защиту от короткого замыкания и включение системы без нагрузки. Но всё равно при длительном замыкании (больше 10 сек) ключи могут выйти из строя, поэтому мы будем делать отдельную защиту от короткого замыкания.

Сделаем на отдельной плате.

В схеме использован транзистор IRFZ44, можно взять и помощней IRF3205. Ключи можно использовать на ток более 20 ампер, такие как IRFZ24, IRFZ40, IRFZ46, IRFZ48 и т.д. Теплоотвод для полевика не требуется. Выбор второго транзистора не критичен, я взял биполярник MJE13003, но выбор за вами. Шесть резисторов по 0.1 ому, подключены параллельно задают сопротивление шунта, которым подбирается ток защиты. При таком раскладе ток защиты срабатывает при нагрузке в 6 или 7 ампер. Также можно подстроить ток срабатывания переменным резистором.

Выходной ток БП доходит до 7 ампер, довольно прилично. Резисторы для шунта брал на 5 ватт, но подойдут и по 2-3 ватта.

Теперь нужно переделать чтобы выходное напряжение было 14 вольт вместо 10-12.

Это делается просто на вторичную обмотку доматываем всего 3 витка и этим повышаем напряжение на три вольта. Сердечник сам разбирать не обязательно. Провод брал сечением 1 мм и подключаем, вернее припаиваем нашу обмотку одним концом к заводской, а другой конец получается выходом. (то есть последовательно)

Теперь приступим к выпрямителю.

Диоды взял шоттки, выпаял из БП от компьютера. Нужны три одинаковые сборки. Обязательно диоды должны быть импульсные или ультрафасты и не менее 10 ампер. Подойдут и наши типа КД213 и подобные.

Собираем мост, блоки в кучу и включаем в сеть 220, чтобы схема не сгорела (в случаи если что накосячили) её следует подключить через обыкновенную лампочку на 60-100 ватт, которую соединяем последовательно с нашей схемой.

При правильной сборке блок работает сразу, теперь замыкаем выход на нём, при этом загорается светодиод (свидетельствует о коротком замыкании).

Теперь собираем схему индикатора

Сама схема взята от зарядника аккумуляторной отвёртки. Где зелёный огонёк показывает, что идёт заряд, а красный показывает, что есть напряжение на выходе блок питания.

Зелёный индикатор будет затухать постепенно и после 12.4 вольт он окончательно потухнет.

Сетевой фильтр

Но вот и осталось нам только сделать сетевой фильтр, он у нас будет состоять из 2-х плёночных конденсаторов и дросселя.

Коденсаторы подключаются перед дросселем и после. Дроссель можно взять готовый от ИБП или намотать самому. Берём кольцо и мотаем две отдельные обмотки, по 20 витков проводом 0.5 мм. Конденсаторы по 0,47 мкФ 250 или 400 вольт, лучше взять плёночные.Теперь собираем всё в корпус и наслаждаемся полноценным импульсным зарядным устройством. Если будет желание, можно сделать и регулятор мощности.

В устройстве можно применить и более мощные трансформаторы. Практика показала надёжность данного устройства и его простоту в изготовлении. Автор; АКА Касьян

Зарядные устройства импульсные своими руками: схемы, инструкция, отзывы

Порой аккумулятор в автомобиле разряжается очень быстро. В итоге приходится использовать различные приборы для того, чтобы завести машину. На сегодняшний день большой популярностью пользуются именно импульсные зарядные устройства. Основными их производителями принято считать компании «Сонар» и «Бош».

Однако некоторые люди не могут себе позволить купить указанные приборы, поскольку они дорого стоят. В такой ситуации можно попробовать самостоятельно собрать модель. Для того чтобы разобраться в импульсных зарядках, необходимо взглянуть на стандартную схему устройства.

Схема обычной зарядной модели

Схемы импульсных зарядных устройств для автомобильных аккумуляторов включают в себя трансформатор с магнитопроводом, а также транзисторы. Для настройки напряжения используются регуляторы, которые подсоединены к модуляторам. Также схема импульсного зарядного устройства включает в себя специальные триггеры. Основной их задачей является повышение стабильности напряжения. Для подключения прибора на зарядке имеются зажимы. Непосредственно само электричество подается через кабель.

Устройство на 6 В: схема и инструкция

Сделать на 6 В импульсное зарядное устройство своими руками довольно просто. С этой целью для трансформатора сооружается небольшая платформа. Также необходимо заранее заготовить изоляторы. Непосредственно трансформатор часто применяют силового типа. Проводимость тока у него в среднем равняется 6 мк. Еще важно отметить, что система способна справляться с повышенным отрицательным сопротивлением. Осцилляторы используются импульсного типа.

Для нормальной работы прибора также потребуется линейный тетрод. Подбирать его следует с обкладкой. Некоторые эксперты настоятельно советуют использовать фильтры. Таким образом, можно стабилизировать напряжение, когда перегрузки в сети превышают отметку в 20 В. По эксплуатации инструкция импульсного зарядного устройства очень простая. Для подключения устройства потребуются зажимы. При этом вилку следует воткнуть в розетку.

Как сделать зарядное на 10 В?

Схемы импульсных зарядных устройств для автомобильных аккумуляторов включают в себя понижающие трансформаторы. Начинать сборку модели следует с поиска качественного трансформатора. В данном случае потребуется мощный магнитопровод. Еще в схемы импульсных зарядных устройств для аккумуляторов входят изоляторы. Многие эксперты устанавливают регуляторы с модуляторами. Таким образом, показатель входного напряжения можно уменьшать или увеличивать. В данном случае многое зависит от мощности автомобильного аккумулятора.

Непосредственно тетроды применяются только с обкладками. Резисторы используются расширительного типа. У некоторых модификаций встречаются триггеры. Данные элементы позволяют справляться с коротковолновыми помехами, которые возникают в сети с переменным током при резком повышении уровня тактовой частоты.

Отзывы о моделях на 12 В

Импульсные зарядные устройства для аккумуляторов на 12 В в наше время пользуются большим спросом. Если верить отзывам экспертов, то для сборки модели используются понижающие трансформаторы. Осциллятор в данном случае потребуется с высокой проводимостью тока. Также важно отметить, что для моделей подходят только подстроечные триггеры.

Тетроды, в свою очередь, используются линейного типа. Параметр допустимой перегрузки в устройствах не превышает 15 Вт. Показатель номинального ток составляет в среднем 4 А. Магнитопроводы у моделей устанавливаются за трансформаторами. Специально для них необходимо подобрать качественные изоляторы. Для подключения зарядного прибора понадобятся зажимы. Если верить экспертам, то следует учесть, что самостоятельно их изготовить будет достаточно сложно.

Однофазные модификации

Сделать однофазное импульсное зарядное устройство своими руками можно на базе понижающего трансформатора. Для их сборки также используются регуляторы. Модуляторы в данном случае подойдут только коммутируемого типа. Непосредственно триггеры устанавливаются с изоляторами. Некоторые эксперты рекомендуют также использовать резиновые подкладки.

Тетроды подбираются с высокой пропускной способностью. Регуляторы устанавливаются над модулятором. Резисторов в данном случае потребуется три. Номинальное напряжение они обязаны выдерживать на отметке в 10 В. Для подключения приора понадобятся металлические фиксаторы.

Двухфазные устройства

Двухфазное автоматическое импульсное зарядное устройство собирается довольно просто. Однако в этой ситуации не обойтись без силового трансформатора. Также для сборки используются только расширительные резисторы. Показатель входного напряжения в сети, как правило, не превышает 12 В. Тиристоры для моделей используются с изоляторами. Непосредственно модулятор устанавливается на подкладку. Регулятор в данном случае подойдет поворотного типа. Для преодоления помех применяются магнитопроводы. Подключаются устройства данного типа через провод. От сети 220 В они работать тоже могут. Для подсоединения к аккумуляторам необходимы зажимы.

Отзывы о трехфазной модификации

Трехфазное импульсное зарядное устройство отзывы от экспертов имеет хорошие. Преимущество моделей заключается в том, что они способны выдерживать больше перегрузки. Магнитопроводы в данном случае устанавливаются с проводимостью на уровне 6 мк. Для стабилизации выходного напряжения применяются линейные резисторы. В некоторых случаях устанавливаются и кодовые аналоги. Однако срок службы у них не большой.

Также важно отметить, что предельное напряжение в устройствах следует регулировать при помощи модуляторов. Устанавливаются они сразу за трансформаторами. Для преодоления магнитных помех применяются подстроечные триггеры. Многие эксперты для сборки зарядных устройств рекомендуют устанавливать фильтры. Указанные элементы помогут значительно уменьшить параметр отрицательного сопротивления в цепи.

Применение импульсного трансформатора РР20

Автомобильные зарядные устройства (импульсные) с данными трансформаторами встречаются часто. В первую очередь следует отметить, что показатель номинального напряжения у них не превышает 10 В. Параметр рабочего тока равняется в среднем 3 А. Осцилляторы для сборки устройства часто используются с не большой проводимостью.

Магнитопроводы в данном случае устанавливаются на подкладках. Расширительные резисторы используются часто. Для регулировки номинального напряжения стандартно применяют модуляторы. У некоторых модификаций используются триггерные блоки. Для нормальной работы системы также не обойтись без линейных тетродов. Зажимы для прибора целесообразнее покупать отдельно. Сделать их самостоятельно очень сложно.

Использование трансформаторов РР22

Зарядные устройства (импульсные) с этими трансформаторами являются довольно распространенными. Для того чтобы самостоятельно собрать модификацию, потребуется найти качественный осциллятор. Также трансформатор будет работать только с магнитопроводом на 3 мк. В данном случае больше всего подходят резисторы расширительного типа. Однако в первую очередь важно заняться установкой регулятора. С этой целью нужно использовать коммутируемый модулятор, который устанавливается на подкладке.

Читать еще:  Улитка для ковки своими руками чертежи видео

Далее важно заняться полупроводниковым транзистором. Для того чтобы избежать коротких замыканий, многие эксперты рекомендуют использовать стабилизаторы. На рынке представлено множество однополюсных модификаций. В данном случае номинальное напряжение будет находиться в районе 5 В. Показатель рабочего тока составляет примерно 4 А.

Зарядное оборудование с трансформатором РР30

Для того чтобы собрать зарядные устройства (импульсные) с указанными трансформаторами, потребуется мощный магнитопровод. При этом осциллятор целесообразнее применять на 2 мк. Параметр отрицательного сопротивления в цепи обязан быть выше 3 Ом. Устанавливается магнитопровод рядом с трансформатором. Для подсоединения модулятора потребуется два контакта. Также важно отметить, что регуляторы целесообразнее использовать поворотного типа.

Многие эксперты рекомендуют резисторы устанавливать на обкладке. Все это позволит значительно сократить случаи коротких замыканий. Для стабилизации напряжения стандартно применяются фильтры. Триггерные блоки с данными трансфокаторами чаще всего используются подстроечного типа. Однако в наше время их найти сложно. Чаще всего попадаются именно оперативные аналоги. Номинальное напряжение в цепи они способны выдерживать в 15 В.

Применение разделительных трансформаторов

Разделительные трансформаторы очень редко встречаются. Основная их проблема кроется в малой проводимости тока. Также важно отметить, что они способны работать только на кодовых резисторах, которые дорого стоят в магазине. Однако преимущества у моделей есть. В первую очередь это касается повышенного номинального напряжения в цепи. Таким образом, зарядка автомобильного аккумулятора много времени не отнимет.

Также нужно отметить, что эти трансформаторы являются компактными, и в машине не займут много места. Тиристоры в данном случае применяются лишь волнового типа. Устанавливаются они чаще всего на обкладках. Для припайки модулятора применяется изолятор. Транзисторы многие эксперты настоятельно рекомендуют использовать полупроводникового типа. В магазине они представлены с различной проводимостью. В итоге параметр отрицательного сопротивления в цепи не должен превышать 8 Ом. Для подсоединения прибора к автомобильным аккумуляторам используются зажимы.

Модель с трансформатором КУ2

Трансформаторы данной серии имеют большие габариты и способны работать лишь с магнитопроводами на 4 мк. Все это говорит о том, что для нормальной эксплуатации прибора потребуются триггеры. При помощи данных устройств получится стабилизировать выходное напряжение. Также возле трансформаторов потребуется установить два фильтра. Некоторые эксперты настоятельно рекомендуют использовать стабилитроны. Однако данные устройства способны работать только при не больших перегрузках в сети.

Резисторы в данном случае можно смело применять расширительного типа. Для регулировки выходного напряжения используются коммутируемые модуляторы. Непосредственно регуляторы устанавливать следует через дроссель. Если верить отзывам экспертов, то трансформатор для безопасного использования следует располагать на подкладке. В данном случае потребуются два изолятора. Транзистора чаще всего применяются полупроводникового типа.

Зарядное оборудование с трансформатором КУ5

Зарядные устройства (импульсные) с указанными трансформаторами не пользуются большим спросом. В первую очередь это вызвано низким выходным напряжением. Таким образом, зарядка автомобильного аккумулятора занимает много времени. Однако если использовать мощный осциллятор, то ситуацию можно немного поправить. Также многие эксперты рекомендуют устанавливать расширительные резисторы.

В данном случае модулятор подойдет только коммутируемого типа. У некоторых моделей встречаются однополюсные стабилитроны. Однако в этой ситуации трансформатор может не выдержать чрезмерной нагрузки. Триггер часто применятся подстроечного типа. Для борьбы с коротковолновыми помехами не обойтись без фильтров. Чтобы подсоединить устройство к автомобильному аккумулятору используют зажимы.

Модель со сдвоенным дросселем

Зарядные устройства (импульсные) с двоенными дросселями позволяют использовать более двух модуляторов. Таким образом, можно устанавливать цифровые регуляторы напряжения. В данном случае трансформаторы чаще всего подбираются понижающего типа. Непосредственно осцилляторы используют на 3 мк. Резисторы многие эксперты рекомендуют устанавливать расширительного типа. В свою очередь кодовые аналоги не смогут долго прослужить. Тиристорные блоки применяются как волнового, так и оперативного типа.

Подведение итогов

Учитывая все вышесказанное, следует отметить, что наиболее востребованными считают трехфазные модификации. Для того чтобы их собрать, необходимо уметь пользоваться паяльной лампой. Детали для устройства нужно приобретать в специализированных магазинах. Также следует помнить о технике безопасности при подключении прибора к сети.

Обзор схем зарядных устройств автомобильных аккумуляторов

Соблюдение режима эксплуатации аккумуляторных батарей, и в частности режима зарядки, гарантирует их безотказную работу в течение всего срока службы. Зарядку аккумуляторных батарей производят током, значение которого можно определить по формуле

I=0,1Q

где I — средний зарядный ток, А., а Q — паспортная электрическая емкость аккумуляторной батареи, А-ч.

Зарядный ток, рекомендуемый в инструкции по эксплуатации аккумуляторной батареи, обеспечивает оптимальное протекание электрохимических процессов в ней и нормальную работу в течение длительного времени.

Классическая схема зарядного устройства для автомобильного аккумулятора состоит из понижающего трансформатора, выпрямителя и регулятора тока зарядки. В качестве регуляторов тока применяют проволочные реостаты (см. Рис. 1) и транзисторные стабилизаторы тока.

В обоих случаях на этих элементах выделяется значительная тепловая мощность, что снижает КПД зарядного устройства и увеличивает вероятность выхода его из строя.

Для регулировки зарядного тока можно использовать магазин конденсаторов, включаемых последовательно с первичной (сетевой) обмоткой трансформатора и выполняющих функцию реактивных сопротивлений, гасящих избыточное напряжение сети. Упрощенная схема такого устройства приведена на рис. 2.

В этой схеме тепловая (активная) мощность выделяется лишь на диодах VD1-VD4 выпрямительного моста и трансформаторе, поэтому нагрев устройства незначителен.

Недостатком схемы на Рис. 2 является необходимость обеспечить напряжение на вторичной обмотке трансформатора в полтора раза большее, чем номинальное напряжение нагрузки (

Схема зарядного устройства, обеспечивающее зарядку 12-вольтовых аккумуляторных батарей током до 15 А, причем ток зарядки можно изменять от 1 до 15 А ступенями через 1 А, приведена на Рис. 3.

Предусмотрена возможность автоматического выключения устройства, когда батарея полностью зарядится. Оно не боится кратковременных коротких замыканий в цепи нагрузки и обрывов в ней.

Выключателями Q1 — Q4 можно подключать различные комбинации конденсаторов и тем самым регулировать ток зарядки.

Переменным резистором R4 устанавливают порог срабатывания реле К2, которое должно срабатывать при напряжении на зажимах аккумулятора, равном напряжению полностью заряженной батареи.

На Рис. 4 представлена схема еще одного зарядного устройства, в котором ток зарядки плавно регулируется от нуля до максимального значения.

Изменение тока в нагрузке достигается регулированием угла открывания тринистора VS1. Узел регулирования выполнен на однопереходном транзисторе VT1. Значение этого тока определяется положением движка переменного резистора R5. Максимальный ток заряда аккумулятора 10А , устанавливается амперметром. Защита устройства обеспечена со стороны сети и нагрузки предохранителями F1 и F2.

Вариант печатной платы зарядного устройства (см. рис. 4), размером 60х75 мм приведен на следующем рисунке:

В схеме на рис. 4 вторичная обмотка трансформатора должна быть рассчитана на ток, втрое больший зарядного тока, и соответственно мощность трансформатора также должна быть втрое больше мощности, потребляемой аккумулятором.

Названное обстоятельство является существенным недостатком зарядных устройств с регулятором тока тринистором (тиристором).

Диоды выпрямительного мостика VD1-VD4 и тиристор VS1 необходимо установить на радиаторы.

Значительно снизить потери мощности в тринисторе, а следовательно, повысить КПД зарядного устройства можно, если регулирующий элемент перенести из цепи вторичной обмотки трансформатора в цепь первичной обмотки. Схема такого устройства показана на рис. 5.

В схеме на Рис. 5 регулирующий узел аналогичен примененному в предыдущем варианте устройства. Тринистор VS1 включен в диагональ выпрямительного моста VD1 — VD4. Поскольку ток первичной обмотки трансформатора примерно в 10 раз меньше тока заряда, на диодах VD1-VD4 и тринисторе VS1 выделяется относительно небольшая тепловая мощность и они не требуют установки на радиаторы. Кроме того, применение тринистора в цепи первичной обмотки трансформатора позволило несколько улучшить форму кривой зарядного тока и снизить значение коэффициента формы кривой тока (что также приводит к повышению КПД зарядного устройства). К недостатку этого зарядного устройства следует отнести гальваническую связь с сетью элементов узла регулирования, что необходимо учитывать при разработке конструктивного исполнения (например, использовать переменный резистор с пластмассовой осью).

Вариант печатной платы зарядного устройства на рисенке 5, размером 60х75 мм приведен на рисунке ниже:

Диоды выпрямительного мостика VD5-VD8 необходимо установить на радиаторы.

В зарядном устройстве на рисунке 5 диодный мостик VD1-VD4 типа КЦ402 или КЦ405 с буквами А, Б, В. Стабилитрон VD3 типа КС518, КС522, КС524, или составленный из двух одинаковых стабилитронов с суммарным напряжением стабилизации 16÷24 вольта (КС482, Д808, КС510 и др.). Транзистор VT1 однопереходной, типа КТ117А, Б, В, Г. Диодный мостик VD5-VD8 составлен из диодов, с рабочим током не менее 10 ампер (Д242÷Д247 и др.). Диоды устанавливаются на радиаторы площадью не менее 200 кв.см, а если радиаторы будут сильно нагреваться, в корпус зарядного устройства можно установить вентилятор для обдува.

Ссылка на основную публикацию
Adblock
detector