67 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...
Затеяли ремонт? Вам сюда ⬇️

Биполярный транзистор в схеме с общим эмиттером

Схема с общим эмиттером (каскад с общим эмиттером)

Схема с ОЭ обладает наибольшим коэффициентом усиления по мощности, поэтому остается наиболее распространенным решением для высокочастотных усилителей, систем GPS, GSM, WiFi. В настоящее время она обычно применяется в виде готовых интегральных микросхем (MAXIM, VISHAY, RF Micro Devices), но, не зная основы ее работы, практически невозможно получить параметры, приведенные в описании микросхемы.Именно поэтому при приеме на работу и поиске сотрудников основным требованием является знание принципов работы усилителей с ОЭ.

Усилитель, каким бы он не был, (усилитель аудио, ламповый усилитель или усилитель радиочастоты) представляет собой четырехполюсник, у которого два вывода являются входом и два вывода являются выходом. Структурная схема включения усилителя приведена на рисунке 1.


Рисунок 1 Структурная схема включения усилителя

Основной усилительный элемент — транзистор имеет всего три вывода, поэтому один из выводов транзистора приходится использовать одновременно для подключения источника сигнала (как входной вывод) и подключения нагрузки (как выходной вывод). Схема с общим эмиттером — это усилитель, где эмиттер транзистора используется как для подключения входного сигнала, так и для подключения нагрузки. Функциональная схема усилителя с транзистором, включенным по схеме с общим эмиттером приведена на рисунке 2.


Рисунок 2 Функциональная схема включения транзистора с общим эмиттером

На данной схеме пунктиром показаны границы усилителя, изображенного на рисунке 1. На ней не показаны цепи питания транзистора. В настоящее время схема с общим эмиттером практически не применяется в звуковых усилителях, однако в схемах усилителей телевизионного сигнала, усилителях GSM или других высокочастотных усилителях она находит широкое применение. Для питания транзистора в схеме с общим эмиттером можно использовать два источника питания, однако для этого потребуется два стабилизатора напряжения. В аппаратуре с батарейным питанием это может быть проблематично, поэтому обычно применяется один источник питания. Для питания усилителя с общим эмиттером может подойти любая из рассмотренных нами схем:

  • схема с фиксированным током базы,
  • схема с фиксированным напряжением на базе,
  • схема с коллекторной стабилизацией,
  • схема с эмиттерной стабилизацией.

Рассморим пример схемы усилителя с общим эмиттером и эмиттерной стабилизацией режима работы транзистора. На рисунке 3 приведена принципиальная схема каскада на биполярном npn-транзисторе, предназначенная для усиления звуковых частот.


Рисунок 3 Принципиальная схема усилительного каскада с общим эмиттером

Расчет элементов данной схемы по постоянному току можно посмотреть в статье «схема эмиттерной стабилизации». Сейчас нас будут интересовать параметры усилительного каскада, собранного по схеме с общим эмиттером. Его наиболее важными характеристиками является входное и выходное сопротивление и коэффициент усиления по мощности. В основном эти характеристики определяются параметрами транзистора.

Входное сопротивление схемы с общим эмиттером

В схеме с общим эмиттером входное сопротивление транзистора RвхОЭ можно определить по его входной характеристике. Эта характеристика совпадает с вольтамперной характеристикой p-n перехода. Пример входной характеристики кремниевого транзистора (зависимость напряжения Uб от тока базы Iб) приведен на рисунке 4.


Рисунок 4 Входная характеристика кремниевого транзистора

Как видно из этого рисунка, входное сопротивление транзистора RвхОЭ зависит от тока базы Iб0 и определяется по следующей формуле:

(1)

Как определить ΔUб0 и ΔIб0 в окрестностях рабочей точки транзистора в схеме с общим эмиттером показано на рисунке 5.


Рисунок 5 Определение входного сопротивления схемы с общим эмиттером по входной характеристике кремниевого транзистора

Определение сопротивления по формуле (1) является наиболее точным способом определения входного сопротивления. Однако при расчете усилителя мы не всегда имеем под рукой транзисторы, которые будем использовать, поэтому было бы неплохо иметь возможность рассчитать входное сопротивление аналитическим способом. Вольтамперная характеристика p-n перехода хорошо аппроксимируется экспоненциальной функцией.

(2)

где Iб — ток базы в рабочей точке;
Uбэ — напряжение базы в рабочей точке;
Is — обратный ток перехода эмиттер-база;
— температурный потенциал;
k — постоянная Больцмана;
q — заряд электрона;
T — температура, выраженная в градусах Кельвина.

В этом выражении коэффициентом, нормирующим экспоненту, является ток Is, поэтому чем точнее он будет определен, тем лучше будет совпадение реальной и аппроксимированной входных характеристик транзистора. Если в выражении (2) пренебречь единицей, то напряжение на базе транзистора можно вычислить по следующей формуле:

(3)

Из выражения (1) видно, что входное сопротивление является производной напряжения на базе транзистора по току. Продифференцируем выражение (3), тогда входное сопротивление схемы с общим эмиттером можно определить по следующей формуле:

(4)

Однако график реальной входной характеристики транзистора, включенного по схеме с общим эмиттером, отличается от экспоненциальной функции. Это связано с тем, что омическое сопротивление полупроводника в базе транзистора не равно нулю, поэтому при больших базовых токах транзистора в схеме с общим эмиттером ее входное сопротивление будет стремиться к омическому сопротивлению базы rбб’.

Входной ток схемы с общим эмиттером протекает не только через входное сопротивление транзистора, но и по всем резисторам цепей формирования напряжения на базе транзистора. Поэтому входное сопротивление схемы с общим эмиттером определяется как параллельное соединение всех этих сопротивлений. Пути протекания входного тока по схеме с общим эмиттером показаны на рисунке 6.


Рисунок 6 Протекание тока по входным цепям схемы с общим эмиттером

Значительно проще вести анализ данной схемы по эквивалентной схеме входной цепи, где приведены только те цепи, по которым протекает входной ток от источника сигнала. Эквивалентная схема входной цепи схемы с общим эмиттером приведена на рисунке 7.


Рисунок 7 Эквивалентная схема входной цепи схемы с общим эмиттером

Данная схема построена для средних частот с применением эквивалентной схемы транзистора. На средних частотах входная емкость транзистора не оказывает влияния, поэтому мы ее не отображаем на эквивалентной схеме. Сопротивление конденсатора C3 на средних частотах близко к нулю, поэтому на схеме нет элементов R4C3. Элементы Rвых и h21×iвх не влияют на входную цепь и изображены на схеме для отображения усилительных свойств транзистора.

И, наконец, мы можем записать формулу входного сопротивления схемы с общим эмиттером:

(5)

После изготовления усилителя, рассчитанного по приведенным выше методикам необходимо измерить входное сопротивление схемы с общим эмиттером. Для измерения входного сопротивления используют схему измерения входного сопротивления усилителя, изображенную на рисунке 8. В данной схеме для измерения входного сопротивления используются измерительный генератор переменного напряжения и два высокочастотных вольтметра переменного тока (можно воспользоваться одним и сделать два измерения).


Рисунок 8 Схема измерения входного сопротивления усилительного каскада

В случае, если сопротивление Rи будет равно входному сопротивлению усилителя, напряжение, которое покажет вольтметр переменного тока V2, будет в два раза меньше напряжения V1. В случае, если нет возможности изменять сопротивление Rи при измерении входного сопротивления, входное сопротивление усилителя можно вычислить по следующей формуле:

(6)

Выходное сопротивление схемы с общим эмиттером

Выходное сопротивление транзистора зависит от конструктивных особенностей транзистора, толщины его базы, объемного сопротивления коллектора. Выходное сопротивление транзистора, включенного по схеме с общим эмиттером, можно определить по выходным характеристикам транзистора. Пример выходных характеристик транзистора приведен на рисунке 9.


Рисунок 9 Выходные характеристики кремниевого транзистора

К сожалению, в характеристиках современных транзисторов выходные характеристики обычно не приводятся. Связано это с тем, что их выходное сопротивление достаточно велико и выходное сопротивление транзисторного каскада с общим эмиттером определяется сопротивлением нагрузки. В схеме, приведенной на рисунке 6, это сопротивление резистора R3.

Дата последнего обновления файла 31.05.2018

  1. Шило В. Л. «Линейные интегральные схемы в радиоэлектронной аппаратуре» под ред. Е.И. Гальперина — М.: «Сов. радио» 1974
  2. npn транзистор общего назначения КТ3130
  3. NPN general purpose transistors BC846; BC847; BC848 (один из лучших транзисторов, известных мне)
  4. BFQ67 NPN 8 GHz wideband transistor
  5. Усилительный каскад на биполярном транзисторе Санкт-Петербургский государственный университет телекоммуникаций им. проф. М.А. Бонч-Бруевича
  6. Электротехника и электроника Дальневосточный государственный университет путей сообщения

Вместе со статьей «Схема с общим эмиттером (каскад с общим эмиттером)» читают:

Биполярный транзистор в схеме с общим эмиттером;

Лабораторная работа №5

Электрические параметры.

Плоскостной транзистор состоит из двух p-n-переходов, один из ко­торых—эмиттерный—включен в прямом направлении, другой— коллек­торный—включен в обратном направлении. Между эмиттерным и кол­лекторным переходами расположена область базы.

Полупроводник базы имеет низкую концентрацию примесей, тол­щина базовой пластины w значительно меньше диффузионной длины L (диффузионной длиной называют расстояние, на которое неосновные носители диффундируют за время жизни).

На рис. 5-1 показана зонная энергетическая диаграмма транзистора р-п-р-типа без подачи напряжений на электроды прибора и в активном ре­жиме. Подача на эмиттерный переход прямого смещения Uэ вызы­вает инжекцию дырок из эмиттера в базу. Инжектированные в базу дырки диффундируют к коллекторному переходу. При условии w

Если транзистор включен пи схеме ОЭ (рис. 5-2), входным та­ком явля­ется ток базы. Этот ток в основном определяется реком­бинацией неос­новных носителей в базе. Коэффициент передачи тока базы в схеме ОЭ

Рассмотрим, как происходит усиление в транзисторе, включен­ном по схеме ОЭ. В коллекторной цепи транзистора включено со­противление нагрузки Rн, а во входной цепи—источник перемен­ного сигнала U

. Со­противление коллекторного перехода, смещен­ного в обратном направле­нии, велико по сравнению с сопротивлением выходной цепи, поэтому в цепь коллек­тора можно включить доста­точно большое сопротивле­ние нагрузки. Относительно малое изменение напряже­ния на эмиттерном переходе

будет вызывать значительное измене­ние тока инжекции и напря­жения на сопротивлении нагрузки. В результате различия входно­го и выходного сопро­тивлений транзистор, включенный по схеме ОЭ, дает усиление по току, на­пряжению и мощности.

Выходные характеристики транзистора, включенного по схеме с ОЭ (рис. 5-3,a), представляют собой зависимость тока коллектора от напряжения коллектор-эмиттер при постоянном токе базы. Как и для схемы ОБ, выходные характеристики в схеме с ОЭ – это коллекторные характеристики. Iк=f(Uкэ) Iб=const.

Семейство коллекторных характеристик транзистора в схеме с ОЭ отличается от коллекторных характеристик в схеме ОБ. Все характеристики выходят из начала координат, т.е. при Uкэ=0 ток Iк=0. Это объясняется тем, что при Uкэ=0 цепь коллектор-эмиттер закорочена; кол­лекторный переход подключен параллельно эмиттерному, и на нем тоже действует прямое напряжение, равное Uбэ, которое понижает потенци­альный барьер. В результате основные носители заряда переходят из кол­лектора в базу и компенсируют поток таких же носителей заряда, пере­ходящих в коллектор от эмиттера через базу, так что Iк=0.

Читать еще:  Esr метр своими руками схема

Вид входных характеристик транзистора показан на рис. 5-3,б. Обра­тите внимание то, что Iб падает с увеличением обратного смещения кол­лекторного перехода Uкэ. При Uкэ=0 оба перехода – эмиттерный и кол­лекторный – смещены в прямом направлении напряжения Uбэ. В резуль­тате рекомбинационный ток базы велик. Смещение коллекторного пере­хода в обратном направлении |Uкэ|>|Uбэ| переводит транзистор в активный режим с малым током базы. Дальнейшее уменьшение тока базы связано с модуляцией ширины базы коллекторным напряжением.

Наибольшее распространение при расчете транзисторных низ­кочас­тотных схем получили h-параметры. Их преимущество пе­ред собствен­ными параметрами состоит в том, что их удобно определять с помощью измерений в схеме включения транзисто­ра, причем для этого легко соз­дать требуемые режимы по пере­менному току: короткое замыкание на выходе, соответствующее условию DUвых=0 (или Uвых), и холостой ход на входе, соответственно, DIвх= 0 (или Iвх= const).

Для определения h-параметров составляется система уравне­ний, в кото­рой независимыми переменными являются DIвх и DUвых :

В этой системе имеется четыре параметра с разной размер­ностью: h11,h12,h21,h12.

Зна­чение этих параметров следующее:

h11входное сопротивление транзистора при неизменном вы­ходном напряжении:

при Uвых=const;

h22выходная проводимость транзистора при неизменном вход­ном токе:

при Iвх=const;

h21коэффициент усиления тока при неизменном выходном напря­жении:

при Uвых=const;

h12коэффициент внутренней обратной связи по напряжению при неизменном входном токе

при Iвх=const;

Поскольку в систему h-параметров входят сопротивление, проводи­мость и безразмерные величины, их иногда называют смешанными, или гибридными, параметрами. Эти параметры зависят от схемы включения транзистора и в разных схемах имеют разные значения. Поэтому к ин­дексу добавляют букву, обозначающую схему включения.

Определение h-параметров по статическим характеристикам транзи­стора для схемы ОЭ показано на рис. 5-4, где h11 опре­деляется по одной входной характеристике, h22 — по одной вы­ходной, h12 — по двум вход­ным, h21 — по двум выходным. Учи­тывая, что характеристики транзи­стора нелинейны и параметры зависят от режима работы, их определяют для рабочей точки по малым приращениям токов и напряжений.

Значения h-параметров для разных схем включения связаны соотно­шениями, из которых по h-параметрам одной схемы можно найти h-па­раметры другой. Например:

Кроме того, h-параметры можно выразить через первичные пара­метры транзистора:

В справочниках приводится коэффициент усиления тока в схеме ОЭ: h21э=b.

Как видно из приведенных соотношений, a и b соответствен­но равны h21б и h21э; определение их по коллекторным характе­ристикам для схем ОЭ и ОБ производится аналогично показан­ному на рис. 5-4, в.

1. Термины и обозначения.

Схема с общим эмиттером

Схема с общим эмиттером (ОЭ) представлена на рис. 1.11. Транзистор п-р-п в этой схеме работает так же, как и в схеме с ОБ. Заметим лишь, что общепринятое направление токов (от К источника напряжения), обозначенное на рис. 1.11, а, противоположно направлению движения электронов. Характерным признаком схемы с ОЭ является то, что нагрузка располагается в коллекторной цепи (рис. 1.11,6).

Рис. 1.11. Схема включения транзистора с общим эмиттером (а); типовое изображение в схемах (б)

Так же как и для схемы с ОБ, входным сигналом в этой схеме является напряжение между базой и эмиттером, а выходными величинами – коллекторный ток Iк и напряжение на нагрузке Uвых = Iк • Rн Транзистор в схеме с ОЭ характеризуется коэффициентом передачи тока

имеющим значения β = 10. 100, который связан с коэффициентом α для схемы с ОБ соотношением:

Оценим значения коэффициентов усиления схемы с ОЭ (их обозначают индексом «Э»).

Выходным током, как и в схеме с ОБ, является ток Iк, протекающий но нагрузке, а входным током (в отличие от схемы с ОБ) – ток базы IБ; коэффициент усиления по току схемы с ОЭ равен

При α = 0,98 КIЭ = 0,98/(1 – 0,98) ≈ 50, т.е. нескольким десяткам, что многократно превосходит аналогичный коэффициент у схемы с ОБ.

Входное сопротивление в схеме с ОЭ также значительно выше, чем в схеме с ОБ, так как в схеме с ОЭ входным током является ток базы, а в схеме с ОБ – во много раз больший ток эмиттера (а именно в 1/(1 – α) ≈ β раз):

Величина входного сопротивления в схеме с ОЭ больше, чем в схеме с ОБ в ≈ β раз и составляет сотни ом.

Коэффициент усиления по напряжению в схеме с ОЭ соизмерим с таким же коэффициентом у схемы с ОБ:

По коэффициенту усиления по мощности схема с ОЭ за счет значительно большего коэффициента усиления по току также многократно превосходит схему с ОБ:

и зависит от коэффициента передачи тока β и отношения сопротивления нагрузки к входному сопротивлению.

Благодаря отмеченным свойствам, схема с ОЭ нашла очень широкое применение.

Входные и выходные характеристики схемы с общим эмиттером

Работу схемы обычно описывают с помощью входных и выходных характеристик транзистора в той или иной схеме включения. Для схемы с ОЭ входная характеристика – это зависимость входного тока от напряжения на входе схемы, т.е. IБ = f (UБЭ) при фиксированных значениях напряжения коллектор – эмиттер ( Uкэ = const).

Выходные характеристики – это зависимости выходного тока, т.е. тока коллектора, от падения напряжения между коллектором и эмиттером транзистора Iк = f ( иБЭ) при токе базы IБ = const.

Входная характеристика по существу повторяет вид характеристики диода при подаче прямого напряжения (рис. 1.12, б). С ростом напряжения UKЭ входная характеристика будет незначительно смещаться вправо.

Рис. 1.12. Выходные (а) и входная (б) характеристики транзистора в схеме с общим эмиттером

Вид выходных характеристик (рис. 1.12, а) резко различен в области малых (участок ОA) и относительно больших значений Uкэ. Напомним, что для нормальной работы транзистора необходимо, чтобы на переход база–эмиттер подавалось прямое напряжение, а на переход база–коллектор – обратное. Поэтому, пока |1/кэ| UБЭ напряжение на коллекторном переходе UБK = UКЭ – UБЭ становится обратным и, следовательно, мало влияет на величину коллекторного тока, который определяется в основном током эмиттера. При таком напряжении все носители, инжектированные эмиттером в базу и прошедшие через область базы, устремляются к внешнему источнику. При напряжении UБЭ

Биполярные транзисторы: схемы включения. Схема включения биполярного транзистора с общим эмиттером

Одним из типов трехэлектродных полупроводниковых приборов являются биполярные транзисторы. Схемы включения зависят от того, какая у них проводимость (дырочная или электронная) и выполняемые функции.

Классификация

Транзисторы разделяют на группы:

  1. По материалам: чаще всего используются арсенид галлия и кремний.
  2. По частоте сигнала: низкая (до 3 МГц), средняя (до 30 МГц), высокая (до 300 МГц), сверхвысокая (выше 300 МГц).
  3. По максимальной мощности рассеивания: до 0,3 Вт, до 3 Вт, более 3 Вт.
  4. По типу устройства: три соединенных слоя полупроводника с поочередным изменением прямого и обратного способов примесной проводимости.

Как работают транзисторы?

Наружные и внутренний слои транзистора соединены с подводящими электродами, называемыми соответственно эмиттером, коллектором и базой.

Эмиттер и коллектор не отличаются друг от друга типами проводимости, но степень легирования примесями у последнего значительно ниже. За счет этого обеспечивается увеличение допустимого выходного напряжения.

База, являющаяся средним слоем, обладает большим сопротивлением, поскольку сделана из полупроводника со слабым легированием. Она имеет значительную площадь контакта с коллектором, что улучшает отвод тепла, выделяющегося из-за обратного смещения перехода, а также облегчает прохождение неосновных носителей – электронов. Несмотря на то что переходные слои основаны на одном принципе, транзистор является несимметричным устройством. При перемене мест крайних слоев с одинаковой проводимостью невозможно получить аналогичные параметры полупроводникового устройства.

Схемы включения биполярных транзисторов способны поддерживать его в двух состояниях: он может быть открытым или закрытым. В активном режиме, когда транзистор открыт, эмиттерное смещение перехода сделано в прямом направлении. Чтобы наглядно это рассмотреть, например, на полупроводниковом триоде типа n-p-n, на него следует подать напряжение от источников, как изображено на рисунке ниже.

Граница на втором коллекторном переходе при этом закрыта, и через нее ток протекать не должен. Но на практике происходит обратное из-за близкого расположения переходов друг к другу и их взаимного влияния. Поскольку к эмиттеру подключен «минус» батареи, открытый переход позволяет электронам поступать в зону базы, где происходит их частичная рекомбинация с дырками – основными носителями. Образуется базовый ток Iб. Чем он сильней, тем пропорционально больше ток на выходе. На этом принципе работают усилители на биполярных транзисторах.

Через базу происходит исключительно диффузионное перемещение электронов, поскольку там нет действия электрического поля. Благодаря незначительной толщине слоя (микроны) и большой величине градиента концентрации отрицательно заряженных частиц, почти все из них попадают в область коллектора, хотя сопротивление базы достаточно велико. Там их втягивает электрическое поле перехода, способствующее их активному переносу. Коллекторный и эмиттерный токи практически равны между собой, если пренебречь незначительной потерей зарядов, вызванных рекомбинацией в базе: Iэ = Iб + Iк.

Параметры транзисторов

  1. Коэффициенты усиления по напряжению Uэк/Uбэ и току: β = Iк/Iб (фактические значения). Обычно коэффициент β не превышает значения 300, но может достигать величины 800 и выше.
  2. Входное сопротивление.
  3. Частотная характеристика – работоспособность транзистора до заданной частоты, при превышении которой переходные процессы в нем не успевают за изменениями подаваемого сигнала.
Читать еще:  Инструкция по замене манометров

Биполярный транзистор: схемы включения, режимы работы

Режимы работы отличаются в зависимости от того, как собрана схема. Сигнал должен подаваться и сниматься в двух точках для каждого случая, а в наличии имеются только три вывода. Отсюда следует, что один электрод должен одновременно принадлежать входу и выходу. Так включаются любые биполярные транзисторы. Схемы включения: ОБ, ОЭ и ОК.

1. Схема с ОК

Схема включения биполярного транзистора с общим коллектором: сигнал поступает на резистор RL, который входит также в коллекторную цепь. Такое подключение называют схемой с общим коллектором.

Этот вариант создает только усиление по току. Преимущество эмиттерного повторителя состоит в создании большого сопротивления входа (10-500 кОм), что позволяет удобно согласовывать каскады.

2. Схема с ОБ

Схема включения биполярного транзистора с общей базой: входящий сигнал поступает через С1, а после усиления снимается в выходной коллекторной цепи, где электрод базы является общим. В таком случае создается усиление по напряжению аналогично работе с ОЭ.

Недостатком является небольшое сопротивление входа (30-100 Ом), и схема с ОБ применяется как генератор колебаний.

3. Схема с ОЭ

Во многих вариантах, когда применяются биполярные транзисторы, схемы включения преимущественно делаются с общим эмиттером. Питающее напряжение подается через нагрузочный резистор RL, а к эмиттеру подключается отрицательный полюс внешнего питания.

Переменный сигнал со входа поступает на электроды эмиттера и базы (Vin), а в коллекторной цепи он становится уже больше по величине (VCE). Основные элементы схемы: транзистор, резистор RL и цепь выхода усилителя с внешним питанием. Вспомогательные: конденсатор С1, препятствующий прохождению постоянного тока в цепь подаваемого входного сигнала, и резистор R1, через который транзистор открывается.

В коллекторной цепи напряжения на выходе транзистора и на резисторе RL вместе равны величине ЭДС: VCC = ICRL + VCE.

Таким образом, небольшим сигналом Vin на входе задается закон изменения постоянного напряжения питания в переменное на выходе управляемого транзисторного преобразователя. Схема обеспечивает возрастание входного тока в 20-100 раз, а напряжения — в 10-200 раз. Соответственно, мощность также повышается.

Недостаток схемы: небольшое сопротивление входа (500-1000 Ом). По этой причине появляются проблемы в формировании каскадов усиления. Выходное сопротивление составляет 2-20 кОм.

Приведенные схемы демонстрируют, как работает биполярный транзистор. Если не принять дополнительных мер, на их работоспособность будут сильно влиять внешние воздействия, например перегрев и частота сигнала. Также заземление эмиттера создает нелинейные искажения на выходе. Чтобы повысить надежность работы, в схеме подключают обратные связи, фильтры и т. п. При этом коэффициент усиления снижается, но устройство становится более работоспособным.

Режимы работы

На функции транзистора влияет значение подключаемого напряжения. Все режимы работы можно показать, если применяется представленная ранее схема включения биполярного транзистора с общим эмиттером.

1. Режим отсечки

Данный режим создается, когда значение напряжения VБЭ снижается до 0,7 В. При этом эмиттерный переход закрывается, и коллекторный ток отсутствует, поскольку нет свободных электронов в базе. Таким образом, транзистор заперт.

2. Активный режим

Если на базу подать напряжение, достаточное, чтобы открыть транзистор, появляется небольшой входной ток и повышенный на выходе, в зависимости от величины коэффициента усиления. Тогда транзистор будет работать как усилитель.

3. Режим насыщения

Режим отличается от активного тем, что транзистор полностью открывается, и ток коллектора достигает максимально возможного значения. Его увеличения можно достигнуть только за счет изменения прикладываемой ЭДС или нагрузки в цепи выхода. При изменении базового тока коллекторный не меняется. Режим насыщения характеризуется тем, что транзистор предельно открыт, и здесь он служит переключателем во включенном состоянии. Схемы включения биполярных транзисторов при объединении режимов отсечки и насыщения позволяют создавать с их помощью электронные ключи.

Все режимы работы зависят от характера выходных характеристик, изображенных на графике.

Их можно наглядно продемонстрировать, если будет собрана схема включения биполярного транзистора с ОЭ.

Если отложить на осях ординат и абсцисс отрезки, соответствующие максимально возможному коллекторному току и величине напряжения питания VCC, а затем соединить их концы между собой, получится линия нагрузки (красного цвета). Она описывается выражением: IC = (VCC — VCE)/RC. Из рисунка следует, что рабочая точка, определяющая ток коллектора IC и напряжение VCE, будет смещаться по нагрузочной линии снизу вверх при увеличении тока базы IВ.

Зона между осью VCE и первой характеристикой выхода (заштрихована), где IВ = 0, характеризует режим отсечки. При этом обратный ток IC ничтожно мал, а транзистор закрыт.

Самая верхняя характеристика в точке А пересекается с прямой нагрузки, после которой при дальнейшем увеличении IВ коллекторный ток уже не изменяется. Зоной насыщения на графике является заштрихованная область между осью IC и самой крутой характеристикой.

Как ведет себя транзистор в разных режимах?

Транзистор работает с переменными или постоянными сигналами, поступающими во входную цепь.

Биполярный транзистор: схемы включения, усилитель

Большей частью транзистор служит в качестве усилителя. Переменный сигнал на входе приводит к изменению его выходного тока. Здесь можно применить схемы с ОК или с ОЭ. В выходной цепи для сигнала требуется нагрузка. Обычно используют резистор, установленный в выходной коллекторной цепи. Если его правильно выбрать, величина выходного напряжения будет значительно выше, чем входного.

Работу усилителя хорошо видно на временных диаграммах.

Когда преобразуются импульсные сигналы, режим остается тем же, что и для синусоидальных. Качество преобразования их гармонических составляющих определяется частотными характеристиками транзисторов.

Работа в режиме переключения

Транзисторные ключи предназначены для бесконтактной коммутации соединений в электрических цепях. Принцип заключается в ступенчатом изменении сопротивления транзистора. Биполярный тип вполне подходит под требования ключевого устройства.

Заключение

Полупроводниковые элементы используются в схемах преобразования электрических сигналов. Универсальные возможности и большая классификация позволяют широко применять биполярные транзисторы. Схемы включения определяют их функции и режимы работы. Многое также зависит от характеристик.

Основные схемы включения биполярных транзисторов усиливают, генерируют и преобразуют входные сигналы, а также переключают электрические цепи.

Биполярный транзистор в схеме с общим эмиттером

Итак, третья и заключительная часть повествования о биполярных транзисторах на нашем сайте =) Сегодня мы поговорим об использовании этих замечательных устройств в качестве усилителей, рассмотрим возможные схемы включения биполярного транзистора и их основные преимущества и недостатки. Приступаем!

Схема включения с общей базой.

Эта схема очень хороша при использовании сигналов высоких частот. В принципе для этого такое включение транзистора и используется в первую очередь. Очень большими минусами являются малое входное сопротивление и, конечно же, отсутствие усиления по току. Смотрите сами, на входе у нас ток эмиттера , на выходе .

То есть ток эмиттера больше тока коллектора на небольшую величину тока базы. А это значит, что усиление по току не просто отсутствует, более того, ток на выходе немного меньше тока на входе. Хотя, с другой стороны, эта схема имеет достаточно большой коэффициент передачи по напряжению ) Вот такие вот достоинства и недостатки, продолжаем….

Схема включения биполярного транзистора с общим коллектором

Вот так вот выглядит схема включения биполярного транзистора с общим коллектором. Ничего не напоминает?) Если взглянуть на схему немного под другим углом, то мы узнаем тут нашего старого друга – эмиттерный повторитель. Про него была чуть ли не целая статья (вот она), так что все, что касается этой схемы мы уже там рассмотрели. А нас тем временем ждет наиболее часто используемая схема – с общим эмиттером.

Схема включения биполярного транзистора с общим эмиттером.

Эта схема заслужила популярность своими усилительными свойствами. Из всех схем она дает наибольшее усиление по току и по напряжению, соответственно, велико и увеличение сигнала по мощности. Недостатком схемы является то, что усилительные свойства сильно подвержены влиянию роста температуры и частоты сигнала.

Со всеми схемами познакомились, теперь рассмотрим подробнее последнюю (но не последнюю по значимости) схему усилителя на биполярном транзисторе (с общим эмиттером). Для начала, давайте ее немножко по-другому изобразим:

Тут есть один минус – заземленный эмиттер. При таком включении транзистора на выходе присутствуют нелинейные искажения, с которыми, конечно же, нужно бороться. Нелинейность возникает из-за влияния входного напряжения на напряжение перехода эмиттер-база. Действительно, в цепи эмиттера ничего «лишнего» нету, все входное напряжение оказывается приложенным именно к переходу база-эмиттер. Чтобы справиться с этим явлением, добавим резистор в цепь эмиттера. Таким образом, мы получим отрицательную обратную связь.

А что же это такое?

Если говорить кратко, то принцип отрицательной обратной связи заключается в том, что какая то часть выходного напряжения передается на вход и вычитается из входного сигнала. Естественно, это приводит к уменьшению коэффициента усиления, поскольку на вход транзистора из-за влияния обратной связи поступит меньшее значение напряжение, чем в отсутствие обратной связи.

И тем не менее, отрицательная обратная связь для нас оказывается очень полезной. Давайте разберемся, каким образом она поможет уменьшить влияние входного напряжения на напряжение между базой и эмиттером.

Итак, пусть обратной связи нет, Увеличение входного сигнала на 0.5 В приводит к такому же росту . Тут все понятно А теперь добавляем обратную связь! И точно также увеличиваем напряжение на входе на 0.5 В. Вслед за этим возрастает , что приводит к росту тока эмиттера. А рост приводит к росту напряжения на резисторе обратной связи. Казалось бы, что в этом такого? Но ведь это напряжение вычитается из входного! Смотрите, что получилось:

Выросло напряжение на входе – увеличился ток эмиттера – увеличилось напряжение на резисторе отрицательной обратной связи – уменьшилось входное напряжение (из-за вычитания ) – уменьшилось напряжение .

Читать еще:  Пресс для пэт своими руками чертежи

То есть отрицательная обратная связь препятствует изменению напряжения база-эмиттер при изменении входного сигнала.

В итоге наша схема усилителя с общим эмиттером пополнилась резистором в цепи эмиттера:

Есть еще одна проблема в нашем усилителе. Если на входе появится отрицательное значение напряжения, то транзистор сразу же закроется (напряжения базы станет меньше напряжения эмиттера и диод база-эмиттер закроется), и на выходе ничего не будет. Это как то не очень хорошо ) Поэтому необходимо создать смещение. Сделать это можно при помощи делителя следующим образом:

Получили такую красотищу Если резисторы и равны, то напряжение на каждом из них будет равно 6В (12В / 2). Таким образом, при отсутствии сигнала на входе потенциал базы будет равен +6В. Если на вход придет отрицательное значение, например, -4В, то потенциал базы будет равен +2В, то есть значение положительное и не мешающее нормальной работе транзистора. Вот как полезно создать смещение в цепи базы )

Чем бы еще улучшить нашу схему…

Пусть мы знаем, какой сигнал будем усиливать, то есть знаем его параметры, в частности частоту. Было бы отлично, если бы на входе ничего, кроме полезного усиливаемого сигнала не было. Как это обеспечить? Конечно, же при помощи фильтра высоких частот ) Добавим конденсатор, который в сочетании с резистором смещения образует ФВЧ:

Вот так схема, в которой почти ничего не было, кроме самого транзистора, обросла дополнительными элементами Пожалуй, на этом и остановимся, скоро будет статья, посвященная практическому расчету усилителя на биполярном транзисторе. В ней мы не только составим принципиальную схему усилителя, но и рассчитаем номиналы всех элементов, а заодно и выберем транзистор, подходящий для наших целей. До скорой встречи! =)

Схема с общим эмиттером (каскад с общим эмиттером)

Схема с ОЭ обладает наибольшим коэффициентом усиления по мощности, поэтому остается наиболее распространенным решением для высокочастотных усилителей, систем GPS, GSM, WiFi. В настоящее время она обычно применяется в виде готовых интегральных микросхем (MAXIM, VISHAY, RF Micro Devices), но, не зная основы ее работы, практически невозможно получить параметры, приведенные в описании микросхемы.Именно поэтому при приеме на работу и поиске сотрудников основным требованием является знание принципов работы усилителей с ОЭ.

Усилитель, каким бы он не был, (усилитель аудио, ламповый усилитель или усилитель радиочастоты) представляет собой четырехполюсник, у которого два вывода являются входом и два вывода являются выходом. Структурная схема включения усилителя приведена на рисунке 1.


Рисунок 1 Структурная схема включения усилителя

Основной усилительный элемент — транзистор имеет всего три вывода, поэтому один из выводов транзистора приходится использовать одновременно для подключения источника сигнала (как входной вывод) и подключения нагрузки (как выходной вывод). Схема с общим эмиттером — это усилитель, где эмиттер транзистора используется как для подключения входного сигнала, так и для подключения нагрузки. Функциональная схема усилителя с транзистором, включенным по схеме с общим эмиттером приведена на рисунке 2.


Рисунок 2 Функциональная схема включения транзистора с общим эмиттером

На данной схеме пунктиром показаны границы усилителя, изображенного на рисунке 1. На ней не показаны цепи питания транзистора. В настоящее время схема с общим эмиттером практически не применяется в звуковых усилителях, однако в схемах усилителей телевизионного сигнала, усилителях GSM или других высокочастотных усилителях она находит широкое применение. Для питания транзистора в схеме с общим эмиттером можно использовать два источника питания, однако для этого потребуется два стабилизатора напряжения. В аппаратуре с батарейным питанием это может быть проблематично, поэтому обычно применяется один источник питания. Для питания усилителя с общим эмиттером может подойти любая из рассмотренных нами схем:

  • схема с фиксированным током базы,
  • схема с фиксированным напряжением на базе,
  • схема с коллекторной стабилизацией,
  • схема с эмиттерной стабилизацией.

Рассморим пример схемы усилителя с общим эмиттером и эмиттерной стабилизацией режима работы транзистора. На рисунке 3 приведена принципиальная схема каскада на биполярном npn-транзисторе, предназначенная для усиления звуковых частот.


Рисунок 3 Принципиальная схема усилительного каскада с общим эмиттером

Расчет элементов данной схемы по постоянному току можно посмотреть в статье «схема эмиттерной стабилизации». Сейчас нас будут интересовать параметры усилительного каскада, собранного по схеме с общим эмиттером. Его наиболее важными характеристиками является входное и выходное сопротивление и коэффициент усиления по мощности. В основном эти характеристики определяются параметрами транзистора.

Входное сопротивление схемы с общим эмиттером

В схеме с общим эмиттером входное сопротивление транзистора RвхОЭ можно определить по его входной характеристике. Эта характеристика совпадает с вольтамперной характеристикой p-n перехода. Пример входной характеристики кремниевого транзистора (зависимость напряжения Uб от тока базы Iб) приведен на рисунке 4.


Рисунок 4 Входная характеристика кремниевого транзистора

Как видно из этого рисунка, входное сопротивление транзистора RвхОЭ зависит от тока базы Iб0 и определяется по следующей формуле:

(1)

Как определить ΔUб0 и ΔIб0 в окрестностях рабочей точки транзистора в схеме с общим эмиттером показано на рисунке 5.


Рисунок 5 Определение входного сопротивления схемы с общим эмиттером по входной характеристике кремниевого транзистора

Определение сопротивления по формуле (1) является наиболее точным способом определения входного сопротивления. Однако при расчете усилителя мы не всегда имеем под рукой транзисторы, которые будем использовать, поэтому было бы неплохо иметь возможность рассчитать входное сопротивление аналитическим способом. Вольтамперная характеристика p-n перехода хорошо аппроксимируется экспоненциальной функцией.

(2)

где Iб — ток базы в рабочей точке;
Uбэ — напряжение базы в рабочей точке;
Is — обратный ток перехода эмиттер-база;
— температурный потенциал;
k — постоянная Больцмана;
q — заряд электрона;
T — температура, выраженная в градусах Кельвина.

В этом выражении коэффициентом, нормирующим экспоненту, является ток Is, поэтому чем точнее он будет определен, тем лучше будет совпадение реальной и аппроксимированной входных характеристик транзистора. Если в выражении (2) пренебречь единицей, то напряжение на базе транзистора можно вычислить по следующей формуле:

(3)

Из выражения (1) видно, что входное сопротивление является производной напряжения на базе транзистора по току. Продифференцируем выражение (3), тогда входное сопротивление схемы с общим эмиттером можно определить по следующей формуле:

(4)

Однако график реальной входной характеристики транзистора, включенного по схеме с общим эмиттером, отличается от экспоненциальной функции. Это связано с тем, что омическое сопротивление полупроводника в базе транзистора не равно нулю, поэтому при больших базовых токах транзистора в схеме с общим эмиттером ее входное сопротивление будет стремиться к омическому сопротивлению базы rбб’.

Входной ток схемы с общим эмиттером протекает не только через входное сопротивление транзистора, но и по всем резисторам цепей формирования напряжения на базе транзистора. Поэтому входное сопротивление схемы с общим эмиттером определяется как параллельное соединение всех этих сопротивлений. Пути протекания входного тока по схеме с общим эмиттером показаны на рисунке 6.


Рисунок 6 Протекание тока по входным цепям схемы с общим эмиттером

Значительно проще вести анализ данной схемы по эквивалентной схеме входной цепи, где приведены только те цепи, по которым протекает входной ток от источника сигнала. Эквивалентная схема входной цепи схемы с общим эмиттером приведена на рисунке 7.


Рисунок 7 Эквивалентная схема входной цепи схемы с общим эмиттером

Данная схема построена для средних частот с применением эквивалентной схемы транзистора. На средних частотах входная емкость транзистора не оказывает влияния, поэтому мы ее не отображаем на эквивалентной схеме. Сопротивление конденсатора C3 на средних частотах близко к нулю, поэтому на схеме нет элементов R4C3. Элементы Rвых и h21×iвх не влияют на входную цепь и изображены на схеме для отображения усилительных свойств транзистора.

И, наконец, мы можем записать формулу входного сопротивления схемы с общим эмиттером:

(5)

После изготовления усилителя, рассчитанного по приведенным выше методикам необходимо измерить входное сопротивление схемы с общим эмиттером. Для измерения входного сопротивления используют схему измерения входного сопротивления усилителя, изображенную на рисунке 8. В данной схеме для измерения входного сопротивления используются измерительный генератор переменного напряжения и два высокочастотных вольтметра переменного тока (можно воспользоваться одним и сделать два измерения).


Рисунок 8 Схема измерения входного сопротивления усилительного каскада

В случае, если сопротивление Rи будет равно входному сопротивлению усилителя, напряжение, которое покажет вольтметр переменного тока V2, будет в два раза меньше напряжения V1. В случае, если нет возможности изменять сопротивление Rи при измерении входного сопротивления, входное сопротивление усилителя можно вычислить по следующей формуле:

(6)

Выходное сопротивление схемы с общим эмиттером

Выходное сопротивление транзистора зависит от конструктивных особенностей транзистора, толщины его базы, объемного сопротивления коллектора. Выходное сопротивление транзистора, включенного по схеме с общим эмиттером, можно определить по выходным характеристикам транзистора. Пример выходных характеристик транзистора приведен на рисунке 9.


Рисунок 9 Выходные характеристики кремниевого транзистора

К сожалению, в характеристиках современных транзисторов выходные характеристики обычно не приводятся. Связано это с тем, что их выходное сопротивление достаточно велико и выходное сопротивление транзисторного каскада с общим эмиттером определяется сопротивлением нагрузки. В схеме, приведенной на рисунке 6, это сопротивление резистора R3.

Дата последнего обновления файла 31.05.2018

  1. Шило В. Л. «Линейные интегральные схемы в радиоэлектронной аппаратуре» под ред. Е.И. Гальперина — М.: «Сов. радио» 1974
  2. npn транзистор общего назначения КТ3130
  3. NPN general purpose transistors BC846; BC847; BC848 (один из лучших транзисторов, известных мне)
  4. BFQ67 NPN 8 GHz wideband transistor
  5. Усилительный каскад на биполярном транзисторе Санкт-Петербургский государственный университет телекоммуникаций им. проф. М.А. Бонч-Бруевича
  6. Электротехника и электроника Дальневосточный государственный университет путей сообщения

Вместе со статьей «Схема с общим эмиттером (каскад с общим эмиттером)» читают:

Ссылка на основную публикацию
Adblock
detector